1
|
Wu X, Guo H, Hu X, Li Y, Kowalke MA, Zhang W, Oh JH, Elmquist WF, Pang HB. PEGylation Improves the Therapeutic Index of Dexamethasone To Treat Acute Respiratory Distress Syndrome with Obesity Background in Mouse. Mol Pharm 2025; 22:808-816. [PMID: 39818839 DOI: 10.1021/acs.molpharmaceut.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2025]
Abstract
With increasing prevalence globally, obesity presents unique challenges to the clinical management of other diseases. In the case of acute respiratory distress syndrome (ARDS), glucocorticoid therapy (e.g., dexamethasone (DEX)) represents one of the few pharmacological treatment options, but it comes with severe adverse effects, especially when long-term usage (>1 week) is required. One important reason for the adverse effects of DEX is its nonspecific accumulation in healthy tissues upon systemic administration. Therefore, we hypothesize that refining its pharmacokinetics (PK) and in vivo biodistribution may improve its therapeutic index (higher efficacy, lower toxicity) and thus make it safer for obese populations. To achieve this goal, DEX was conjugated with polyethylene glycol (PEG) with three different molecular weights (Mw, 2K, 5K, and 10K) via a reactive oxygen species (ROS)-cleavable linker. Their anti-inflammatory efficacy and long-term adverse effects were evaluated in a murine obesity-ARDS model. Strikingly, DEX-PEG-2K (conjugates with 2K PEG Mw) provided the optimal therapeutic index compared to free DEX and to the other two conjugates with longer PEGs (Mw of 5K and 10K): While retaining the comparable therapeutic efficacy to DEX, DEX-PEG-2K significantly reduced the accumulation of free DEX in the liver and spleen, which led to a 51% reduction of fatty area in liver and a 32% reduction of blood triglycerides concentration. DEX-induced apoptosis of the thymus was also rescued by DEX-PEG-2K under normal conditions. The PK and biodistribution were also investigated to elicit the underlying mechanism. In summary, we provided here a chemical modification strategy to improve the therapeutic index of dexamethasone and possibly other glucocorticoid drugs for ARDS treatment with an obesity background.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hong Guo
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiangxiang Hu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiqin Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mitchell A Kowalke
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wenjuan Zhang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ju-Hee Oh
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William F Elmquist
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Hong-Bo Pang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Liu S, Yang M, Liu H, Hao Y, Zhang D. Recent Progress in Microenvironment-Responsive Nanodrug Delivery Systems for the Targeted Treatment of Rheumatoid Arthritis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2008. [PMID: 39532280 DOI: 10.1002/wnan.2008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that often causes joint pain, swelling, and functional impairments. Drug therapy is the main strategy used to alleviate the symptoms of RA; however, drug therapy may have several adverse effects, such as nausea, vomiting, abdominal pain, diarrhea, gastric ulcers, intestinal bleeding, hypertension, hyperglycemia, infection, fatigue, and indigestion. Moreover, long-term excessive use of drugs may cause liver and kidney dysfunction, as well as thrombocytopenia. Nanodrug delivery systems (NDDSs) can deliver therapeutics to diseased sites with the controlled release of the payload in an abnormal microenvironment, which helps to reduce the side effects of the therapeutics. Abnormalities in the microenvironment, such as a decreased pH, increased expression of matrix metalloproteinases (MMPs), and increased concentrations of reactive oxygen species (ROS), are associated with the progression of RA but also provide an opportunity to achieve microenvironment-responsive therapeutic release at the RA site. Microenvironment-responsive NDDSs may overcome the abovementioned disadvantages of RA therapy. Herein, we comprehensively review recent progress in the development of microenvironment-responsive NDDSs for RA treatment, including pH-, ROS-, MMP-, and multiresponsive NDDSs. Furthermore, the pathological microenvironment is highlighted in detail.
Collapse
Affiliation(s)
- Shuhang Liu
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ming Yang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Han Liu
- Center of Emergency, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingxue Hao
- Department of Vascular Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
4
|
Liu H, Ji M, Xiao P, Gou J, Yin T, He H, Tang X, Zhang Y. Glucocorticoids-based prodrug design: Current strategies and research progress. Asian J Pharm Sci 2024; 19:100922. [PMID: 38966286 PMCID: PMC11222810 DOI: 10.1016/j.ajps.2024.100922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2023] [Revised: 02/04/2024] [Accepted: 03/06/2024] [Indexed: 07/06/2024] Open
Abstract
Attributing to their broad pharmacological effects encompassing anti-inflammation, antitoxin, and immunosuppression, glucocorticoids (GCs) are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus, nephritis, arthritis, ulcerative colitis, asthma, keratitis, macular edema, and leukemia. However, long-term use often causes undesirable side effects, including metabolic disorders-induced Cushing's syndrome (buffalo back, full moon face, hyperglycemia, etc.), osteoporosis, aggravated infection, psychosis, glaucoma, and cataract. These notorious side effects seriously compromise patients' quality of life, especially in patients with chronic diseases. Therefore, glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention. Among them, prodrugs have the advantages of low investment, low risk, and high success rate, making them a promising strategy. In this review, we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades, including polymer-based prodrugs, dendrimer-based prodrugs, antibody-drug conjugates, peptide-drug conjugates, carbohydrate-based prodrugs, aliphatic acid-based prodrugs and so on. Besides, we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs. This review is expected to be helpful for the research and development of novel GCs and prodrugs.
Collapse
Affiliation(s)
- Hongbing Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Muse Ji
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peifu Xiao
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
5
|
Wu X, Guo H, Gao H, Li Y, Hu X, Kowalke MA, Li YX, Wei Y, Zhao J, Auger J, Binstadt BA, Pang HB. Peptide targeting improves the delivery and therapeutic index of glucocorticoids to treat rheumatoid arthritis. J Control Release 2024; 368:329-343. [PMID: 38431094 PMCID: PMC11001515 DOI: 10.1016/j.jconrel.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by excessive inflammation in the joints. Glucocorticoid drugs are used clinically to manage RA symptoms, while their dosage and duration need to be tightly controlled due to severe adverse effects. Using dexamethasone (DEX) as a model drug, we explored here whether peptide-guided delivery could increase the safety and therapeutic index of glucocorticoids for RA treatment. Using multiple murine RA models such as collagen-induced arthritis (CIA), we found that CRV, a macrophage-targeting peptide, can selectively home to the inflammatory synovium of RA joints upon intravenous injection. The expression of the CRV receptor, retinoid X receptor beta (RXRB), was also elevated in the inflammatory synovium, likely being the basis of CRV targeting. CRV-conjugated DEX increased the accumulation of DEX in the inflamed synovium but not in healthy organs of CIA mice. Therefore, CRV-DEX demonstrated a stronger efficacy to suppress synovial inflammation and alleviate cartilage/bone destruction. Meanwhile, CRV conjugation reduced immune-related adverse effects of DEX even after a long-term use. Last, we found that RXRB expression was significantly elevated in human patient samples, demonstrating the potential of clinical translation. Taken together, we provide a novel, peptide-targeted strategy to improve the therapeutic efficacy and safety of glucocorticoids for RA treatment.
