1
|
Hejazi S, Carpentieri A, Marotta A, Restaino OF, AntonellaGiarra, Solimeno I, Zannini D, Mariniello L, Giosafatto CVL, Porta R. Chitosan/poly-γ-glutamic acid crosslinked hydrogels: Characterization and application as bio-glues. Int J Biol Macromol 2024; 277:133653. [PMID: 38992534 DOI: 10.1016/j.ijbiomac.2024.133653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Ecofriendly hydrogels were prepared using chitosan (CH, 285 kDa) and two fractions of low molecular weight microbial poly-γ-glutamic acid (γ-PGA) (R1 and R2 of 59 kDa and 20 kDa, respectively). The hydrogels were synthesized through sustainable physical blending, employing three CH/γ-PGA mass ratios (1/9, 2/8, and 3/7), resulting in the formation of physically crosslinked materials. The six resulting CH/R1 and CH/R2 hydrogels were physico-chemically characterized and the ones with the highest yields (CH/R1 and CH/R2 ratio of 3/7), analyzed for rheological and morphological properties, showed to act as bio-glues on wood and aluminum compared to commercial vinyl- (V1) and acetovinyl (V2) glues. Lap shear analyses of CH/R1 and CH/R2 blends exhibited adhesive strength on wood, as well as adhesive/cohesive failure like that of V1 and V2. Conversely, CH/R2 had higher adhesive strength and adhesive/cohesive failure on aluminum, while CH/R1 showed an adhesion strength with adhesive failure on the metal similar to that of V1 and V2. Scanning electron microscopy revealed the formation of strong physical bonds between the hydrogels and both substrates. Beyond their use as bio-adhesives, the unique properties of the resulting crosslinked materials make them potentially suitable for various applications in paint, coatings, heritage preservation, and medical sector.
Collapse
Affiliation(s)
- Sondos Hejazi
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Angela Marotta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples "Federico II", 80126 Naples, Italy
| | | | - AntonellaGiarra
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - Ilaria Solimeno
- University Suor Orsola Benincasa, Department of Humanities, Via Santa Caterina da Siena, 32, Naples 80132, Italy
| | - Domenico Zannini
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy; Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy; Institute of Chemical Sciences and Technologies "G. Natta" (SCITEC), National Council of Research, Via De Marini 6, 16149, Genova (GE), Italy
| | - Loredana Mariniello
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| | - C Valeria L Giosafatto
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy.
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples "Federico II", 80126 Naples, Italy
| |
Collapse
|
2
|
Anisimov YA, Yang H, Kwon J, Cree DE, Wilson LD. Chitosan-Polyaniline (Bio)Polymer Hybrids by Two Pathways: A Tale of Two Biocomposites. Polymers (Basel) 2024; 16:2663. [PMID: 39339127 PMCID: PMC11435797 DOI: 10.3390/polym16182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research highlights the potential of polyaniline-based biocomposites as unique adsorbents for humidity sensors. This study examines several preparative routes for creating polyaniline (PANI) and chitosan (CHT) composites: Type 1-in situ polymerization of aniline with CHT; Type 2-molecular association in acidic aqueous media; and a control, Type 3-physical mixing of PANI and CHT powders (without solvent). The study aims to differentiate the bonding nature (covalent vs. noncovalent) within these composites, which posits that noncovalent composites should exhibit similar physicochemical properties regardless of the preparative route. The results indicate that Type 1 composites display features consistent with covalent and hydrogen bonding, which result in reduced water swelling versus Type 2 and 3 composites. These findings align with spectral and thermogravimetric data, suggesting more compact structure for Type 1 materials. Dye adsorption studies corroborate the unique properties for Type 1 composites, and 1H NMR results confirm the role of covalent bonding for the in situ polymerized samples. The structural stability adopts the following trend: Type 1 (covalent and noncovalent) > Type 2 (possible trace covalent and mainly noncovalent) > Type 3 (noncovalent). Types 2 and 3 are anticipated to differ based on solvent-driven complex formation. This study provides greater understanding of structure-function relationships in PANI-biopolymer composites and highlights the role of CHT as a template that involves variable (non)covalent contributions with PANI, according to the mode of preparation. The formation of composites with tailored bonding modalities will contribute to the design of improved adsorbent materials for environmental remediation to versatile humidity sensor systems.
Collapse
Affiliation(s)
- Yuriy A. Anisimov
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4M6, Canada;
| | - Heng Yang
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Johnny Kwon
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Duncan E. Cree
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
3
|
Eftekhari BS, Song D, Janmey PA. Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Substrates Promotes Neural Priming. Macromol Biosci 2023; 23:e2300149. [PMID: 37571815 PMCID: PMC10880582 DOI: 10.1002/mabi.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Indexed: 08/13/2023]
Abstract
Electrical stimulation (ES) within a conductive scaffold is potentially beneficial in encouraging the differentiation of stem cells toward a neuronal phenotype. To improve stem cell-based regenerative therapies, it is essential to use electroconductive scaffolds with appropriate stiffnesses to regulate the amount and location of ES delivery. Herein, biodegradable electroconductive substrates with different stiffnesses are fabricated from chitosan-grafted-polyaniline (CS-g-PANI) copolymers. Human mesenchymal stem cells (hMSCs) cultured on soft conductive scaffolds show a morphological change with significant filopodial elongation after electrically stimulated culture along with upregulation of neuronal markers and downregulation of glial markers. Compared to stiff conductive scaffolds and non-conductive CS scaffolds, soft conductive CS-g-PANI scaffolds promote increased expression of microtubule-associated protein 2 (MAP2) and neurofilament heavy chain (NF-H) after application of ES. At the same time, there is a decrease in the expression of the glial markers glial fibrillary acidic protein (GFAP) and vimentin after ES. Furthermore, the elevation of intracellular calcium [Ca2+ ] during spontaneous, cell-generated Ca2+ transients further suggests that electric field stimulation of hMSCs cultured on conductive substrates can promote a neural-like phenotype. The findings suggest that the combination of the soft conductive CS-g-PANI substrate and ES is a promising new tool for enhancing neuronal tissue engineering outcomes.
Collapse
Affiliation(s)
| | - Dawei Song
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul A. Janmey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, USA
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Ekapakul N, Lerdwiriyanupap T, Siritanon T, Choochottiros C. Double network structure via ionic bond and covalent bond of carboxymethyl chitosan and poly(ethylene glycol): Factors affecting hydrogel formation. Carbohydr Polym 2023; 318:121130. [PMID: 37479459 DOI: 10.1016/j.carbpol.2023.121130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
The factors were studied that affect the formation of DN hydrogel, which was prepared using a water-based, environmental-friendly system. The DN hydrogel was designed and prepared based on a cross-linked, polysaccharide-based, polymer carboxymethyl chitosan (CMCS) via an ionic crosslinking reaction for the first network structure. UV irradiation created a radical crosslinking reaction of poly(ethylene glycol) from a double bond at the chain end for the second network structure. It was found that the optimum hydrogel was produced using 9.5 %v/v of 1000PEGGMA, CMCS 5%w/v, and CaCl2 3%w/v. The results showed the highest percentage of the gel fraction was 87.84 % and the hydrogel was stable based on its rheological properties. Factors affecting the hydrogel formation were the concentration and molecular weight of PEGGMA and the concentrations of CMCS and calcium chloride (CaCl2). The DN hydrogel had bioactivity due to its octacalcium phosphate (OCP) hydroxyapatite crystal form. In addition, the composite DN scaffold with a conductive polymer of chitosan-grafted-polyaniline (CS-g-PANI) had conduction of 2.33 × 10-5 S/cm when the concentration of CS-g-PANI was 3 mg/ml, confirming the semi-conductive nature of the material. All the results indicated that DN hydrogel could be a candidate to apply in tissue-engineering applications.
