1
|
Maeda N, Aoki D, Fujiyasu S, Matsushita Y, Yoshida M, Hiraide H, Mitsuda H, Tobimatsu Y, Fukushima K. The distribution of monolignol glucosides coincides with lignification during the formation of compression wood in Pinus thunbergii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39673723 DOI: 10.1111/tpj.17209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
The distributions of monolignol glucosides (MLGs) in compression and opposite woods of Pinus thunbergii were assessed using cryo-time-of-flight secondary ion mass spectrometry to investigate their involvement in lignification. p-Glucocoumaryl alcohol (PG) was identified in the region of the differentiating xylem adjacent to the cambial zone only in compression wood, whereas coniferin (CF) was similarly localized in both compression and opposite woods. Their distribution from the phloem to the xylem was evaluated by high-performance liquid chromatography (HPLC) using serial tangential sections. Variations in storage amounts of CF and PG in the stem of P. thunbergii agreed with lignification stages of the tracheid, supporting the idea that MLGs act as a storage and transportation form of lignin precursors. The imaging of monolignol (ML)-dependent active lignification sites using fluorescence-tagged MLs supported distinct distribution patterns of MLGs for lignification in compression and opposite woods. Methylation-thioacidolysis was applied to compression and opposite wood samples to examine the structural difference between the guaiacyl (G) and p-hydroxyphenyl (H) units in lignin. Most of the H units in compression wood were detected as lignin end groups via thioacidolysis. PG was detected in opposite wood by HPLC; however, the H unit was not detected by thioacidolysis. The differences in ML and MLG distributions, enzyme activity, and resultant lignin structures between the G and H units suggest the possibility of individual mechanisms regulating the heterogeneous structures of G and H unit in lignin.
Collapse
Affiliation(s)
- Naoki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Dan Aoki
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Syunya Fujiyasu
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yasuyuki Matsushita
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Masato Yoshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Hideto Hiraide
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Hayato Mitsuda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
2
|
Jeon HS, Jang E, Kim J, Kim SH, Lee MH, Nam MH, Tobimatsu Y, Park OK. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy 2023; 19:597-615. [PMID: 35652914 PMCID: PMC9851231 DOI: 10.1080/15548627.2022.2085496] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The evolutionary plant-pathogen arms race has equipped plants with the immune system that can defend against pathogens. Pattern-triggered immunity and effector-triggered immunity are two major branches of innate immunity that share immune responses, including oxidative bursts, transcriptional reprogramming, and cell wall modifications such as lignin deposition. In a previous study, we reported that lignin rapidly accumulates in pathogen-infected Arabidopsis leaves and acts as a mechanical barrier, spatially restricting pathogens and cell death. Lignin deposition into the cell wall is a three-step process: monolignol biosynthesis, transport, and polymerization. While monolignol biosynthesis and polymerization are relatively well understood, the mechanism of monolignol transport remains unclear. In this study, we show that macroautophagy/autophagy modulates pathogen-induced lignin formation. Lignification and other immune responses were impaired in autophagy-defective atg (autophagy-related) mutants. In microscopy analyses, monolignols formed punctate structures in response to pathogen infection and colocalized with autophagic vesicles. Furthermore, autophagic activity and lignin accumulation were both enhanced in dnd1 (defense, no death 1) mutant with elevated disease resistance but no cell death and crossing dnd1-1 with atg mutants resulted in a lignin deficit, further supporting that lignin formation requires autophagy. Collectively, these findings demonstrate that lignification, particularly