Collapse
Affiliation(s)
- Xian Wu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hong Guo
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hui Gao
- Department of Rheumatology and Immunology, Peking University International Hospital, Beijing, China
| | - Yiqin Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiangxiang Hu
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Mitchell A Kowalke
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yue-Xuan Li
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Yushuang Wei
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jiaqi Zhao
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Auger
- Center for Immunology and Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Bryce A Binstadt
- Center for Immunology and Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Hong-Bo Pang
- Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Sis MJ, Ye Z, La Costa K, Webber MJ. Energy Landscapes of Supramolecular Peptide–Drug Conjugates Directed by Linker Selection and Drug Topology. ACS NANO 2022; 16:9546-9558. [PMID: 35639629 PMCID: PMC10019486 DOI: 10.1021/acsnano.2c02804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/14/2023]
Affiliation(s)
- Matthew J. Sis
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zhou Ye
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Katherine La Costa
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J. Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
7
|
Wang Z, Le H, Wang Y, Liu H, Li Z, Yang X, Wang C, Ding J, Chen X. Instructive cartilage regeneration modalities with advanced therapeutic implantations under abnormal conditions. Bioact Mater 2022; 11:317-338. [PMID: 34977434 PMCID: PMC8671106 DOI: 10.1016/j.bioactmat.2021.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2021] [Revised: 09/19/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
The development of interdisciplinary biomedical engineering brings significant breakthroughs to the field of cartilage regeneration. However, cartilage defects are considerably more complicated in clinical conditions, especially when injuries occur at specific sites (e.g., osteochondral tissue, growth plate, and weight-bearing area) or under inflammatory microenvironments (e.g., osteoarthritis and rheumatoid arthritis). Therapeutic implantations, including advanced scaffolds, developed growth factors, and various cells alone or in combination currently used to treat cartilage lesions, address cartilage regeneration under abnormal conditions. This review summarizes the strategies for cartilage regeneration at particular sites and pathological microenvironment regulation and discusses the challenges and opportunities for clinical transformation.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, PR China
| | - Chenyu Wang
- Department of Plastic and Reconstruct Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
8
|
Ongaro A, Violatto MB, Casarin E, Pellerani I, Marchini G, Ribaudo G, Salmona M, Carbone M, Passoni A, Gnodi E, Schiavon E, Mattarei A, Barisani D, Invernizzi P, Bigini P, Morpurgo M. The mode of dexamethasone decoration influences avidin-nucleic-acid-nano-assembly organ biodistribution and in vivo drug persistence. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 40:102497. [PMID: 34838993 DOI: 10.1016/j.nano.2021.102497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/16/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Avidin-Nucleic-Acid-NanoASsemblies (ANANAS) possess natural tropism for the liver and, when loaded with dexamethasone, reduce clinical progression in an autoimmune hepatitis murine model. Here, we investigated the linker chemistry (hydrazide-hydrazone, Hz-Hz, or carbamate hydrazide-hydrazone, Cb-Hz bond) and length (long, 5 kDa PEG, or short, 5-6 carbons) in biotin-dexamethasone conjugates used for nanoparticle decoration through in vitro and in vivo studies. All four newly synthesized conjugates released the drug at acidic pH only. In vitro, the Hz-Hz and the PEG derivatives were less stable than the Cb-Hz and the short chain ones, respectively. Once injected in healthy mice, dexamethasone location in the PEGylated ANANAS outer layer favors liver penetration and resident macrophages uptake, while drug Hz-Hz, but not Cb-Hz, short spacing prolongs drug availability. In conclusion, the tight modulation of ANANAS decoration can significantly influence the host interaction, paving the way for the development of steroid nanoformulations suitable for different pharmacokinetic profiles.
Collapse
Affiliation(s)
- Alberto Ongaro
- Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | | | - Isabella Pellerani
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Gloria Marchini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Giovanni Ribaudo
- Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Marco Carbone
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy; International Center for Digestive Diseases
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Elisa Gnodi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; International Center for Digestive Diseases
| | - Elisa Schiavon
- Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Andrea Mattarei
- Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Donatella Barisani
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; International Center for Digestive Diseases
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy; International Center for Digestive Diseases
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Margherita Morpurgo
- Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy; CRIBI Biotechnology Cente, University of Padova, Padova, Italy.
| |
Collapse
|
9
|
Guo Q, Liu J, Yang H, Lei Z. Synthesis of Photo, Oxidative, and Reductive Triple-Stimuli-Responsive Block Copolymer Micelles as Nanocarriers for Controlled Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:363-373. [PMID: 34931824 DOI: 10.1021/acs.langmuir.1c02720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
With the rapid development of nanotechnology, stimuli-responsive nanomaterials have provided an alternative for designing controllable drug delivery systems due to their spatiotemporally controllable properties. The environment of the human body is complex and cancer cells proliferate rapidly; the traditional nanocarriers could not release the loaded drugs sufficiently, and the release level of the drug is not sufficient for the requirement of treatment. Herein, a photoresponsive, glutathione, and reactive oxygen species block copolymer mPEG2k-ONB-SS-PO-mPEG2k is prepared by Cu(I)-catalyzed azide-alkyne cycloaddition click polymerization. The ο-nitrobenzyl groups, peroxalate ester bonds, disulfide bonds, and triazole units are regularly and repeatedly arranged in hydrophobic blocks. The photo, oxidative, and reductive responsive characteristics of the copolymers in different conditions were investigated by ultraviolet and visible spectrophotometry, dynamic light scattering, and transmission electron microscopy. Nile Red is encapsulated into the core of micelles as a model drug and exhibits the drug release behaviors in various environments. This research provides a way to design potential drug carriers and a promising platform for efficient intracellular drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Qiong Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiangtao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, P. R. China
| | - Hong Yang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
10
|
Kicková E, Sadeghi A, Puranen J, Tavakoli S, Sen M, Ranta VP, Arango-Gonzalez B, Bolz S, Ueffing M, Salmaso S, Caliceti P, Toropainen E, Ruponen M, Urtti A. Pharmacokinetics of Pullulan-Dexamethasone Conjugates in Retinal Drug Delivery. Pharmaceutics 2021; 14:pharmaceutics14010012. [PMID: 35056906 PMCID: PMC8779473 DOI: 10.3390/pharmaceutics14010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022] Open
Abstract
The treatment of retinal diseases by intravitreal injections requires frequent administration unless drug delivery systems with long retention and controlled release are used. In this work, we focused on pullulan (≈67 kDa) conjugates of dexamethasone as therapeutic systems for intravitreal administration. The pullulan-dexamethasone conjugates self-assemble into negatively charged nanoparticles (average size 326 ± 29 nm). Intravitreal injections of pullulan and pullulan-dexamethasone were safe in mouse, rat and rabbit eyes. Fluorescently labeled pullulan particles showed prolonged retention in the vitreous and they were almost completely eliminated via aqueous humor outflow. Pullulan conjugates also distributed to the retina via Müller glial cells when tested in ex vivo retina explants and in vivo. Pharmacokinetic simulations showed that pullulan-dexamethasone conjugates may release free and active dexamethasone in the vitreous humor for over 16 days, even though a large fraction of dexamethasone may be eliminated from the eye as bound pullulan-dexamethasone. We conclude that pullulan based drug conjugates are promising intravitreal drug delivery systems as they may reduce injection frequency and deliver drugs into the retinal cells.