Collapse
Affiliation(s)
- Natjaya Ekapakul
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Tharit Lerdwiriyanupap
- School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Theeranun Siritanon
- School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chantiga Choochottiros
- Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
5
|
Aguirre G, Marcasuzaa P, Billon L. Soft Self-Assembled Mechanoelectrical Transducer Films from Conductive Microgel Waterborne Dispersions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37268429 DOI: 10.1021/acsami.3c04622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study aims in the developing of new soft transducers based on sophisticated stimuli-responsive microgels that exhibit spontaneous self-assembly forming cohesive films with conductive and mechanoelectrical properties. For that, oligo(ethylene glycol)-based stimuli-responsive microgels have been synthesized using bio-inspired catechol cross-linkers by one-step batch precipitation polymerization in aqueous media. Then, 3,4-ethylene dioxyyhiophene (EDOT) has been directly polymerized onto stimuli-responsive microgels using catechol groups as the unique dopant. PEDOT location is dependent on the cross-linking density of microgel particles and EDOT amount used. Moreover, the spontaneous cohesive film formation ability of the waterborne dispersion after evaporation at soft application temperature is demonstrated. The films obtained present conductivity and enhanced mechanoelectrical properties triggered by simple finger compression. Both properties are function of the cross-linking density of the microgel seed particles and PEDOT amount incorporated. In addition, to obtain maximum electrical potential generated and the possibility to amplify it, several films in series were demonstrated to be efficient. The present material can be a potential candidate for biomedical, cosmetic, and bioelectronic applications.
Collapse
Affiliation(s)
- Garbine Aguirre
- E2S UPPA, CNRS, IPREM-UMR 5254, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France
| | - Pierre Marcasuzaa
- E2S UPPA, CNRS, IPREM-UMR 5254, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France
| | - Laurent Billon
- E2S UPPA, CNRS, IPREM-UMR 5254, Universite de Pau et des Pays de l'Adour, 64000 Pau, France
- Bio-Inspired Materials Group: Functionalities & Self-Assembly, Universite de Pau et des Pays de l'Adour, E2S UPPA, 64000 Pau, France
| |
Collapse
|
6
|
Liu Y, Zhang X, Xiao C, Liu B. Engineered hydrogels for peripheral nerve repair. Mater Today Bio 2023; 20:100668. [PMID: 37273791 PMCID: PMC10232914 DOI: 10.1016/j.mtbio.2023.100668] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Peripheral nerve injury (PNI) is a complex disease that often appears in young adults. It is characterized by a high incidence, limited treatment options, and poor clinical outcomes. This disease not only causes dysfunction and psychological disorders in patients but also brings a heavy burden to the society. Currently, autologous nerve grafting is the gold standard in clinical treatment, but complications, such as the limited source of donor tissue and scar tissue formation, often further limit the therapeutic effect. Recently, a growing number of studies have used tissue-engineered materials to create a natural microenvironment similar to the nervous system and thus promote the regeneration of neural tissue and the recovery of impaired neural function with promising results. Hydrogels are often used as materials for the culture and differentiation of neurogenic cells due to their unique physical and chemical properties. Hydrogels can provide three-dimensional hydration networks that can be integrated into a variety of sizes and shapes to suit the morphology of neural tissues. In this review, we discuss the recent advances of engineered hydrogels for peripheral nerve repair and analyze the role of several different therapeutic strategies of hydrogels in PNI through the application characteristics of hydrogels in nerve tissue engineering (NTE). Furthermore, the prospects and challenges of the application of hydrogels in the treatment of PNI are also discussed.
Collapse
Affiliation(s)
- Yao Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| | - Xiaonong Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Bin Liu
- Hand and Foot Surgery Department, First Hospital of Jilin University, Xinmin Street, Changchun, 130061, PR China
| |
Collapse
|
7
|
Du P, Wang J, Hsu YI, Uyama H. Bio-Inspired Homogeneous Conductive Hydrogel with Flexibility and Adhesiveness for Information Transmission and Sign Language Recognition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23711-23724. [PMID: 37145870 DOI: 10.1021/acsami.3c02105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The wearable electronic technique is increasingly becoming an effective approach to overcoming the communication obstacles between signers and non-signers. However, the efficacy of conducting hydrogels currently proposed as flexible sensor devices is hindered by their poor processability and matrix mismatch, which frequently results in adhesion failure at the combined interfaces and deterioration of mechanical and electrochemical performance. Herein, we propose a hydrogel composed of a rigid matrix in which the hydrophobic and aggregated polyaniline was homogeneously embedded, while quaternate-functionalized nucleobase moieties endowed the flexible network with adhesiveness. Accordingly, the resulting hydrogel with chitosan-graft-polyaniline (chi-g-PANI) copolymers exhibited a promising conductivity (4.8 S·m-1) because of the uniformly dispersed polyaniline components and a high strain strength (0.84 MPa) because of the chain entanglement of chitosan after soaking. In addition, the modified adenine molecules not only realized synchronization in improving the stretchability (up to 1303%) and exhibiting a skin-like elastic modulus (≈184 kPa), but also provided a durable interfacial contact with various materials. The hydrogel was further fabricated into a strain-monitoring sensor for information encryption and sign language transmission based on its sensing stability and strain sensitivity of up to 2.77. The developed wearable sign language interpreting system provides an innovative strategy to assist auditory or speech-impaired people in communicating with non-signers using visual-gestural patterns including body movements and facial expressions.
Collapse
Affiliation(s)
- Peng Du
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Juan Wang
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Etman A, Ibrahim A, Darwish F, Qasim K. A 10 years-developmental study on conducting polymers composites for supercapacitors electrodes: a review for extensive data interpretation. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Sustainable Chitosan/Polybenzoxazine Films: Synergistically Improved Thermal, Mechanical, and Antimicrobial Properties. Polymers (Basel) 2023; 15:polym15041021. [PMID: 36850303 PMCID: PMC9959427 DOI: 10.3390/polym15041021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Polybenzoxazines (Pbzs) are considered as an advanced class of thermosetting phenolic resins as they overcome the shortcomings associated with novolac and resole type phenolic resins. Several advantages of these materials include curing without the use of catalysts, release of non-toxic by-products during curing, molecular design flexibility, near-zero shrinkage of the cured materials, low water absorption and so on. In spite of all these advantages, the brittleness of Pbz is a knotty problem that could be solved by blending with other polymers. Chitosan (Ch), has been extensively investigated in this context, but its thermal and mechanical properties rule out its practical applications. The purpose of this work is to fabricate an entirely bio-based Pbz films by blending chitosan with benzoxazine (Bzo), which is synthesized from curcumin and furfuryl amine (curcumin-furfurylamine-based Bzo, C-fu), by making use of a benign Schiff base chemistry. FT-IR and 1H-NMR spectroscopy were used to confirm the structure of C-fu. The impact of chitosan on benzoxazine polymerization was examined using FT-IR and DSC analyses. Further evidence for synergistic interactions was provided by DSC, SEM, TGA, and tensile testing. By incorporating C-fu into Ch, Ch-grafted-poly(C-fu) films were obtained with enhanced chemical resistance and tensile strength. The bio-based polymer films produced inhibited the growth of Staphylococcus aureus and Escherichia coli, by reversible labile linkages, expanding Ch galleries, and releasing phenolic species, which was 125 times stronger than bare Ch. In addition, synthesized polybenzoxazine films [Ch/Poly(C-fu)] showed significant dose-dependent antibiofilm activity against S. aureus and E. coli as determined by confirmed by confocal laser scanning microscopy (CLSM). This study suggests that bio-based Ch-graft-polymer material provide improved anti-bacterial property and characteristics that may be considered as a possibility in the near future for wound healing and implant applications.