monolignol transport, is achieved through autophagic membrane trafficking in plant immunity.Abbreviations: ABC transporter: ATP-binding cassette transporter; ACD2/AT4G37000: accelerated cell death 2; ATG: autophagy-related; C3'H/AT2G40890: p-coumaroyl shikimate 3-hydroxylase; C4H/AT2G30490: cinnamate 4-hydroxylase; CA: coniferyl alcohol; CaMV: cauliflower mosaic virus; CASP: Casparian strip membrane domain protein; CASPL: CASP-like protein; CBB: Coomassie Brilliant Blue; CCoAOMT1/AT4G34050: caffeoyl-CoA O-methyltransferase 1; CCR1/AT1G15950: cinnamoyl-CoA reductase 1; CFU: colony-forming unit; COMT1/AT5G54160: caffeic acid O-methyltransferase 1; Con A: concanamycin A; DMAC: dimethylaminocoumarin; DND1/AT5G15410: defense, no death 1; CNGC2: cyclic nucleotide-gated channel 2; ER: endoplasmic reticulum; ESB1/AT2G28670/DIR10: enhanced suberin 1; ETI: effector-triggered immunity; EV: extracellular vesicle; F5H/AT4G36220: ferulate-5-hydroxylase; Fluo-3 AM: Fluo-3 acetoxymethyl ester; GFP: green fluorescent protein; HCT/AT5G48930: p-hydroxycinnamoyl-CoA:quinate/shikimate p-hydroxycinnamoyltransferase; HR: hypersensitive response; LAC: laccase; LTG: LysoTracker Green; LSD1/AT4G200380: lesion stimulating disease 1; PAL1/AT2G37040: phenylalanine ammonia-lyase 1; PAMP: pathogen-associated molecular patterns; PCD: programmed cell death; PE: phosphatidylethanolamine; PRX: peroxidase; Pst DC3000: Pseudomonas syringe pv. tomato DC3000; PTI: pattern-triggered immunity; SA: salicylic acid; SD: standard deviation; SID2/AT1G7410: SA induction-deficient 2; UGT: UDP-glucosyltransferase; UPLC: ultraperformance liquid chromatography; UPS: unconventional protein secretion; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Hwi Seong Jeon
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Eunjeong Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Seu Ha Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | | | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Ohkmae K. Park
- Department of Life Sciences, Korea University, Seoul, Korea,CONTACT Ohkmae K. Park Department of Life Sciences, Korea University, Seoul02841, Korea
| |
Collapse
|
3
|
Humic-like crop stimulatory activities of coffee waste induced by incorporation of phytotoxic phenols in melanoidins during coffee roasting: Linking the Maillard reaction to humification. Food Res Int 2022; 162:112013. [DOI: 10.1016/j.foodres.2022.112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
4
|
Maceda A, Terrazas T. Fluorescence Microscopy Methods for the Analysis and Characterization of Lignin. Polymers (Basel) 2022; 14:961. [PMID: 35267784 PMCID: PMC8912355 DOI: 10.3390/polym14050961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Lignin is one of the most studied and analyzed materials due to its importance in cell structure and in lignocellulosic biomass. Because lignin exhibits autofluorescence, methods have been developed that allow it to be analyzed and characterized directly in plant tissue and in samples of lignocellulose fibers. Compared to destructive and costly analytical techniques, fluorescence microscopy presents suitable alternatives for the analysis of lignin autofluorescence. Therefore, this review article analyzes the different methods that exist and that have focused specifically on the study of lignin because with the revised methods, lignin is characterized efficiently and in a short time. The existing qualitative methods are Epifluorescence and Confocal Laser Scanning Microscopy; however, other semi-qualitative methods have been developed that allow fluorescence measurements and to quantify the differences in the structural composition of lignin. The methods are fluorescence lifetime spectroscopy, two-photon microscopy, Föster resonance energy transfer, fluorescence recovery after photobleaching, total internal reflection fluorescence, and stimulated emission depletion. With these methods, it is possible to analyze the transport and polymerization of lignin monomers, distribution of lignin of the syringyl or guaiacyl type in the tissues of various plant species, and changes in the degradation of wood by pulping and biopulping treatments as well as identify the purity of cellulose nanofibers though lignocellulosic biomass.