Collapse
Affiliation(s)
- Eva Kicková
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (E.K.); (S.S.); (P.C.)
| | - Amir Sadeghi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (V.-P.R.); (E.T.); (M.R.)
| | - Jooseppi Puranen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (V.-P.R.); (E.T.); (M.R.)
| | - Shirin Tavakoli
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00710 Helsinki, Finland;
| | - Merve Sen
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, D-72076 Tübingen, Germany; (M.S.); (B.A.-G.); (S.B.); (M.U.)
| | - Veli-Pekka Ranta
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (V.-P.R.); (E.T.); (M.R.)
| | - Blanca Arango-Gonzalez
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, D-72076 Tübingen, Germany; (M.S.); (B.A.-G.); (S.B.); (M.U.)
| | - Sylvia Bolz
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, D-72076 Tübingen, Germany; (M.S.); (B.A.-G.); (S.B.); (M.U.)
| | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Str. 7, D-72076 Tübingen, Germany; (M.S.); (B.A.-G.); (S.B.); (M.U.)
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (E.K.); (S.S.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; (E.K.); (S.S.); (P.C.)
| | - Elisa Toropainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (V.-P.R.); (E.T.); (M.R.)
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (V.-P.R.); (E.T.); (M.R.)
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70211 Kuopio, Finland; (A.S.); (J.P.); (V.-P.R.); (E.T.); (M.R.)
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00710 Helsinki, Finland;
- Institute of Chemistry, St. Petersburg State University, Petergof, Universitetskii pr. 26, 198504 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
11
|
Lima AC, Reis RL, Ferreira H, Neves NM. Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomater Sci Eng 2021; 7:3229-3241. [PMID: 34161062 DOI: 10.1021/acsbiomaterials.1c00412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022]
Abstract
Inflammation plays an essential role in arthritis development and progression. Despite the advances in the pharmaceutical field, current treatments still present low efficacy and severe side effects. Considering the high activity of the glutathione reductase (GR) enzyme in inflamed joints, a distinctive drug delivery system sensitive to the GR enzyme was designed for efficient drug delivery on arthritic diseases. A linear amphiphilic polymer composed of methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) was synthesized and the intermolecular oxidation of the thiol groups from GSHs retain the drug inside the resulting micelles. Stable polymeric micelles of 100 nm of size presented a loading capacity of dexamethasone (Dex) up to 65%. Although in physiological conditions the Dex release presented slow and sustained kinetics, in the presence of the GR enzyme, there was a burst release (stimuli-responsive properties). Biological assays demonstrated their cytocompatibility in contact with human articular chondrocytes, macrophages, and endothelial cells as well as their hemocompatibility. Importantly, in an in vitro model of inflammation, the polymeric micelles promoted a controlled drug release in the presence of GR, exhibiting a higher efficacy than the free Dex while reducing the negative effects of the drug into normal cells. In conclusion, this formulation is a promising approach to treat arthritic diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| |
Collapse
|
12
|
Pullulan Based Bioconjugates for Ocular Dexamethasone Delivery. Pharmaceutics 2021; 13:pharmaceutics13060791. [PMID: 34073275 PMCID: PMC8227697 DOI: 10.3390/pharmaceutics13060791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Posterior segment eye diseases are mostly related to retinal pathologies that require pharmacological treatments by invasive intravitreal injections. Reduction of frequent intravitreal administrations may be accomplished with delivery systems that provide sustained drug release. Pullulan-dexamethasone conjugates were developed to achieve prolonged intravitreal drug release. Accordingly, dexamethasone was conjugated to ~67 kDa pullulan through hydrazone bond, which was previously found to be slowly cleavable in the vitreous. Dynamic light scattering and transmission electron microscopy showed that the pullulan-dexamethasone containing 1:20 drug/glucose unit molar ratio (10% w/w dexamethasone) self-assembled into nanoparticles of 461 ± 30 nm and 402 ± 66 nm, respectively. The particles were fairly stable over 6 weeks in physiological buffer at 4, 25 and 37 °C, while in homogenized vitreous at 37 °C, the colloidal assemblies underwent size increase over time. The drug was released slowly in the vitreous and rapidly at pH 5.0 mimicking lysosomal conditions: 50% of the drug was released in about 2 weeks in the vitreous, and in 2 days at pH 5.0. In vitro studies with retinal pigment epithelial cell line (ARPE-19) showed no toxicity of the conjugates in the cells. Flow cytometry and confocal microscopy showed cellular association of the nanoparticles and intracellular endosomal localization. Overall, pullulan conjugates showed interesting features that may enable their successful use in intravitreal drug delivery.
Collapse
|
13
|
Deng Z, Liu S. Inflammation-responsive delivery systems for the treatment of chronic inflammatory diseases. Drug Deliv Transl Res 2021; 11:1475-1497. [PMID: 33860447 PMCID: PMC8048351 DOI: 10.1007/s13346-021-00977-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/03/2021] [Indexed: 12/30/2022]
Abstract
Inflammation is the biological response of immune system to protect living organisms from injurious factors. However, excessive and uncontrolled inflammation is implicated in a variety of devastating chronic diseases including atherosclerosis, inflammatory bowel disease (IBD), and rheumatoid arthritis (RA). Improved understanding of inflammatory response has unveiled a rich assortment of anti-inflammatory therapeutics for the treatment and management of relevant chronic diseases. Notwithstanding these successes, clinical outcomes are variable among patients and serious adverse effects are often observed. Moreover, there exist some limitations for clinical anti-inflammatory therapeutics such as aqueous insolubility, low bioavailability, off-target effects, and poor accessibility to subcellular compartments. To address these challenges, the rational design of inflammation-specific drug delivery systems (DDSs) holds significant promise. Moreover, as compared to normal tissues, inflamed tissue-associated pathological milieu (e.g., oxidative stress, acidic pH, and overexpressed enzymes) provides vital biochemical stimuli for triggered delivery of anti-inflammatory agents in a spatiotemporally controlled manner. In this review, we summarize recent advances in the development of anti-inflammatory DDSs with built-in pathological inflammation-specific responsiveness for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zhengyu Deng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences At the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui Province, China.
| |
Collapse
|
14
|
Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines 2021; 9:341. [PMID: 33801776 PMCID: PMC8067246 DOI: 10.3390/biomedicines9040341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Dexamethasone (DEX) is the most commonly prescribed glucocorticoid (GC) and has a wide spectrum of pharmacological activity. However, steroid drugs like DEX can have severe side effects on non-target organs. One strategy to reduce these side effects is to develop targeted systems with the controlled release by conjugation to polymeric carriers. This review describes the methods available for the synthesis of DEX conjugates (carbodiimide chemistry, solid-phase synthesis, reversible addition fragmentation-chain transfer [RAFT] polymerization, click reactions, and 2-iminothiolane chemistry) and perspectives for their medical application as GC drug or gene delivery systems for anti-tumor therapy. Additionally, the review focuses on the development of DEX conjugates with different physical-chemical properties as successful delivery systems in the target organs such as eye, joint, kidney, and others. Finally, polymer conjugates with improved transfection activity in which DEX is used as a vector for gene delivery in the cell nucleus have been described.