Collapse
|
10
|
Zhang L, He G, Yu Y, Zhang Y, Li X, Wang S. Design of Biocompatible Chitosan/Polyaniline/Laponite Hydrogel with Photothermal Conversion Capability. Biomolecules 2022; 12:1089. [PMID: 36008982 PMCID: PMC9405619 DOI: 10.3390/biom12081089] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, multifunctional hydrogels have received a great deal of attention because they are biocompatible and can mimic the extracellular matrix. Herein, we prepared hydrogels of biocompatible cross-linked networks with photothermal properties. In this study, a chitosan/polyaniline/laponite (COL) hydrogel with photothermal conversion capability was designed. Polyaniline was firstly grafted onto chitosan and its solution was mixed with oxidized dextran, which was then cross-linked into a hydrogel via a Schiff base reaction. Furthermore, an aluminosilicate clay material, laponite (LAP), was incorporated into the hydrogel. The swelling ratio of the COL hydrogel in various solutions was greater than 580%, and it showed good degradation ability (the mass-loss ratio was over 45% after 28 days). This composite hydrogel was demonstrated to have good photothermal conversion properties and biocompatibility at both the cell (cell viability was over 97%) and animal levels. The COL hydrogel showed a photothermal conversion efficiency of 23.7% under the irradiation of a near-infrared laser. Coupled with the osteogenic differentiation-inducing potential of LAP, the COL hydrogel has the potential to kill tumors via hyperthermia or serve as scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Liying Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Gao He
- The First Clinial Medical College, Nanjing Medical University, No. 101 Longmian Road, Nanjing 211166, China
| | - Yang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Yu Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Xiang Li
- The First Clinial Medical College, Nanjing Medical University, No. 101 Longmian Road, Nanjing 211166, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
11
|
Chen CH, Wu HT, Mao CF, Liao WT. Conductive chitosan-graft-polyaniline copolymer: synthesis and characterization. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03818-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Borah R, Das JM, Upadhyay J. Surface Functionalized Polyaniline Nanofibers:Chitosan Nanocomposite for Promoting Neuronal-like Differentiation of Primary Adipose Derived Mesenchymal Stem Cells and Urease Activity. ACS APPLIED BIO MATERIALS 2022; 5:3193-3211. [PMID: 35775198 DOI: 10.1021/acsabm.2c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bioscaffolds having electrically conducting polymers (CPs) have become increasingly relevant in tissue engineering (TE) because of their ability to regulate conductivity and promote biological function. With this in mind, the current study shows a conducting polyaniline nanofibers (PNFs) dispersed chitosan (Ch) nanocomposites scaffold with a simple one-step surface functionalization approach using glutaraldehyde for potential neural regeneration applications. According to the findings, 4 wt % PNFs dispersion in Ch matrix is an optimal concentration for achieving desirable biological functions while maintaining required physicochemical properties as evidenced by SEM, XRD, current-voltage (I-V) measurement, mechanical strength test, and in vitro biodegradability test. Surface chemical compositional analysis using XPS and ATR FT-IR confirms the incorporation of aldehyde functionality after functionalization, which is corroborated by surface energy calculations following the Van Oss-Chaudhury-Good method. Surface functionalization induced enhancement in surface hydrophilicity in terms of the polar component of surface energy (γiAB) from 6.35 to 12.54 mN m-1 along with an increase in surface polarity from 13.61 to 22.54%. Functionalized PNF:Ch scaffolds demonstrated improvement in enzyme activity from 67 to 94% and better enzyme kinetics with a reduction of Michaelis constants (Km) from 21.55 to 13.81 mM, indicating favorable protein-biomaterial interactions and establishing them as biologically perceptible materials. Surface functionalization mediated improved cell-biomaterial interactions led to improved viability, adhesion, and spreading of primary adipose derived mesenchymal stem cells (ADMSCs) as well as improved immunocompatibility. Cytoskeletal architecture assessment under differentiating media containing 10 ng/mL of each basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) revealed significant actin remodeling with neurite-like projections on the functionalized scaffolds after 14 days. Immunocytochemistry results showed that more than 85% of cells expressed early neuron specific β III tubulin protein on the functionalized scaffolds, whereas glial fibrillary acidic protein (GFAP) expression was limited to approximately 40% of cells. The findings point to the functionalized nanocomposites' potential as a smart scaffold for electrically stimulated neural regeneration, as they are flexible enough to be designed into microchanneled or conduit-like structures that mimic the microstructures and mechanical properties of peripheral nerves.
Collapse
Affiliation(s)
- Rajiv Borah
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jitu Mani Das
- Seri-Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department of Physics, Dakshin Kamrup College, Kamrup, Assam 781125, India
| |
Collapse
|
13
|
Mir A, Kumar A, Riaz U. A short review on the synthesis and advance applications of polyaniline hydrogels. RSC Adv 2022; 12:19122-19132. [PMID: 35865573 PMCID: PMC9244896 DOI: 10.1039/d2ra02674k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Conductive polymeric hydrogels (CPHs) exhibit remarkable properties such as high toughness, self-recoverability, electrical conductivity, transparency, freezing resistance, stimulus responsiveness, stretch ability, self-healing, and strain sensitivity. Due to their exceptional physicochemical and physio-mechanical properties, among the widely studied CPHs, polyaniline (PANI) has been the subject of immense interest due to its stability, tunable electrical conductivity, low cost, and good biocompatibility. The current state of research on PANI hydrogel is discussed in this short review, along with the properties, preparation methods, and common characterization techniques as well as their applications in a variety of fields such as sensor and actuator manufacturing, biomedicine, and soft electronics. Furthermore, the future development and applications of PANI hydrogels are also mentioned.
Collapse
Affiliation(s)
- Aleena Mir
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Amit Kumar
- Theory & Simulation Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| | - Ufana Riaz
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia New Delhi-110025 India
| |
Collapse
|
14
|
Taaca KLM, Prieto EI, Vasquez MR. Current Trends in Biomedical Hydrogels: From Traditional Crosslinking to Plasma-Assisted Synthesis. Polymers (Basel) 2022; 14:2560. [PMID: 35808607 PMCID: PMC9268762 DOI: 10.3390/polym14132560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
The use of materials to restore or replace the functions of damaged body parts has been proven historically. Any material can be considered as a biomaterial as long as it performs its biological function and does not cause adverse effects to the host. With the increasing demands for biofunctionality, biomaterials nowadays may not only encompass inertness but also specialized utility towards the target biological application. A hydrogel is a biomaterial with a 3D network made of hydrophilic polymers. It is regarded as one of the earliest biomaterials developed for human use. The preparation of hydrogel is often attributed to the polymerization of monomers or crosslinking of hydrophilic polymers to achieve the desired ability to hold large amounts of aqueous solvents and biological fluids. The generation of hydrogels, however, is shifting towards developing hydrogels through the aid of enabling technologies. This review provides the evolution of hydrogels and the different approaches considered for hydrogel preparation. Further, this review presents the plasma process as an enabling technology for tailoring hydrogel properties. The mechanism of plasma-assisted treatment during hydrogel synthesis and the current use of the plasma-treated hydrogels are also discussed.