Collapse
Affiliation(s)
- Agustín Maceda
- Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Texcoco 56230, Mexico;
| | - Teresa Terrazas
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| |
Collapse
|
5
|
Hiraide H, Tobimatsu Y, Yoshinaga A, Lam PY, Kobayashi M, Matsushita Y, Fukushima K, Takabe K. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. THE NEW PHYTOLOGIST 2021; 230:2186-2199. [PMID: 33570753 PMCID: PMC8252379 DOI: 10.1111/nph.17264] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/03/2021] [Indexed: 05/26/2023]
Abstract
The woody stems of coniferous gymnosperms produce specialised compression wood to adjust the stem growth orientation in response to gravitropic stimulation. During this process, tracheids develop a compression-wood-specific S2 L cell wall layer with lignins highly enriched with p-hydroxyphenyl (H)-type units derived from H-type monolignol, whereas lignins produced in the cell walls of normal wood tracheids are exclusively composed of guaiacyl (G)-type units from G-type monolignol with a trace amount of H-type units. We show that laccases, a class of lignin polymerisation enzymes, play a crucial role in the spatially organised polymerisation of H-type and G-type monolignols during compression wood formation in Japanese cypress (Chamaecyparis obtusa). We performed a series of chemical-probe-aided imaging analysis on C. obtusa compression wood cell walls, together with gene expression, protein localisation and enzymatic assays of C. obtusa laccases. Our data indicated that CoLac1 and CoLac3 with differential oxidation activities towards H-type and G-type monolignols were precisely localised to distinct cell wall layers in which H-type and G-type lignin units were preferentially produced during the development of compression wood tracheids. We propose that, not only the spatial localisation of laccases, but also their biochemical characteristics dictate the spatial patterning of lignin polymerisation in gymnosperm compression wood.
Collapse
Affiliation(s)
- Hideto Hiraide
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Arata Yoshinaga
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Pui Ying Lam
- Research Institute for Sustainable HumanosphereKyoto UniversityGokasho, Uji611‐0011Japan
| | - Masaru Kobayashi
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Kazuhiko Fukushima
- Graduate School of Bioagricultural SciencesNagoya UniversityFuro‐choNagoya464‐8601Japan
| | - Keiji Takabe
- Graduate School of AgricultureKyoto UniversityKitashirakawa‐oiwakechoKyoto606‐8502Japan
| |
Collapse
|
6
|
Lahive CW, Kamer PCJ, Lancefield CS, Deuss PJ. An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. CHEMSUSCHEM 2020; 13:4238-4265. [PMID: 32510817 PMCID: PMC7540175 DOI: 10.1002/cssc.202000989] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 05/31/2023]
Abstract
The development of fundamentally new valorization strategies for lignin plays a vital role in unlocking the true potential of lignocellulosic biomass as sustainable and economically compatible renewable carbon feedstock. In particular, new catalytic modification and depolymerization strategies are required. Progress in this field, past and future, relies for a large part on the application of synthetic model compounds that reduce the complexity of working with the lignin biopolymer. This aids the development of catalytic methodologies and in-depth mechanistic studies and guides structural characterization studies in the lignin field. However, due to the volume of literature and the piecemeal publication of methodology, the choice of suitable lignin model compounds is far from straight forward, especially for those outside the field and lacking a background in organic synthesis. For example, in catalytic depolymerization studies, a balance between synthetic effort and fidelity compared to the actual lignin of interest needs to be found. In this Review, we provide a broad overview of the model compounds available to study the chemistry of the main native linking motifs typically found in lignins from woody biomass, the synthetic routes and effort required to access them, and discuss to what extent these represent actual lignin structures. This overview can aid researchers in their selection of the most suitable lignin model systems for the development of emerging lignin modification and depolymerization technologies, maximizing their chances of successfully developing novel lignin valorization strategies.