Collapse
Affiliation(s)
| | | | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.V.D.); (A.N.B.)
| |
Collapse
|
15
|
Lyu J, Wang L, Bai X, Du X, Wei J, Wang J, Lin Y, Chen Z, Liu Z, Wu J, Zhong Z. Treatment of Rheumatoid Arthritis by Serum Albumin Nanoparticles Coated with Mannose to Target Neutrophils. ACS APPLIED MATERIALS & INTERFACES 2021; 13:266-276. [PMID: 33379867 DOI: 10.1021/acsami.0c19468] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis (RA) is an angiogenic and chronic inflammatory disease. One of the most extensively used first-line drugs against RA is methotrexate (MTX), but it shows poor solubility, short in vivo circulation, and off-target binding, leading to strong toxicity. To overcome these shortcomings, the present study loaded MTX into nanoparticles of human serum albumin modified with mannose (MTX-M-NPs) to target the drug to neutrophils. MTX-M-NPs were prepared, and their uptake by neutrophils was studied using laser confocal microscopy and flow cytometry. A chick chorioallantoic membrane assay was used to assess their ability to inhibit angiogenesis. The pharmacokinetics and tissue distribution of MTX-M-NPs were investigated using fluorescence microscopy and high-performance liquid chromatography. Their pharmacodynamics was evaluated in a rat model with arthritis induced by collagen. Neutrophils took up MTX-M-NPs significantly better than the same nanoparticles (NPs) without mannose. MTX-M-NPs markedly suppressed angiogenesis in chick embryos, and the MTX circulation was significantly longer when it was delivered as MTX-M-NPs than as a free drug. MTX-M-NPs accumulated mainly in arthritic joints. The retention of NPs was promoted by mannose-derived coating in arthritic joints. Serum levels of inflammatory cytokines, joint swelling, and bone erosion were significantly decreased by MTX-M-NPs. In conclusion, these NPs can prolong the in vivo circulation of MTX and target it to the sites of inflammation in RA, reducing drug toxicity. MTX-M-NPs allow the drug to exert its intrinsic anti-inflammatory, antiangiogenic, and analgesic properties, making it a useful drug delivery system in RA.
Collapse
Affiliation(s)
- Jiayao Lyu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Pharmacy, Ziyang Psychiatric Hospital, Ziyang 641300, Sichuan, China
| | - Lujun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaosheng Bai
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingjie Du
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Wei
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhenyu Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhongbing Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jianming Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
16
|
Abstract
Polymer nanomedicines (macromolecular therapeutics, polymer-drug conjugates, drug-free macromolecular therapeutics) are a group of biologically active compounds that are characterized by their large molecular weight. This review focuses on bioconjugates of water-soluble macromolecules with low molecular weight drugs and selected proteins. After analyzing the design principles, different structures of polymer carriers are discussed followed by the examination of the efficacy of the conjugates in animal models and challenges for their translation into the clinic. Two innovative directions in macromolecular therapeutics that depend on receptor crosslinking are highlighted: a) Combination chemotherapy of backbone degradable polymer-drug conjugates with immune checkpoint blockade by multivalent polymer peptide antagonists; and b) Drug-free macromolecular therapeutics, a new paradigm in drug delivery.
Collapse
Affiliation(s)
- Jindřich Kopeček
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jiyuan Yang
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
17
|
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that results in severe inflammatory microenvironments in the joint tissues. In clinics, disease-modifying antirheumatic drugs (DMARDs) are generally prescribed to patients with RA, but their long-term use often shows toxicity in some organs such as the gastrointestinal system, skin, and kidneys and immunosuppression-mediated infection. Nanomedicine has emerged as a new therapeutic strategy to efficiently localize the drugs in inflamed joints for the treatment of RA. In this Review, we introduce recent research in the area of nanomedicine for the treatment of RA and discuss how the nanomedicine can be used to deliver therapeutic agents to the inflamed joints and manage the progression of RA, particularly focusing on targeted delivery, controlled drug release, and immune modulation.
Collapse
Affiliation(s)
- Moonkyoung Jeong
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
18
|
Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/08/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects 0.5-1% of the world population. Current treatments include on one hand non-steroidal anti-inflammatory drugs and glucocorticoids (GCs) for treating pain and on the other hand disease-modifying anti-rheumatic drugs such as methotrexate, Janus kinase inhibitors or biologics such as antibodies targeting mainly cytokine expression. More recently, nucleic acids such as siRNA, miRNA, or anti-miRNA have shown strong potentialities for the treatment of RA. This review discusses the way nanomedicines can target GCs and nucleic acids to inflammatory sites, increase drug penetration within inflammatory cells, achieve better subcellular distribution and finally protect drugs against degradation. For GCs such a targeting effect would allow the treatment to be more effective at lower doses and to reduce the administration frequency as well as to induce much fewer side-effects. In the case of nucleic acids, particularly siRNA, knocking down proteins involved in RA, could importantly be facilitated using nanomedicines. Finally, the combination of both siRNA and GCs in the same carrier allowed for the same cell to target both the GCs receptor as well as any other signaling pathway involved in RA. Nanomedicines appear to be very promising for the delivery of conventional and novel drugs in RA therapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Zhibo Yu
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mathilde Lorscheider
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
19
|
Wang S, Lv J, Meng S, Tang J, Nie L. Recent Advances in Nanotheranostics for Treat-to-Target of Rheumatoid Arthritis. Adv Healthc Mater 2020; 9:e1901541. [PMID: 32031759 DOI: 10.1002/adhm.201901541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Indexed: 12/16/2022]
Abstract
Early diagnosis, standardized treatment, and regular monitoring are the clinical treatment principle of rheumatoid arthritis (RA). The overarching principles and recommendations of treat-to-target (T2T) in RA advocate remission as the optimum aim, especially for patients with very early disease who are initiating therapy with anti-RA medications. However, traditional anti-RA drugs cannot selectively target the inflammatory areas and may cause serious side effects due to its short biological half-life and poor bioavailability. These limitations have significantly driven the research and application of nanomaterial-based drugs in theranostics of RA. Nanomedicines have appropriate sizes and easily modified surfaces which can enhance their biological compatibility and prolong circulation time of drug-loading systems in vivo. Traditional T2T regimens cannot evaluate the efficacy of drugs in real time, while clinical drug nanosizing can realize the integration of diagnosis and treatment of RA. This review bridges clinically proposed T2T concepts and nanomedicine in an integrated system for RA early-stage diagnosis and treatment. The most advanced progress in various nanodrug delivery systems for theranostics of RA is summarized, establishing a clear path and a new perspective for further optimization of T2T. Finally, the key facing challenges are discussed and prospects are addressed.