Collapse
Affiliation(s)
- Kathrina Lois M. Taaca
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
- Materials Science and Engineering Program, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Eloise I. Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines;
| | - Magdaleno R. Vasquez
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
15
|
Kandel R, Jang SR, Shrestha S, Lee SY, Shrestha BK, Park CH, Kim CS. Biomimetic Cell-Substrate of Chitosan-Cross-linked Polyaniline Patterning on TiO 2 Nanotubes Enables hBM-MSCs to Differentiate the Osteoblast Cell Type. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47100-47117. [PMID: 34579527 DOI: 10.1021/acsami.1c09778] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium-based substrates are widely used in orthopedic treatments and hard tissue engineering. However, many of these titanium (Ti) substrates fail to interact properly between the cell-to-implant interface, which can lead to loosening and dislocation from the implant site. As a result, scaffold implant-associated complications and the need for multiple surgeries lead to an increased clinical burden. To address these challenges, we engineered osteoconductive and osteoinductive biosubstrates of chitosan (CS)-cross-linked polyaniline (PANI) nanonets coated on titanium nanotubes (TiO2NTs) in an attempt to mimic bone tissue's major extracellular matrix. Inspired by the architectural and tunable mechanical properties of such tissue, the TiO2NTs-PANI@CS-based biofilm conferred strong anticorrosion, the ability to nucleate hydroxyapatite nanoparticles, and excellent biocompatibility with human bone marrow-derived mesenchymal stem cells (hBM-MSCs). An in vitro study showed that the substrate-supported cell activities induced greater cell proliferation and differentiation compared to cell-TiO2NTs alone. Notably, the bone-related genes (collagen-I, OPN, OCN, and RUNX 2) were highly expressed within TiO2NTs-PANI@CS over a period of 14 days, indicating greater bone cell differentiation. These findings demonstrate that the in vitro functionality of the cells on the osteoinductive-like platform of TiO2NTs-PANI@CS improves the efficiency for osteoblastic cell regeneration and that the substrate potentially has utility in bone tissue engineering applications.
Collapse
Affiliation(s)
- Rupesh Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Se Rim Jang
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Seo Yeon Lee
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Regional Leading Research Center for Nanocarbon-Based Energy Materials and Application Technology, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
16
|
BADHE RV, GODSE A, SHINKAR A, KHARAT A, PATIL V, GUPTA A, KHEUR S. Development and Characterization of Conducting-Polymer-Based Hydrogel Dressing for Wound Healing. Turk J Pharm Sci 2021; 18:483-491. [PMID: 34496555 PMCID: PMC8430405 DOI: 10.4274/tjps.galenos.2020.44452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/02/2020] [Indexed: 12/01/2022]
Abstract
Objectives Normal and chronic wound healing is a global challenge. Electrotherapy has emerged as a novel and efficient technique for treating such wounds in recent decades. Hydrogel applied to the wound to uniformly distribute the electric current is an important component in wound healing electrotherapy. This study reports the development and wound healing efficacy testing of vitamin D entrapped polyaniline (PANI)-chitosan composite hydrogel for electrotherapy. Materials and Methods To determine the morphological and physicochemical properties, techniques like scanning electron microscopy (SEM); differential scanning calorimetry; X-ray diffraction; fourier-transform infrared spectroscopy were used. Moreover, pH, conductance, viscosity, and porosity were measured to optimize and characterize the vitamin D entrapped PANI-chitosan composite hydrogel. The biodegradation was studied using lysozyme, whereas the water uptake ability was studied using phosphate buffer. Ethanolic phosphate buffer was used to perform the vitamin D entrapment and release study. Cell adhesion, proliferation, and electrical stimulation experiments were conducted by seeding dental pulp stem cells (DPSC) into the scaffolds and performing (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay; SEM images were taken to corroborated the proliferation results. The wound healing efficacy of electrotherapy and the developed hydrogel were studied on excision wound healing model in rats, and the scarfree wound healing was further validated by histopathology analysis. Results The composition of the developed hydrogel was optimized to include 1% w/v PANI and 2% w/v of chitosan composite. This hydrogel showed 1455 μA conduction, 98.97% entrapment efficiency and 99.12% release of vitamin D in 48 hrs. The optimized hydrogel formulation showed neutral pH of 6.96 and had 2198 CP viscosity at 26°C. The hydrogel showed 652.4% swelling index and 100% degradation in 4 weeks. The in vitro cell culture studies performed on hydrogel scaffolds using DPSC and electric stimulation strongly suggested that electrical stimulation enhances the cell proliferation in a three-dimensional (3D) scaffold environment. The in vivo excision wound healing studies also supported the in vitro results suggesting that electrical stimulation of the wound in the presence of the conducting hydrogel and growth factors like vitamin D heals the wound much faster (within 12 days) compared to non-treated control wounds (requires 21 days for complete healing). Conclusion The results strongly suggested that the developed PANI-chitosan composite conducting hydrogel acts effectively as an electric current carrier to distribute the current uniformly across the wound surface. It also acted as a drug delivery vehicle for delivering vitamin D to the wound. The hydrogel provided a moist environment, a 3D matrix for free migration of the cells, and antimicrobial activity due to chitosan, all of which contributed to the electrotherapy's faster wound healing mechanism, confirmed through the in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Ravindra V. BADHE
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Department of Pharmaceutical Chemistry, Pune, India
| | - Anagha GODSE
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Department of Pharmaceutical Chemistry, Pune, India
| | - Ankita SHINKAR
- Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Department of Pharmaceutical Chemistry, Pune, India
| | - Avinash KHARAT
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Vikrant PATIL
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Archana GUPTA
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Supriya KHEUR
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
17
|
Abu Hassan Shaari H, Ramli MM, Mohtar MN, Abdul Rahman N, Ahmad A. Synthesis and Conductivity Studies of Poly(Methyl Methacrylate) (PMMA) by Co-Polymerization and Blending with Polyaniline (PANi). Polymers (Basel) 2021; 13:1939. [PMID: 34207932 PMCID: PMC8230699 DOI: 10.3390/polym13121939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 01/27/2023] Open
Abstract
Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.
Collapse
Affiliation(s)
- Helyati Abu Hassan Shaari
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.S.); (N.A.R.)
- Faculty of Applied Sciences, Universiti Teknologi MARA Perlis Branch, Arau Campus, Arau 02600, Perlis, Malaysia
| | - Muhammad Mahyiddin Ramli
- Geopolymer and Green Technology, Centre of Excellence (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia;
| | - Mohd Nazim Mohtar
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.S.); (N.A.R.)
- Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norizah Abdul Rahman
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (H.A.H.S.); (N.A.R.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Azizan Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
- Department of Physics, University of Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
18
|
Şarkaya K, Yildirim M, Alli A. One‐step preparation of poly(
NIPAM‐pyrrole
) electroconductive composite hydrogel and its dielectric properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Koray Şarkaya
- Department of Chemistry, Faculty of Arts & Sciences Düzce University Düzce Turkey
| | - Mert Yildirim
- Department of Mechatronics Engineering, Faculty of Engineering Düzce University Düzce Turkey
| | - Abdulkadir Alli
- Department of Chemistry, Faculty of Arts & Sciences Düzce University Düzce Turkey
| |
Collapse
|
19
|
Francisco AD, Grasseschi D, Nascimento RSV. Wettability alteration of oil‐wet carbonate rocks by chitosan derivatives for application in enhanced oil recovery. J Appl Polym Sci 2021. [DOI: 10.1002/app.50098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Daniel Grasseschi
- Chemistry Institute Federal University of Rio de Janeiro (UFRJ) Rio de Janeiro Brazil
| | | |
Collapse
|
20
|
Nisar S, Pandit AH, Nadeem M, Pandit AH, Rizvi MMA, Rattan S. γ-Radiation induced L-glutamic acid grafted highly porous, pH-responsive chitosan hydrogel beads: A smart and biocompatible vehicle for controlled anti-cancer drug delivery. Int J Biol Macromol 2021; 182:37-50. [PMID: 33775765 DOI: 10.1016/j.ijbiomac.2021.03.134] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
In the present work, highly porous, pH-responsive, and biocompatible chitosan-based hydrogel beads were prepared through gamma-irradiated graft copolymerization technique using L-glutamic acid as the monomer. The glutamic acid grafted chitosan (CH-g-GA) hydrogel beads, loaded with the anti-cancer drug (Doxorubicin, Dox), were exploited for their potential application as anti-cancer drug delivery system. The grafting conditions were optimized by varying irradiation dose (kGy) and monomer concentration. Further, the hydrogel beads were analysed using FTIR, XRD, SEM, TGA/DSC, Zeta potential studies, BET analysis and their strength was determined using rheological analysis. The swelling characteristics of the beads were studied at various simulated body pH (2.1, 5.8, and 7.4) to study their pH-responsive behaviour. The in-vitro drug release from the beads was thus evaluated at pH 5.8, 7.4 using UV-visible spectroscopy. The highest swelling ratio (426%) and drug release (81.33% in 144 h) was observed at the pH of 5.8. The MTT assay was performed on HEK-293 cell-line to check their cytocompatibilty and the cell proliferation of Dox-loaded beads was studied on MCF-7 cell-line. A significant cytotoxicity against the cancer-cells was observed which further established their promising use in the controlled delivery of anti-cancer agents for localized cancer therapy.
Collapse
Affiliation(s)
- Safiya Nisar
- Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201303, India
| | - Ashiq Hussain Pandit
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Altaf Hussain Pandit
- Department of Chemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India
| | - M Mushahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sunita Rattan
- Amity Institute of Applied Sciences, Amity University, Sector-125, Noida 201303, India.
| |
Collapse
|
21
|
Development of an oxygen-releasing electroconductive in-situ crosslinkable hydrogel based on oxidized pectin and grafted gelatin for tissue engineering applications. Colloids Surf B Biointerfaces 2020; 196:111347. [DOI: 10.1016/j.colsurfb.2020.111347] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/16/2022]
|
22
|
Yang L, Wang H, Lü H, Hui N. Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of microRNA. Anal Chim Acta 2020; 1124:104-112. [DOI: 10.1016/j.aca.2020.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/22/2022]
|
23
|
Dias OAT, Konar S, Leão AL, Yang W, Tjong J, Sain M. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front Chem 2020; 8:420. [PMID: 32528931 PMCID: PMC7253724 DOI: 10.3389/fchem.2020.00420] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/21/2020] [Indexed: 11/25/2022] Open
Abstract
Novel and unique applications of nanocellulose are largely driven by the functional attributes governed by its structural and physicochemical features including excellent mechanical properties and biocompatibility. In recent years, thousands of groundbreaking works have helped in the development of targeted functional nanocellulose for conductive, optical, luminescent materials, and other applications. The growing demand for sustainable and renewable materials has led to the rapid development of greener methods for the design and fabrication of high-performance green nanomaterials with multiple features, and consequently new challenges and opportunities. The present review article discusses historical developments, various fabrication and functionalization methods, the current stage, and the prospects of flexible energy and hybrid electronics based on nanocellulose.
Collapse
Affiliation(s)
| | - Samir Konar
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Alcides Lopes Leão
- College of Agricultural Sciences, São Paulo State University (Unesp), São Paulo, Brazil
| | - Weimin Yang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jimi Tjong
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Rajeev K, Kim E, Nam J, Lee S, Mun J, Kim TH. Chitosan-grafted-polyaniline copolymer as an electrically conductive and mechanically stable binder for high-performance Si anodes in Li-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135532] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Chen PM, Pan WY, Wu CY, Yeh CY, Korupalli C, Luo PK, Chou CJ, Chia WT, Sung HW. Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination. Biomaterials 2020; 230:119629. [DOI: 10.1016/j.biomaterials.2019.119629] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023]
|
26
|
Zheng H, Yan Z, Wang M, Chen J, Zhang X. Biosensor based on polyaniline-polyacrylonitrile-graphene hybrid assemblies for the determination of phenolic compounds in water samples. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120714. [PMID: 31203123 DOI: 10.1016/j.jhazmat.2019.05.107] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 05/23/2023]
Abstract
Phenolic compounds are major environmental pollutants due to their toxic and hazardous nature on human health. A fast, sensitive and stable sensor for determination of phenolic compounds in the environmental water remains challenging. Herein, a biosensor platform with stable response current was fabricated by entrapment of polyphenol oxidase (PPO) into hybrid assemblies of the conducting polyaniline (PAni)-porous polyacrylonitrile (Pan)-nanostructured graphene (GRA) and phase inversion process. The porous structure of Pan provided a favorable microenvironment for easily binding to PAni and GRA to obtain hybrid assemblies for effective immobilization of enzyme and increased synergistic effect. The morphologies and the electrochemical behaviors of the as-prepared biosensor were investigated using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), respectively. The proposed biosensor showed excellent sensitivity (6.46 μA μM-1 cm-2) and fast response time (˜5 s) with low detection limit (2.65×10-7 M) under the optimal pH value and applied potential. The biosensor was highly selective towards p-cresol that almost no signal was detected from common interferents. The biosensor was used for determination of phenolic compounds in water samples with satisfactory results compared with that of UPLC, demonstrating its great potential as a biosensor for the rapid determination of phenolic pollutants.
Collapse
Affiliation(s)
- Hao Zheng
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China.
| | - Zupeng Yan
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| | - Minghui Wang
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| | - Jianfang Chen
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China; Key Laboratory of Marine Ecosystems and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, PR China
| | - Xinzheng Zhang
- Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, Zhoushan, 316021, PR China
| |
Collapse
|
27
|
Moutsatsou P, Coopman K, Georgiadou S. Chitosan & Conductive PANI/Chitosan Composite Nanofibers - Evaluation of Antibacterial Properties. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573413714666181114110651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background:
Within the healthcare industry, including the care of chronic wounds, the
challenge of antimicrobial resistance continues to grow. As such, there is a need to develop new
treatments that can reduce the bioburden in wounds.
Objective:
The present study is focused on the development of polyaniline (PANI) / chitosan (CH)
nanofibrous electrospun membranes and evaluates their antibacterial properties.
Methods:
To this end, experimental design was used to determine the electrospinning windows of
both pure chitosan and PANI/CH blends of different ratios (1:3, 3:5, 1:1). The effect of key environmental
and process parameters (relative humidity and applied voltage) was determined, as well as the
effect of the PANI/CH ratio in the blend and the molecular interactions between PANI and chitosan
that led to jet stability.
Results:
The nanofibrous mats were evaluated regarding their morphology and antibacterial effect
against model gram positive and gram negative bacterial strains, namely B. subtilis and E. coli. High
PANI content mats show increased bactericidal activity against both bacterial strains.
Conclusion:
The blend fibre membranes combine the materials’ respective properties, namely electrical
conductivity, biocompatibility and antibacterial activity. This study suggests that electrospun
PANI/CH membranes are promising candidates for healthcare applications, such as wound dressings.