Collapse
Affiliation(s)
- Ciaran W. Lahive
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Paul C. J. Kamer
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
- Leibniz-Institut für Katalyse e.V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Christopher S. Lancefield
- School of Chemistry and Biomedical Science Research ComplexUniversity of St. Andrews and EaStCHEMNorth HaughSt. AndrewsFifeKY16 9STUnited Kingdom
| | - Peter J. Deuss
- Department of Chemical Engineering (ENTEG)University of GroningenNijenborgh 49747 AGGroningenNetherlands
| |
Collapse
|
7
|
Xue Y, Qiu X, Ouyang X. Insights into the effect of aggregation on lignin fluorescence and its application for microstructure analysis. Int J Biol Macromol 2020; 154:981-988. [DOI: 10.1016/j.ijbiomac.2020.03.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 11/29/2022]
|
8
|
Lee M, Jeon HS, Kim SH, Chung JH, Roppolo D, Lee H, Cho HJ, Tobimatsu Y, Ralph J, Park OK. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO J 2019; 38:e101948. [PMID: 31559647 PMCID: PMC6885736 DOI: 10.15252/embj.2019101948] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/10/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pathogenic bacteria invade plant tissues and proliferate in the extracellular space. Plants have evolved the immune system to recognize and limit the growth of pathogens. Despite substantial progress in the study of plant immunity, the mechanism by which plants limit pathogen growth remains unclear. Here, we show that lignin accumulates in Arabidopsis leaves in response to incompatible interactions with bacterial pathogens in a manner dependent on Casparian strip membrane domain protein (CASP)-like proteins (CASPLs). CASPs are known to be the organizers of the lignin-based Casparian strip, which functions as a diffusion barrier in roots. The spread of invading avirulent pathogens is prevented by spatial restriction, which is disturbed by defects in lignin deposition. Moreover, the motility of pathogenic bacteria is negatively affected by lignin accumulation. These results suggest that the lignin-deposited structure functions as a physical barrier similar to the Casparian strip, trapping pathogens and thereby terminating their growth.
Collapse
Affiliation(s)
| | | | - Seu Ha Kim
- Department of Life SciencesKorea UniversitySeoulKorea
| | | | - Daniele Roppolo
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
European Society for Clinical Microbiology and Infectious DiseaseBaselSwitzerland
| | - Hye‐Jung Lee
- Department of Life SciencesKorea UniversitySeoulKorea
| | - Hong Joo Cho
- Department of Life SciencesKorea UniversitySeoulKorea
- Present address:
Cutigen Research InstituteTegoscience Inc.SeoulKorea
| | - Yuki Tobimatsu
- Research Institute for Sustainable HumanosphereKyoto UniversityUjiKyotoJapan
| | - John Ralph
- Department of Biochemistry, and US Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of WisconsinMadisonWIUSA
| | - Ohkmae K Park
- Department of Life SciencesKorea UniversitySeoulKorea
| |
Collapse
|
9
|
Lam PY, Lui ACW, Yamamura M, Wang L, Takeda Y, Suzuki S, Liu H, Zhu FY, Chen MX, Zhang J, Umezawa T, Tobimatsu Y, Lo C. Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses. THE NEW PHYTOLOGIST 2019; 223:204-219. [PMID: 30883799 DOI: 10.1111/nph.15795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/08/2019] [Indexed: 05/19/2023]
Abstract
In rice (Oryza sativa), OsF2H and OsFNSII direct flavanones to independent pathways that form soluble flavone C-glycosides and tricin-type metabolites (both soluble and lignin-bound), respectively. Production of soluble tricin metabolites requires CYP75B4 as a chrysoeriol 5'-hydroxylase. Meanwhile, the close homologue CYP75B3 is a canonical flavonoid 3'-hydroxylase (F3'H). However, their precise roles in the biosynthesis of soluble flavone C-glycosides and tricin-lignins in cell walls remain unknown. We examined CYP75B3 and CYP75B4 expression in vegetative tissues, analyzed extractable flavonoid profiles, cell wall structure and digestibility of their mutants, and investigated catalytic activities of CYP75B4 orthologues in grasses. CYP75B3 and CYP75B4 showed co-expression patterns with OsF2H and OsFNSII, respectively. CYP75B3 is the sole F3'H in flavone C-glycosides biosynthesis, whereas CYP75B4 alone provides sufficient 3',5'-hydroxylation for tricin-lignin deposition. CYP75B4 mutation results in production of apigenin-incorporated lignin and enhancement of cell wall digestibility. Moreover, tricin pathway-specific 3',5'-hydroxylation activities are conserved in sorghum CYP75B97 and switchgrass CYP75B11. CYP75B3 and CYP75B4 represent two different pathway-specific enzymes recruited together with OsF2H and OsFNSII, respectively. Interestingly, the OsF2H-CYP75B3 and OsFNSII-CYP75B4 pairs appear to be conserved in grasses. Finally, manipulation of tricin biosynthesis through CYP75B4 orthologues can be a promising strategy to improve digestibility of grass biomass for biofuel and biomaterial production.