Collapse
Affiliation(s)
- Shasha Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and DevicesHunan University of Technology Zhuzhou 412007 P. R. China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen University Xiamen 361102 P. R. China
| |
Collapse
|
20
|
Xu XL, Lu KJ, Yao XQ, Ying XY, Du YZ. Stimuli-responsive Drug Delivery Systems as an Emerging Platform for Treatment of Rheumatoid Arthritis. Curr Pharm Des 2020; 25:155-165. [PMID: 30907308 DOI: 10.2174/1381612825666190321104424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid Arthritis (RA) is a systemic autoimmune disease accompanied by chronic inflammation. Due to the long-term infiltration in inflammatory sites, joints get steadily deteriorated, eventually resulting in functional incapacitation and disability. Despite the considerable effect, RA sufferers treated with current drug therapeutic efficacy are exposed to severe side effects. Application of Drug Delivery Systems (DDS) has improved these situations while the problem of limited drug exposure remains untackled. Stimuli-responsive DDS that are responsive to a variety of endogenous and exogenous stimuli, such as pH, redox status, and temperature, have emerged as a promising therapeutic strategy to optimize the drug release. Herein, we discussed the therapeutic regimes and serious side effects of current RA therapy, as well as focused on some of the potential stimuliresponsive DDS utilized in RA therapy. Besides, the prospective room in designing DDS for RA treatment has also been discussed.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kong-Jun Lu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Qin Yao
- School of Medicine, Zhejiang University City College, Hangzhou 310058, China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Jiang S, Prozeller D, Pereira J, Simon J, Han S, Wirsching S, Fichter M, Mottola M, Lieberwirth I, Morsbach S, Mailänder V, Gehring S, Crespy D, Landfester K. Controlling protein interactions in blood for effective liver immunosuppressive therapy by silica nanocapsules. NANOSCALE 2020; 12:2626-2637. [PMID: 31939969 DOI: 10.1039/c9nr09879h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
Immunosuppression with glucocorticoids is a common treatment for autoimmune liver diseases and after liver transplant, which is however associated with severe side-effects. Targeted delivery of glucocorticoids to inflammatory cells, e.g. liver macrophages and Kupffer cells, is a promising approach for minimizing side effects. Herein, we prepare core-shell silica nanocapsules (SiO2 NCs) via a sol-gel process confined in nanodroplets for targeted delivery of dexamethasone (DXM) for liver immunosuppressive therapy. DXM with concentrations up to 100 mg mL-1 in olive oil are encapsulated while encapsulation efficiency remains over 95% after 15 days. Internalization of NCs by non-parenchymal murine liver cells significantly reduces the release of inflammatory cytokines, indicating an effective suppression of inflammatory response of liver macrophages. Fluorescent and magnetic labeling of the NCs allows for monitoring their intracellular trafficking and biodegradation. Controlled interaction with blood proteins and good colloidal stability in blood plasma are achieved via PEGylation of the NCs. Specific proteins responsible for stealth effect, such as apolipoprotein A-I, apolipoprotein A-IV, and clusterin, are present in large amounts on the PEGylated NCs. In vivo biodistribution investigations prove an efficient accumulation of NCs in the liver, underlining the suitability of the SiO2 NCs as a dexamethasone carrier for treating inflammatory liver diseases.
Collapse
Affiliation(s)
- Shuai Jiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Domenik Prozeller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Jorge Pereira
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Johanna Simon
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Shen Han
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Sebastian Wirsching
- Children's Hospital, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Michael Fichter
- Children's Hospital, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Milagro Mottola
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
| | - Daniel Crespy
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. and Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
22
|
Seo J, Park SH, Kim MJ, Ju HJ, Yin XY, Min BH, Kim MS. Injectable Click-Crosslinked Hyaluronic Acid Depot To Prolong Therapeutic Activity in Articular Joints Affected by Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24984-24998. [PMID: 31264830 DOI: 10.1021/acsami.9b04979] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
The aim of this study was to design a click-crosslinked hyaluronic acid (HA) (Cx-HA) depot via a click crosslinking reaction between tetrazine-modified HA and trans-cyclooctene-modified HA for direct intra-articular injection into joints affected by rheumatoid arthritis (RA). The Cx-HA depot had significantly more hydrogel-like features and a longer in vivo residence time than the HA depot. Methotrexate (MTX)-loaded Cx-HA (MTX-Cx-HA)-easily prepared as an injectable formulation-quickly formed an MTX-Cx-HA depot that persisted at the injection site for an extended period. In vivo MTX biodistribution in MTX-Cx-HA depots showed that a high concentration of MTX persisted at the intra-articular injection site for an extended period, with little distribution of MTX to normal tissues. In contrast, direct intra-articular injection of MTX alone or MTX-HA resulted in rapid clearance from the injection site. After intra-articular injection of MTX-Cx-HA into rats with RA, we noted the most significant RA reversal, measured by an articular index score, increased cartilage thickness, extensive generation of chondrocytes and glycosaminoglycan deposits, extensive new bone formation in the RA region, and suppression of tumor necrosis factor-α or interleukin-6 expression. Therefore, MTX-Cx-HA injected intra-articularly persists at the joint site in therapeutic MTX concentrations for an extended period, thus increasing the duration of RA treatment, resulting in an improved relief of RA.
Collapse
|
23
|
Fang G, Zhang Q, Pang Y, Thu HE, Hussain Z. Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: Multi-functionalization as an emerging strategy to optimize therapeutic efficacy. J Control Release 2019; 303:181-208. [DOI: 10.1016/j.jconrel.2019.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/18/2022]
|
24
|
Abstract
Inflammation is a vital defense mechanism of living organisms. However, persistent and chronic inflammation may lead to severe pathological processes and evolve into various chronic inflammatory diseases (CID), e.g. rheumatoid arthritis, multiple sclerosis, multiple sclerosis, systemic lupus erythematosus or inflammatory bowel diseases, or certain types of cancer. Their current treatment usually does not lead to complete remission. The application of nanotherapeutics may significantly improve CID treatment, since their accumulation in inflamed tissues has been described and is referred to as extravasation through leaky vasculature and subsequent inflammatory cell-mediated sequestration (ELVIS). Among nanotherapeutics, water-soluble polymer-drug conjugates may be highly advantageous in CID treatment due to the possibility of their passive and active targeting to the inflammation site and controlled release of active agents once there. The polymer-drug conjugate consists of a hydrophilic biocompatible polymer backbone along which the drug molecules are covalently attached via a biodegradable linker that enables controlled drug release. Their active targeting or bio-imaging can be achieved by introducing the cell-specific targeting moiety or imaging agents into the polymer conjugate. Here, we review the relationship between polymer conjugates and inflammation, including the benefits of the application of polymer conjugates in inflammation treatment, the anti-inflammatory activity of polymer drug conjugates and potential polymer-promoted inflammation and immunogenicity.
Collapse
Affiliation(s)
- E Koziolová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague 6, Czech Republic.
| | | | | |
Collapse
|
25
|
Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv 2018. [PMID: 29516758 PMCID: PMC6058688 DOI: 10.1080/10717544.2018.1447050] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease. Long-term, high-dose glucocorticoid therapy can be used to treat the disease, but the fact that the drug distributes systemically can give rise to severe adverse effects. Here we develop a targeted system for treating RA in which the glucocorticoid prednisolone (PD) is encapsulated within solid lipid nanoparticles (SLNs) coated with hyaluronic acid (HA), giving rise to HA-SLNs/PD. HA binds to hyaluronic receptor CD44, which is over-expressed on the surface of synovial lymphocytes, macrophages and fibroblasts in inflamed joints in RA. As predicted, HA-SLNs/PD particles accumulated in affected joint tissue after intravenous injection into mice with collagen-induced arthritis (CIA), and HA-SLNs/PD persisted longer in circulation and preserved bone and cartilage better than free drug or drug encapsulated in SLNs without HA. HA-SLNs/PD reduced joint swelling, bone erosion and levels of inflammatory cytokines in serum. These results suggest that encapsulating glucocorticoids such as PD in HA-coated SLNs may render them safe and effective for treating inflammatory disorders.