Collapse
Affiliation(s)
- Panagiota Moutsatsou
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - Karen Coopman
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| | - Stella Georgiadou
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, United Kingdom
| |
Collapse
|
28
|
Lu H, Zhang N, Ma M. Electroconductive hydrogels for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1568. [DOI: 10.1002/wnan.1568] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Han Lu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei China
| | - Ning Zhang
- Department of Biology and Environmental Engineering Hefei University Hefei China
| | - Mingming Ma
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale University of Science and Technology of China Hefei China
| |
Collapse
|
29
|
Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization. Carbohydr Polym 2019; 220:79-85. [PMID: 31196553 DOI: 10.1016/j.carbpol.2019.05.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022]
Abstract
Industrial ecology, sustainable manufacturing, and green chemistry have been considered platform-based approaches to the reduction of the environmental footprint. Recently, nanofibrillated cellulose (NFC) has gained significant interest due to its mechanical properties, biodegradability, and availability. These outstanding properties of NFC have encouraged the development of a more sustainable substrate for electronics. In this context, the combination of NFC and conductive polymers may create a new class of biocomposites to be used in place of conventional electronics which are not optimally designed for use in flexible and mechanically robust devices. In this study, polythiophene was grafted onto nanocellulose surface at appropriate reaction times to obtain a strong, flexible, foldable films with capacity for electrical conductivity. Nanocomposites films were synthesized by a one-step reaction in which a 3-methyl thiophene monomer was oxidatively polymerized onto nanocellulose backbone. The nature of the fabricated NFC films changed from insulator to semiconductor material upon oxidative polymerization.
Collapse
|
30
|
Hosoyama K, Ahumada M, Goel K, Ruel M, Suuronen EJ, Alarcon EI. Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnol Adv 2019; 37:444-458. [DOI: 10.1016/j.biotechadv.2019.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
|
31
|
Tong R, Chen G, Pan D, Qi H, Li R, Tian J, Lu F, He M. Highly Stretchable and Compressible Cellulose Ionic Hydrogels for Flexible Strain Sensors. Biomacromolecules 2019; 20:2096-2104. [PMID: 30995834 DOI: 10.1021/acs.biomac.9b00322] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stretchable and compressible hydrogels based on natural polymers have received immense considerations for electronics. The feasibility of using pure natural polymer-based hydrogels could be improved if their mechanical behaviors satisfy the requirements of practical applications. Herein, we report highly stretchable (tensile strain ∼126%) and compressible (compression strain ∼80%) cellulose ionic hydrogels (CIHs) among pure natural polymer-based hydrogels including cellulose, chitin, and chitosan via chemical cross-linking based on free radical polymerization of allyl cellulose in NaOH/urea aqueous solution. In addition, the hydrogels have good transparency (transmittance of ∼89% at 550 nm) and ionic conductivity (∼0.16 mS cm-1) and can be worked at -20 °C without freezing and visual loss of transparency. Moreover, the CIHs can serve as reliable and stable strain sensors and have been successfully used to monitor human activities. Significantly, the various properties of hydrogel can be controlled through rationally adjusting the chemically cross-linked density. Our methodology will prove useful in developing the satisfied mechanical and transparent CIHs for a myriad of applications in flexible electronics.
Collapse
Affiliation(s)
- Ruiping Tong
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Guangxue Chen
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Danhong Pan
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China.,Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640 , China
| | - Ren'ai Li
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Junfei Tian
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China.,Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640 , China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China.,Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640 , China
| |
Collapse
|
32
|
Yu X, He D, Zhang X, Zhang H, Song J, Shi D, Fan Y, Luo G, Deng J. Surface-Adaptive and Initiator-Loaded Graphene as a Light-Induced Generator with Free Radicals for Drug-Resistant Bacteria Eradication. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1766-1781. [PMID: 30523688 DOI: 10.1021/acsami.8b12873] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Since generating toxic reactive oxygen species is largely dependent on oxygen, bacteria-infected wounds' hypoxia significantly inhibits photodynamic therapy's antibacterial efficiency. Therefore, a novel therapeutic method for eradicating multidrug-resistant bacteria is developed based on the light-activated alkyl free-radical generation (that is oxygen independent). According to the polydopamine-coated carboxyl graphene (PDA@CG), an initiator-loaded and pH-sensitive heat-producible hybrid of bactericides was synthesized. According to fluorescence/thermal imaging, under the low pH of the bacterial infection sites, this platform turned positively charged, which allows their accumulation in local infection site. The plasmonic heating effects of PDA@CG can make the initiator decomposed to generate alkyl radical (R•) under the followed near-infrared light irradiation. As a result, oxidative stress can be elevated, DNA damages in bacteria can be caused, and finally even multidrug-resistance death can be caused under different oxygen tensions. Moreover, our bactericidal could promote wound healing in vivo and negligible toxicity in vivo and in vitro and eliminate abscess. Accordingly, this study proves that combination of oxygen-independent free-radical-based therapy along with a stimulus-responsiveness moiety not only can be used as an effective treatment of multidrug-resistant bacteria infection, but also creates a use of a variety of free radicals for treatment of multidrug-resistant bacteria infection wounds.
Collapse
Affiliation(s)
| | | | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences , Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University , Chongqing 401174 , China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences , Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University , Chongqing 401174 , China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences , Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education & Stomatological Hospital of Chongqing Medical University , Chongqing 401174 , China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Faculty of Urban Construction and Environmental Engineering , Chongqing University , Chongqing 40005 , China
| | | | | | | |
Collapse
|
33
|
|
34
|
|
35
|
Maciel BG, da Silva RJ, Chávez-Guajardo AE, Medina-Llamas JC, Alcaraz-Espinoza JJ, de Melo CP. Magnetic extraction and purification of DNA from whole human blood using a γ-Fe2O3@Chitosan@Polyaniline hybrid nanocomposite. Carbohydr Polym 2018; 197:100-108. [DOI: 10.1016/j.carbpol.2018.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/27/2022]
|
36
|
Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun 2018; 9:2740. [PMID: 30013027 PMCID: PMC6048132 DOI: 10.1038/s41467-018-05222-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022] Open
Abstract
Conductive and stretchable materials that match the elastic moduli of biological tissue (0.5–500 kPa) are desired for enhanced interfacial and mechanical stability. Compared with inorganic and dry polymeric conductors, hydrogels made with conducting polymers are promising soft electrode materials due to their high water content. Nevertheless, most conducting polymer-based hydrogels sacrifice electronic performance to obtain useful mechanical properties. Here we report a method that overcomes this limitation using two interpenetrating hydrogel networks, one of which is formed by the gelation of the conducting polymer PEDOT:PSS. Due to the connectivity of the PEDOT:PSS network, conductivities up to 23 S m−1 are achieved, a record for stretchable PEDOT:PSS-based hydrogels. Meanwhile, the low concentration of PEDOT:PSS enables orthogonal control over the composite mechanical properties using a secondary polymer network. We demonstrate tunability of the elastic modulus over three biologically relevant orders of magnitude without compromising stretchability ( > 100%) or conductivity ( > 10 S m−1). Conductive and stretchable materials that match the elastic moduli of biological tissue are desired for enhanced interfacial and mechanical stability. Here the authors show a method for fabricating highly conductive hydrogels comprising two interpenetrating networks.