Collapse
Affiliation(s)
- Pui Ying Lam
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Masaomi Yamamura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lanxiang Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yuri Takeda
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Hongjia Liu
- The State Key Laboratory Breeding Base for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Mo-Xian Chen
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Research Unit for Global Sustainability Studies, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
10
|
Pesquet E, Wagner A, Grabber JH. Cell culture systems: invaluable tools to investigate lignin formation and cell wall properties. Curr Opin Biotechnol 2019; 56:215-222. [DOI: 10.1016/j.copbio.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/22/2019] [Accepted: 02/01/2019] [Indexed: 12/20/2022]
|
11
|
Anderson CT. Finding order in a bustling construction zone: quantitative imaging and analysis of cell wall assembly in plants. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:62-67. [PMID: 30107305 DOI: 10.1016/j.pbi.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Assembly of polysaccharide-based walls by plant cells involves the rapid synthesis, trafficking, and deposition of complex biopolymers, but how these events are controlled and coordinated to achieve a strong, resilient extracellular matrix has remained obscure for decades. Recent quantitative analyses of fluorescence microscopy data have revealed details of the trafficking and synthetic activity of cellulose synthases, and new methods for labeling matrix polymers have unveiled aspects of their regulated deposition in the wall. Detailed studies of the identity, architecture, activity, and trafficking of the proteins and protein complexes that synthesize wall polymers, combined with advances in image acquisition and analysis, will aid future efforts to dissect wall assembly.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Rydahl MG, Hansen AR, Kračun SK, Mravec J. Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes. FRONTIERS IN PLANT SCIENCE 2018; 9:581. [PMID: 29774041 PMCID: PMC5943554 DOI: 10.3389/fpls.2018.00581] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced-mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new "compartments" to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field.
Collapse
Affiliation(s)
- Maja G. Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aleksander R. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stjepan K. Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- GlycoSpot IVS, Frederiksberg, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Jozef Mravec
| |
Collapse
|
13
|
Lion C, Simon C, Huss B, Blervacq AS, Tirot L, Toybou D, Spriet C, Slomianny C, Guerardel Y, Hawkins S, Biot C. BLISS: A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants. Cell Chem Biol 2017; 24:326-338. [DOI: 10.1016/j.chembiol.2017.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 01/11/2023]
|
14
|
Pandey JL, Kiemle SN, Richard TL, Zhu Y, Cosgrove DJ, Anderson CT. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems. FRONTIERS IN PLANT SCIENCE 2016; 7:1309. [PMID: 27630649 PMCID: PMC5005335 DOI: 10.3389/fpls.2016.01309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/16/2016] [Indexed: 05/29/2023]
Abstract
Lignin is a key structural component of plant cell walls that provides rigidity, strength, and resistance against microbial attacks. This hydrophobic polymer also serves a crucial role in water transport. Despite its abundance and essential functions, several aspects of lignin biosynthesis and deposition remain cryptic. Lignin precursors are known to be synthesized in the cytoplasm by complex biosynthetic pathways, after which they are transported to the apoplastic space, where they are polymerized via free radical coupling reactions into polymeric lignin. However, the lignin deposition process and the factors controlling it are unclear. In this study, the biochemical and developmental dependencies of lignification were investigated using a click-compatible monolignol analog, 3-O-propargylcaffeyl alcohol (3-OPC), which can incorporate into both in vitro polymerized lignin and Arabidopsis thaliana tissues. Fluorescence labeling of 3-OPC using click chemistry followed by confocal fluorescence microscopy enabled the detection and imaging of 3-OPC incorporation patterns. These patterns were consistent with endogenous lignification