Collapse
Affiliation(s)
- Meiling Zhou
- a Department of Pharmacy , The Affiliated Hospital of Southwest Medical University , Luzhou , Sichuan , PR China
| | - Jierong Hou
- b Department of Health Section , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Zhirong Zhong
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Na Hao
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Yan Lin
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Chunhong Li
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| |
Collapse
|
26
|
Li J, Liu H, Meng F, Yan L, Shi Y, Zhang Y, Gu Q. Microwave-assisted Synthesis of New 1,2,3-Triazoles Bearing an Isoxazole Ring by the Azide-alkyne Cycloaddition Click Chemistry. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7298-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
|
27
|
|
28
|
Park JH, Park SH, Lee HY, Lee JW, Lee BK, Lee BY, Kim JH, Kim MS. An injectable, electrostatically interacting drug depot for the treatment of rheumatoid arthritis. Biomaterials 2018; 154:86-98. [DOI: 10.1016/j.biomaterials.2017.10.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2017] [Revised: 10/26/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
|
29
|
|
30
|
Borke T, Najberg M, Ilina P, Bhattacharya M, Urtti A, Tenhu H, Hietala S. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2017] [Revised: 07/23/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Tina Borke
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| | - Mathie Najberg
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| | - Polina Ilina
- Centre for Drug Research; Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; P.O. Box 56 FI-00014 Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research; Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; P.O. Box 56 FI-00014 Finland
| | - Arto Urtti
- Centre for Drug Research; Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; P.O. Box 56 FI-00014 Finland
- School of Pharmacy; University of Eastern Finland; P.O. Box 1627 70211 Kuopio Finland
| | - Heikki Tenhu
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| | - Sami Hietala
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| |
Collapse
|
31
|
Lee YK, Kim SW, Park JY, Kang WC, Kang YJ, Khang D. Suppression of human arthritis synovial fibroblasts inflammation using dexamethasone-carbon nanotubes via increasing caveolin-dependent endocytosis and recovering mitochondrial membrane potential. Int J Nanomedicine 2017; 12:5761-5779. [PMID: 28848352 PMCID: PMC5557625 DOI: 10.2147/ijn.s142122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Dexamethasone (DEX), a non-particulate glucocorticoid (GC) to inhibit anti-inflammatory response, has been widely used for the treatment of various diseases such as arthritis, cancer, asthma, chronic obstructive pulmonary disease, cerebral edema, and multiple sclerosis. However, prolonged and/or high-dose GC therapy can cause various serious adverse effects (adrenal insufficiency, hyperglycemia, Cushing’s syndrome, osteoporosis, Charcot arthropathy, etc). In this study, developed DEX-carbon nanotube (CNT) conjugates improved intracellular drug delivery via increased caveolin-dependent endocytosis and ultimately suppressed the expression of major pro-inflammatory cytokines in tumor necrosis factor-α (TNF-α)-stimulated human fibroblast-like synoviocytes (FLS) at low drug concentrations. Specifically, DEX on polyethylene-glycol (PEG)-coated CNTs induced caveolin uptake, recovered mitochondrial disruption, and inhibited reactive oxygen species production by targeting mitochondria that was released from the early endosome in TNF-α-stimulated FLS. The obtained results clearly demonstrated that DEX-PEG-coated CNTs significantly inhibited the inflammation by FLS in rheumatoid arthritis (RA) by achieving greater drug uptake and efficient intracellular drug release from the endosome, thus suggesting a mechanism of effective low-dose GC therapy to treat inflammatory diseases, including RA and osteoarthritis.
Collapse
Affiliation(s)
- Yeon Kyung Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University
| | - Sang-Woo Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University
| | - Jun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University
| | - Woong Chol Kang
- Department of Cardiology, Gil Medical Center, Gachon University, Incheon
| | - Youn Joo Kang
- Department of Rehabilitation Medicine, Eulji Hospital, Eulji University School of Medicine, Seoul
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University.,Department of Physiology, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
32
|
Li C, Li H, Wang Q, Zhou M, Li M, Gong T, Zhang Z, Sun X. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control Release 2017; 246:133-141. [DOI: 10.1016/j.jconrel.2016.12.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2016] [Revised: 10/30/2016] [Accepted: 12/25/2016] [Indexed: 01/02/2023]
|
33
|
Abstract
Schematic illustration of inflammatory microenvironment in inflamed joints and events occurring in rheumatoid arthritis.
Collapse
Affiliation(s)
- Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems
- Ministry of Education
- West China School of Pharmacy
- Sichuan University
- Chengdu
| |
Collapse
|
34
|
Kim K, Park JH, Park SH, Lee HY, Kim JH, Kim MS. An Injectable, Click-Cross-Linked Small Intestinal Submucosa Drug Depot for the Treatment of Rheumatoid Arthritis. Adv Healthc Mater 2016; 5:3105-3117. [PMID: 27900853 DOI: 10.1002/adhm.201601040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2016] [Revised: 10/26/2016] [Indexed: 01/08/2023]
Abstract
Here, a click-cross-linked small intestine submucosa (SIS) drug depot is described for the treatment of rheumatoid arthritis (RA). To the best of the knowledge, there have been no studies related to the intra-articular injection of methotrexate (Met)-loaded click-cross-linkable SIS (Met-loaded Cx-SIS) for RA treatment. As the key objective of this work, injectable formulations of tetrazine-modified SIS (TE-SIS) and transcyclooctene-modified SIS (TC-SIS) are employed as drug depots. Within a few seconds, the simple mixing of equal amounts of TE-SIS and TC-SIS suspensions forms a gelatinous click-cross-linked SIS (Cx-SIS) drug depot in vitro and in vivo. The formed Cx-SIS depot is maintained in the articular joint over an extended period, while SIS alone rapidly disappears. Injectable formulations of Met-loaded Cx-SIS and Met-loaded SIS are prepared and then injected into articular joints to form drug depots. Compared to animals treated with Met-loaded SIS, RA animals treated with Met-loaded Cx-SIS show effective RA repair, as well as extensive regeneration of chondrocytes and glycosaminoglycan deposits. Collectively, these results indicate that the Met-loaded Cx-SIS depot is successfully formed after intra-articular injection of click-cross-linkable SIS, and that this formulation induces long-lasting Met release and allows Met to act effectively in the articular joint, resulting in RA repair.
Collapse
Affiliation(s)
- Kyungsook Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Hye Yun Lee
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| |
Collapse
|
35
|
Smith AAA, Zuwala K, Pilgram O, Johansen KS, Tolstrup M, Dagnæs-Hansen F, Zelikin AN. Albumin-Polymer-Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles. ACS Macro Lett 2016; 5:1089-1094. [PMID: 35658186 DOI: 10.1021/acsmacrolett.6b00544] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Albumin is an exquisite tool of nature used in biomedicine to achieve long blood residence time for drugs, but the payload it can carry is typically limited to one molecule per protein. In contrast, synthetic macromolecular prodrugs contain multiple copies of drugs per polymer chain but offer only a marginal increase in the circulation lifetime of the drugs. We combine the benefits of the two platforms and at the same time overcome their respective limitations. Specifically, we develop the synthesis of albumin-polymer-drug conjugates to obtain long circulating, high payload drug delivery vehicles. In vivo data validate that albumin endows the conjugate with a blood residence time similar to that of the protein and well exceeding that of the polymer. Therapeutic activity of the conjugates is validated using prodrugs of panobinostat, an HIV latency reversal agent, in which case the conjugates matched the drug in terms of efficacy of treatment.