Collapse
|
37
|
Ates M, El-Kady M, Kaner RB. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. NANOTECHNOLOGY 2018; 29:175402. [PMID: 29424710 DOI: 10.1088/1361-6528/aaae44] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Graphene/polyaniline composite hydrogels (GH/PANI) were chemically synthesized by in situ polymerization of aniline monomer. Graphene hydrogels were obtained by a hydrothermal method and used in supercapacitors. The graphene/polyaniline composite hydrogel exhibits better electrochemical performance than the pure individual components as determined by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopic measurements. A remarkable specific capacitance (C sp) of 323.9 F g-1 was measured using CV at a scan rate of 2 mV s-1 at 25 °C. GCD measurements (311.3 F g-1) and electrochemical impedance analysis also support these results. The numbers were obtained at extremely high loading masses: 7.14 mg cm-2 for GH and GH/PANI synthesized at 0 °C, and 8.93 mg cm-2 for GH/PANI synthesized at 25 °C. The corresponding areal capacitances are 1.14, 1.75 and 2.78 F cm-2 for GH, and GH/PANI composite hydrogels synthesized at 0 °C and 25 °C, respectively. These values in F cm-2 are 3.80, 5.83 and 9.27 times higher than commercially available activated carbon supercapacitors (∼0.3 F cm-2 for a two electrode system). Moreover, the GH/PANI composite synthesized at 25 °C exhibits excellent stability with 99% initial capacitance retention after 1000 charge/discharge cycles. GH/PANI composites synthesized at 0 °C and 25 °C therefore hold promise for use in supercapacitor device applications.
Collapse
Affiliation(s)
- Murat Ates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America. Physical Chemistry Division, Department of Chemistry, Faculty of Arts and Sciences, Namik Kemal University, Degirmenalti Campus, 59030, Tekirdag, Turkey
| | | | | |
Collapse
|
38
|
Wang Y, Zhang W, Huang L, Ito Y, Wang Z, Shi X, Wei Y, Jing X, Zhang P. Intracellular calcium ions and morphological changes of cardiac myoblasts response to an intelligent biodegradable conducting copolymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:168-179. [PMID: 29853080 DOI: 10.1016/j.msec.2018.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/29/2018] [Accepted: 04/19/2018] [Indexed: 01/17/2023]
Abstract
A novel biodegradable conducting polymer, PLA-b-AP-b-PLA (PAP) triblock copolymer of poly (l-lactide) (PLA) and aniline pentamer (AP) with electroactivity and biodegradability, was synthesized and its potential application in cardiac tissue engineering was studied. The PAP copolymer presented better biocompatibility compared to PANi and PLA because of promoted cell adhesion and spreading of rat cardiac myoblasts (H9c2 cell line) on PAP/PLA thin film. After pulse electrical stimulation (5 V, 1 Hz, 500 ms) for 6 days, the proliferation ratio, and intracellular calcium concentration of H9c2 cells on PAP/PLA were improved significantly. Meanwhile, cell morphology changed by varying the pulse electrical signals. Especially, the oriented pseudopodia-like structure was observed from H9c2 cells on PAP/PLA after electrical stimulation. It is regarded that the novel conducting copolymer could enhance electronic signals transferring between cells because of its special electrochemical properties, which may result in the differentiation of cardiac myoblasts.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Zhang
- School of Life Sciences, Northeast Normal University, Changchun 130022, China
| | - Lihong Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi Saitama, 351-0198, Japan
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xincui Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiabin Jing
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
39
|
An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy. J Nanobiotechnology 2018; 16:23. [PMID: 29548342 PMCID: PMC5857115 DOI: 10.1186/s12951-018-0348-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
Background Silver and photothermal therapy (PTT) have been widely used for eradicating the drug-resistant bacteria. However, the risks of excess of silver for humans and the low efficiency of PTT still limit their in vivo therapeutic application. Integration of two distinctive bactericides into one entity is a promising platform to improve the efficiency of antimicrobial agents. Results In this study, a chemo-photothermal therapeutic platform based on polydopamine (PDA)-coated gold nanorods (GNRs) was developed. The PDA coating acquired high Ag+ ions loading efficiency and Cy5-SE fluorescent agent labeled glycol chitosan (GCS) conjugation (Ag+-GCS-PDA@GNRs). This platform became positively charged in the low pH environment of the abscess, allowing their accumulation in local infection site as revealed by thermal/florescence imaging. The loaded Ag+ ions was released in a pH-sensitive manner, resulting in selective Ag+ ions delivery to the abscess environment (pH ~ 6.3). More importantly, the ultralow dose of Ag+ ions could effectively damage the bacterial membrane, causing the permeability increase and the heat resistance reduction of the cell membrane, leading to the large improvement on bactericidal efficiency of PTT. On the other hand, the hyperthermia could trigger more Ag+ ions release, resulting in further improvement on bactericidal efficiency of chemotherapy. Combinational chemo-hyperthermia therapy of Ag+-GCS-PDA@GNRs could thoroughly ablate abscess and accelerate wound healing via a synergistic antibacterial effect. Conclusions Our studies demonstrate that Ag+-GCS-PDA@GNRs is a robust and practical platform for use in chemo-thermal focal infection therapy with outstanding synergistic bacteria ablating. Electronic supplementary material The online version of this article (10.1186/s12951-018-0348-z) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Qian W, Yan C, He D, Yu X, Yuan L, Liu M, Luo G, Deng J. pH-triggered charge-reversible of glycol chitosan conjugated carboxyl graphene for enhancing photothermal ablation of focal infection. Acta Biomater 2018; 69:256-264. [PMID: 29374599 DOI: 10.1016/j.actbio.2018.01.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 11/17/2022]
Abstract
Subcutaneous abscesses infected by multidrug-resistant bacteria are becoming an increasing challenge to human health. To address this challenge, a surface-adaptive and biocompatible glycol chitosan conjugated carboxyl graphene (GCS-CG) is developed, which exhibits unique self-adaptive target to the acidic microenvironment of abscess (∼pH 6.3) and no damage to the healthy tissue (pH 7.4) around the abscess. Originally, following conjugated with GCS, the absorbance of CG obviously increases in the near-infrared (NIR) region, enabling GCS-CG to generate an increment amount of heat. GCS-CG shows fast pH-responsive surface charge transition from negative to positive, which presents strong adherence to negatively charged bacteria surface in abscess, while exhibits poor affinity to host cells in healthy tissues. The local temperature of NIR-irradiated GCS-CG is estimated to be higher than their ambient temperature, ensuring targeted heating and eradicating the bacteria to reduce the damage to tissue; hence, wound healing is accelerated. Moreover, the in vitro and in vivo biosafety results demonstrate that GCS-CG presents greatly biocompatible even at a high concentration of 1 mg·mL-1. Given the above advantages as well as the simple preparation, graphene developed here may provide a new potential application as a useful antibacterial agent in the areas of healthcare. STATEMENT OF SIGNIFICANCE A surface-adaptive nanomaterial, glycol chitosan conjugated carboxyl graphene (GCS-CG) is developed, which realizes the acidity-triggered bacteria targeting. GCS-CG can result in direct thermal ablation of bacteria and enhancement of the infected wound healing, but exhibit no damage to healthy tissues. The pH-responsive GCS-CG described here, containing no antibiotics, has great potentials in treating bacterial infection and even multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chang Yan
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xunzhou Yu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Long Yuan
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Menglong Liu
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
41
|
Zarrintaj P, Urbanska AM, Gholizadeh SS, Goodarzi V, Saeb MR, Mozafari M. A facile route to the synthesis of anilinic electroactive colloidal hydrogels for neural tissue engineering applications. J Colloid Interface Sci 2018; 516:57-66. [PMID: 29408144 DOI: 10.1016/j.jcis.2018.01.044] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
An innovative drug-loaded colloidal hydrogel was synthesized for applications in neural interfaces in tissue engineering by reacting carboxyl capped aniline dimer and gelatin molecules. Dexamethasone was loaded into the gelatin-aniline dimer solution as a model drug to form an in situ drug-loaded colloidal hydrogel. The conductivity of the hydrogel samples fluctuated around 10-5 S/cm which appeared suitable for cellular activities. Cyclic voltammetry was used for electroactivity determination, in which 2 redox states were observed, suggesting that the short chain length and steric hindrance prevented the gel from achieving a fully oxidized state. Rheological data depicted the modulus decreasing with aniline dimer increment due to limited hydrogen bonds accessibility. Though the swelling ratio of pristine gelatin (600%) decreased by the introduction and increasing the concentration of aniline dimer because of its hydrophobic nature, it took the value of 300% at worst, which still seems promising for drug delivery uses. Degradation rate of hydrogel was similarly decreased by adding aniline dimer. Drug release was evaluated in passive and stimulated patterns demonstrating tendency of aniline dimer to form a vesicle that controls the drug release behavior. The optimal cell viability, proper cell attachment and neurite extension was achieved in the case of hydrogel containing 10 wt% aniline dimer. Based on tissue/organ behavior, it was promisingly possible to adjust the characteristics of the hydrogels for an optimal drug release. The outcome of this simple and effective approach can potentially offer additional tunable characteristics for recording and stimulating purposes in neural interfaces.