Collapse
Affiliation(s)
| | - Kaja Zuwala
- Department of Infectious Diseases, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
36
|
Zhou X, Zheng Q, Wang C, Xu J, Wu JP, Kirk TB, Ma D, Xue W. Star-Shaped Amphiphilic Hyperbranched Polyglycerol Conjugated with Dendritic Poly(l-lysine) for the Codelivery of Docetaxel and MMP-9 siRNA in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12609-12619. [PMID: 27153187 DOI: 10.1021/acsami.6b01611] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
The drug/gene codelivery is a promising strategy for cancer treatment. Herein, to realize the codelivery of docetaxel and MMP-9 siRNA plasmid efficiently into tumor cells, a star-shaped amphiphilic copolymer consisting of hyperbranched polyglycerol derivative (HPG-C18) and dendritic poly(l-lysine) (PLLD) was synthesized by the click reaction between azido-modified HPG-C18 and propargyl focal point PLLD. The obtained HPG-C18-PLLD could form the nanocomplexes with docetaxel and MMP-9, and the complexes showed good gene delivery ability in vitro by inducing an obvious decrease in MMP-9 protein expression in MCF-7 cells. The apoptosis assay showed that the complex could induce a more significant apoptosis to breast cancer cells than that of docetaxel or MMP-9 used alone. In vivo assay indicated that the codelivery strategy displayed a better effect on tumor inhibition. Moreover, HPG-C18-PLLD displayed lower toxicity as well as better blood compatibility compared to polyethylenimine PEI-25k, which may be the result of that HPG-C18-PLLD showed the comparative MMP-9 delivery ability in vivo compared with PEI-25k even if it showed the slight lower transfection efficiency in vitro. Therefore, HPG-C18-PLLD is a safe and effective carrier for the codelivery of drug/gene, which should be encouraged in tumor therapy.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University , Guangzhou 510632, China
| | - Qianqian Zheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University , Guangzhou 510632, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences , Beijing 100850, China
| | - Jiake Xu
- The School of Pathology and Laboratory Medicine, University of Western Australia , Perth, Australia
| | - Jian-Ping Wu
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University , Perth, Australia
| | - Thomas Brett Kirk
- 3D Imaging and Bioengineering Laboratory, Department of Mechanical Engineering, Curtin University , Perth, Australia
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University , Guangzhou 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University , Guangzhou 510632, China
| |
Collapse
|
37
|
Newman MR, Benoit DS. Local and targeted drug delivery for bone regeneration. Curr Opin Biotechnol 2016; 40:125-132. [PMID: 27064433 DOI: 10.1016/j.copbio.2016.02.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
While experimental bone regeneration approaches commonly employ cells, technological hurdles prevent translation of these therapies. Alternatively, emulating the spatiotemporal cascade of endogenous factors through controlled drug delivery may provide superior bone regenerative approaches. Surgically placed drug depots have clinical indications. Additionally, noninvasive systemic delivery can be used as needed for poorly healing bone injuries. However, a major hurdle for systemic delivery is poor bone biodistribution of drugs. Thus, peptides, aptamers, and phosphate-rich compounds with specificity toward proteins, cells, and molecules within the regenerative bone microenvironment may enable the design of targeted carriers with bone biodistribution greater than that achieved by drug alone. These carriers, combined with osteoregenerative drugs and/or stimuli-sensitive linkers, may enhance bone regeneration while minimizing off-target tissue effects.
Collapse
Affiliation(s)
- Maureen R Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Danielle Sw Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
38
|
Bajpayee AG, Quadir MA, Hammond PT, Grodzinsky AJ. Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term. Osteoarthritis Cartilage 2016; 24. [PMID: 26211608 PMCID: PMC4695287 DOI: 10.1016/j.joca.2015.07.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Avidin exhibits ideal characteristics for targeted intra-cartilage drug delivery: its small size and optimal positive charge enable rapid penetration through full-thickness cartilage and electrostatic binding interactions that give long half-lives in vivo. Here we conjugated Avidin with dexamethasone (DEX) and tested the hypothesis that single-dose Avidin-delivered DEX can ameliorate catabolic effects in cytokine-challenged cartilage relevant to post-traumatic OA. METHODS Avidin was covalently conjugated with DEX using fast (ester) and slow, pH-sensitive release (hydrazone) linkers. DEX release kinetics from these conjugates was characterized using (3)H-DEX-Avidin (scintillation counting). Cartilage explants treated with IL-1α were cultured with or without Avidin-DEX conjugates and compared to soluble DEX. Sulfated-glycosaminoglycan (sGAG) loss and biosynthesis rates were measured using DMMB assay and (35)S-incorporation, respectively. Chondrocyte viability was measured using fluorescence staining. RESULTS Ester linker released DEX from Avidin significantly faster than hydrazone under physiological buffer conditions. Single dose Avidin-DEX suppressed cytokine-induced sGAG loss over 3-weeks, rescued IL-1α-induced cell death, and restored sGAG synthesis levels without causing cytotoxicity. The two Avidin-DEX conjugates in 1:1 combination (fast:slow) had the most prominent bioactivity compared to single dose soluble-DEX, which had a shorter-lived effect and thus needed continuous replenishment throughout the culture period to ameliorate catabolic effects. CONCLUSION Intra-cartilage drug delivery remains inadequate as drugs rapidly clear from the joint, requiring multiple injections or sustained release of high doses in synovial fluid. A single dose of Avidin-conjugated drug enables rapid uptake and sustained delivery inside cartilage at low intratissue doses, and potentially can minimize unwanted drug exposure to other joint tissues.
Collapse
Affiliation(s)
- Ambika G. Bajpayee
- Department of Mechanical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mohiuddin A. Quadir
- Department of Chemical Engineering and Koch Institute of Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Paula T. Hammond
- Department of Chemical Engineering and Koch Institute of Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Alan J. Grodzinsky
- Department of Mechanical Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA,Departments of Biological Engineering and Electrical Engineering & Computer Science, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
39
|
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2015; 116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Collapse
Affiliation(s)
- Jana Herzberger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Hannah Pohlit
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Department of Dermatology, University Medical Center , Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
40
|
He Z, Miao L, Jordan R, S-Manickam D, Luxenhofer R, Kabanov AV. A Low Protein Binding Cationic Poly(2-oxazoline) as Non-Viral Vector. Macromol Biosci 2015; 15:1004-20. [PMID: 25846127 PMCID: PMC4893346 DOI: 10.1002/mabi.201500021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2015] [Revised: 03/12/2015] [Indexed: 01/01/2023]
Abstract
Developing safe and efficient non-viral gene delivery systems remains a major challenge. We present a new cationic poly(2-oxazoline) (CPOx) block copolymer for gene therapy that was synthesized by sequential polymerization of non-ionic 2-methyl-2-oxazoline and a new 2-oxazoline monomer, 2-(N-methyl, N-Boc-amino)-methyl-2-oxazoline, followed by deprotection of the pendant secondary amine groups. Upon mixing with plasmid DNA (pDNA), CPOx forms small (diameter ≈80 nm) and narrowly dispersed polyplexes (PDI <0.2), which are stable upon dilution in saline and against thermal challenge. These polyplexes exhibited low plasma protein binding and very low cytotoxicity in vitro compared to the polyplexes of pDNA and poly(ethylene glycol)-b-poly(L-lysine) (PEG-b-PLL). CPOx/pDNA polyplexes at N/P = 5 bound considerably less plasma protein compared to polyplexes of PEG-b-PLL at the same N/P ratio. This is a unique aspect of the developed polyplexes emphasizing their potential for systemic delivery in vivo. The transfection efficiency of the polyplexes in B16 murine melanoma cells was low after 4 h, but increased significantly for 10 h exposure time, indicative of slow internalization of polyplexes. Addition of Pluronic P85 boosted the transfection using CPOx/pDNA polyplexes considerably. The low protein binding of CPOx/pDNA polyplexes is particularly interesting for the future development of targeted gene delivery.
Collapse
Affiliation(s)
- Zhijian He
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Lei Miao
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Rainer Jordan
- Department Chemie, Technische Universität Dresden, Mommsenstr. 4, 01069 Dresden, Germany
| | - Devika S-Manickam
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Chemical Technology of Materials Synthesis, Universität Würzburg, 97070 Würzburg, Germany.
| | - Alexander V Kabanov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119899, Russia.
| |
Collapse
|
41
|
Ferrari M, Onuoha SC, Pitzalis C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat Rev Rheumatol 2015; 11:328-37. [DOI: 10.1038/nrrheum.2015.17] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
|
42
|
Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM. A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 2015; 14:239-47. [PMID: 25598505 DOI: 10.1038/nrd4503] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
The primary goal of nanomedicine is to improve clinical outcomes. To this end, targeted nanoparticles are engineered to reduce non-productive distribution while improving diagnostic and therapeutic efficacy. Paradoxically, as this field has matured, the notion of targeting has been minimized to the concept of increasing the affinity of a nanoparticle for its target. This Opinion article outlines a holistic view of nanoparticle targeting, in which the route of administration, molecular characteristics and temporal control of the nanoparticles are potential design variables that must be considered simultaneously. This comprehensive vision for nanoparticle targeting will facilitate the integration of nanomedicines into clinical practice.
Collapse
Affiliation(s)
- Christopher J Cheng
- 1] Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA. Present address: Alexion Pharmaceuticals, Cheshire, Connecticut 06410, USA. [2]
| | - Gregory T Tietjen
- 1] Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA. [2]
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, USA
| |
Collapse
|
43
|
Wu Y, Zhou D, Qi Y, Xie Z, Chen X, Jing X, Huang Y. Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Adv 2015. [DOI: 10.1039/c5ra03423j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Schematic illustration of DOX loading, endocytosis and intracellular microenvironment triggered release from PRDSP@DOX NPs.
Collapse
Affiliation(s)
- Yanjuan Wu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Dongfang Zhou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yanxin Qi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
44
|
Yu H, Mei S, Zhao L, Zhao M, Wang Y, Zhu H, Wang Y, Wu J, Cui C, Xu W, Peng S. RGD-peptides modifying dexamethasone: to enhance the anti-inflammatory efficacy and limit the risk of osteoporosis. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00215j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
RGD-peptides modifying dexamethasone can enhance the anti-inflammatory efficacy and limit the risk of osteoporosis.
Collapse
Affiliation(s)
- Hualong Yu
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Shenghui Mei
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Li Zhao
- School of Life Science
- Jiangxi Normal University of Science and Technology
- Nanchang
- China
| | - Ming Zhao
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Yuji Wang
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Haimei Zhu
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Yaonan Wang
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Jianhui Wu
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Chunying Cui
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Wenyun Xu
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| | - Shiqi Peng
- Beijing area major laboratory of peptide and small molecular drugs
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China
- Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences
- of Capital Medical University
- Beijing 100069
| |
Collapse
|
45
|
Giorgi ME, Agusti R, de Lederkremer RM. Carbohydrate PEGylation, an approach to improve pharmacological potency. Beilstein J Org Chem 2014; 10:1433-44. [PMID: 24991298 PMCID: PMC4077506 DOI: 10.3762/bjoc.10.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2014] [Accepted: 05/26/2014] [Indexed: 12/18/2022] Open
Abstract
Conjugation with polyethylene glycol (PEG), known as PEGylation, has been widely used to improve the bioavailability of proteins and low molecular weight drugs. The covalent conjugation of PEG to the carbohydrate moiety of a protein has been mainly used to enhance the pharmacokinetic properties of the attached protein while yielding a more defined product. Thus, glycoPEGylation was successfully applied to the introduction of a PEGylated sialic acid to a preexisting or enzymatically linked glycan in a protein. Carbohydrates are now recognized as playing an important role in host–pathogen interactions in protozoal, bacterial and viral infections and are consequently candidates for chemotherapy. The short in vivo half-life of low molecular weight glycans hampered their use but methods for the covalent attachment of PEG have been less exploited. In this review, information on the preparation and application of PEG-carbohydrates, in particular multiarm PEGylation, is presented.
Collapse
Affiliation(s)
- M Eugenia Giorgi
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Rosalía Agusti
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Rosa M de Lederkremer
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
46
|
Zhou J, Lu W, Hu F, Zhang M, Jiang L, Shen Z. Synthesis and selective recognition toward zinc ion of chiral poly(imine-triazole). ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jinting Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Wei Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Fangyu Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Mengyu Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Liming Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
47
|
d'Arcy R, Tirelli N. Fishing for fire: strategies for biological targeting and criteria for material design in anti-inflammatory therapies. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Affiliation(s)
- Richard d'Arcy
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
| | - Nicola Tirelli
- School of Medicine/Institute of Inflammation and Repair; University of Manchester; Manchester M13 9PT UK
- School of Materials; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
48
|
Wu Y, Kuang H, Xie Z, Chen X, Jing X, Huang Y. Novel hydroxyl-containing reduction-responsive pseudo-poly(aminoacid) via click polymerization as an efficient drug carrier. Polym Chem 2014. [DOI: 10.1039/c4py00227j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
|
49
|
Urbańska J, Karewicz A, Nowakowska M. Polymeric delivery systems for dexamethasone. Life Sci 2013; 96:1-6. [PMID: 24373835 DOI: 10.1016/j.lfs.2013.12.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2013] [Revised: 11/25/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022]
Abstract
Glucocorticoids (GCs) are broadly used in the treatment of inflammation and in suppressing hyperactivity of the immune system expressed in allergies, asthma, autoimmune diseases and sepsis. They are pleiotropic in nature, showing a wide range of diverse effects, including those which are harmful for the organism. Dexamethasone (DEX) is one of the most frequently used GCs and is considered as one of the safest. Still serious side-effects have been observed for this drug, mostly due to its hydrophobicity and low bioavailability. The potentially promising polymeric carrier systems to deliver DEX effectively are revised.
Collapse
Affiliation(s)
- Justyna Urbańska
- Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| | - Anna Karewicz
- Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland.
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, 30-060 Kraków, Ingardena 3, Poland
| |
Collapse
|
50
|
Ma D, Zhang HB, Chen YY, Lin JT, Zhang LM. New cyclodextrin derivative containing poly(L-lysine) dendrons for gene and drug co-delivery. J Colloid Interface Sci 2013; 405:305-11. [DOI: 10.1016/j.jcis.2013.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 01/02/2023]
|