Collapse
Affiliation(s)
- Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Aleksandra M Urbanska
- Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY, USA
| | - Saman Seyed Gholizadeh
- Department of Microbiology, College of Basic Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran.
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
42
|
Phung Hai TA, Sugimoto R. Fluorescence control of chitin and chitosan fabricatedviasurface functionalization using direct oxidative polymerization. RSC Adv 2018; 8:7005-7013. [PMID: 35540309 PMCID: PMC9078334 DOI: 10.1039/c8ra00287h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 12/24/2022] Open
Abstract
The copolymer of 3-hexylthiophene (3HT) and fluorene (F) was directly grafted onto chitin and chitosan using FeCl3 as an oxidant. The properties of the grafted chitin/chitosan were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, fluorescence spectroscopy, X-ray diffraction analysis, thermogravimetric analysis (TGA), transmission electron microscopy-energy dispersive X-ray spectroscopy, and quantum yield measurements. The UV-Vis absorption peaks of the chitin/chitosan grafted with 3-hexylthiophene and fluorene copolymer were increasingly blue-shifted upon increasing the fluorene content and the red-shifted emission of the grafted chitin/chitosan were controlled by varying the monomers feed of the 3HT/F units. The hypsochromic and bathochromic shifts of chitin/chitosan were ascribed to the (3HT/F) moieties grafted to their surface. The quantum yield of grafted chitin/chitosan increased upon increasing the fluorene content. The TGA and XRD analysis revealed that the thermal stability and crystallinity of chitin/chitosan decreased upon grafting the copolymer of fluorene and 3-hexylthiophene. This article represents a simple route towards the surface modification of chitin and chitosan using conducting copolymers, providing multicolor chitin and chitosan via a one-step reaction. The copolymer of 3-hexylthiophene (3HT) and fluorene (F) was directly grafted onto chitin and chitosan using FeCl3 as an oxidant.![]()
Collapse
Affiliation(s)
- Thien An Phung Hai
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
| | - Ryuichi Sugimoto
- School of Environmental Science and Engineering
- Kochi University of Technology
- Kami
- Japan
| |
Collapse
|
43
|
Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications. Polymers (Basel) 2017; 9:polym9120687. [PMID: 30965990 PMCID: PMC6418902 DOI: 10.3390/polym9120687] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
As electroactive polymers have recently presented potential in applications in the tissue engineering and biomedical field, this study is aiming at the fabrication of composite nanofibrous membranes containing conducting polyaniline and at the evaluation of their biocompatibility. For that purpose, conducting polyaniline–chitosan (PANI/CS) defect free nanofibres of different ratios (1:3; 3:5 and 1:1) were produced with the electrospinning method. They were characterized as for their morphology, hydrophilicity and electrical conductivity. The membranes were then evaluated for their cellular biocompatibility in terms of cell attachment, morphology and cell proliferation. The effect of the PANI content on the membrane properties is discussed. Increase in PANI content resulted in membranes with higher hydrophobicity and higher electrical conductivity. It was found that none of the membranes showed any toxic effects on osteoblasts and fibroblasts, and that they all supported cell attachment and growth, even to a greater extent than tissue culture plastic. The membrane with the PANI/CS ratio 1:3 supports better cell attachment and proliferation for both cell lines due to a synergistic effect of hydrophilicity retention due to the high chitosan content and the conductivity that PANI introduced to the membrane.
Collapse
|
44
|
Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection. Biomaterials 2017; 116:1-9. [DOI: 10.1016/j.biomaterials.2016.11.045] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/31/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022]
|
45
|
Karthikeyan R, Krishnaraj N, Selvam A, Wong JWC, Lee PKH, Leung MKH, Berchmans S. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. BIORESOURCE TECHNOLOGY 2016; 217:113-120. [PMID: 26970695 DOI: 10.1016/j.biortech.2016.02.114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development.
Collapse
Affiliation(s)
- Rengasamy Karthikeyan
- Electrodics and Electrocatalysis (EEC) Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630 006, Tamil Nadu, India; Ability R&D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China; Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong, China.
| | - Navanietha Krishnaraj
- Electrodics and Electrocatalysis (EEC) Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630 006, Tamil Nadu, India
| | - Ammaiyappan Selvam
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong, China
| | - Jonathan Woon-Chung Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong, China
| | - Patrick K H Lee
- Ability R&D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Michael K H Leung
- Ability R&D Energy Research Center, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Sheela Berchmans
- Electrodics and Electrocatalysis (EEC) Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630 006, Tamil Nadu, India
| |
Collapse
|
46
|
Zheng H, Feng X, Zhou L, Ye Y, Chen J. Intercalated polyaniline-kaolinite nanocomposite prepared viain situmechanochemical synthesis. J Appl Polym Sci 2016. [DOI: 10.1002/app.43551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hao Zheng
- Ocean College; Zhejiang University; Zhoushan 316021 People's Republic of China
| | - Xue Feng
- Ocean College; Zhejiang University; Zhoushan 316021 People's Republic of China
| | - Lu Zhou
- Department of Chemistry; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Ying Ye
- Ocean College; Zhejiang University; Zhoushan 316021 People's Republic of China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystems and Biogeochemistry; Second Institute of Oceanography, State Oceanic Administration; Hangzhou 310012 People's Republic of China
| |
Collapse
|
47
|
Ghosh S, Maiyalagan T, Basu RN. Nanostructured conducting polymers for energy applications: towards a sustainable platform. NANOSCALE 2016; 8:6921-47. [PMID: 26980404 DOI: 10.1039/c5nr08803h] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.
Collapse
Affiliation(s)
- Srabanti Ghosh
- CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata-700032, India.
| | | | - Rajendra N Basu
- CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata-700032, India.
| |
Collapse
|
48
|
Mawad D, Lauto A, Wallace GG. Conductive Polymer Hydrogels. POLYMERIC HYDROGELS AS SMART BIOMATERIALS 2016. [DOI: 10.1007/978-3-319-25322-0_2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Ruocco N, Frielinghaus H, Vitiello G, D’Errico G, Leal LG, Richter D, Ortona O, Paduano L. How hydrophobically modified chitosans are stabilized by biocompatible lipid aggregates. J Colloid Interface Sci 2015; 452:160-168. [DOI: 10.1016/j.jcis.2015.03.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 01/02/2023]
|
50
|
Li S, Liu J, Zhang X, Li L, Yu X, Huang Z. Assembly of conducting polypyrrole hydrogels as a suitable adsorbent for Cr(VI) removal. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1442-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|