observed in different developmental stages of Arabidopsis stems. However, the concentration of supplied monolignols influenced where lignification occurred at the subcellular level, with low concentrations being deposited in cell corners and middle lamellae and high concentrations also being deposited in secondary walls. Experimental inhibition of multiple lignification factors confirmed that 3-OPC incorporation proceeds via a free radical coupling mechanism involving peroxidases/laccases and reactive oxygen species (ROS). Finally, the presence of peroxide-producing enzymes determined which cell walls lignified: adding exogenous peroxide and peroxidase caused cells that do not naturally lignify in Arabidopsis stems to lignify. In summary, 3-OPC accurately mimics natural lignification patterns in different developmental stages of Arabidopsis stems and allows for the dissection of key biochemical and enzymatic factors controlling lignification.
Collapse
Affiliation(s)
- Jyotsna L. Pandey
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University ParkPA, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
| | - Sarah N. Kiemle
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| | - Tom L. Richard
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University ParkPA, USA
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
| | - Yimin Zhu
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Chemistry, Altoona College, The Pennsylvania State University, AltoonaPA, USA
| | - Daniel J. Cosgrove
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| | - Charles T. Anderson
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University ParkPA, USA
- Department of Biology, The Pennsylvania State University, University ParkPA, USA
| |
Collapse
|
15
|
Whitehill JGA, Henderson H, Schuetz M, Skyba O, Yuen MMS, King J, Samuels AL, Mansfield SD, Bohlmann J. Histology and cell wall biochemistry of stone cells in the physical defence of conifers against insects. PLANT, CELL & ENVIRONMENT 2016; 39:1646-1661. [PMID: 26474726 DOI: 10.1111/pce.12654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Conifers possess an array of physical and chemical defences against stem-boring insects. Stone cells provide a physical defence associated with resistance against bark beetles and weevils. In Sitka spruce (Picea sitchensis), abundance of stone cells in the cortex of apical shoots is positively correlated with resistance to white pine weevil (Pissodes strobi). We identified histological, biochemical and molecular differences in the stone cell phenotype of weevil resistant (R) or susceptible (S) Sitka spruce genotypes. R trees displayed significantly higher quantities of cortical stone cells near the apical shoot node, the primary site for weevil feeding. Lignin, cellulose, xylan and mannan were the most abundant components of stone cell secondary walls, respectively. Lignin composition of stone cells isolated from R trees contained a higher percentage of G-lignin compared with S trees. Transcript profiling revealed higher transcript abundance in the R genotype of coumarate 3-hydroxylase, a key monolignol biosynthetic gene. Developing stone cells in current year apical shoots incorporated fluorescent-tagged monolignol into the secondary cell wall, while mature stone cells of previous year apical shoots did not. Stone cell development is an ephemeral process, and fortification of shoot tips in R trees is an effective strategy against insect feeding.
Collapse
Affiliation(s)
- Justin G A Whitehill
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Hannah Henderson
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Mathias Schuetz
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| | - Oleksandr Skyba
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Macaire Man Saint Yuen
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
| | - John King
- British Columbia Ministry of Forests, Lands, and Natural Resource Operations, Victoria, BC, Canada, V8W 9C2
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, Canada, V6T 1Z4
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
16
|
A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls. PLoS One 2015; 10:e0121334. [PMID: 25884205 PMCID: PMC4401456 DOI: 10.1371/journal.pone.0121334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/10/2015] [Indexed: 02/01/2023] Open
Abstract
Lignin plays important structural and functional roles in plants by forming a hydrophobic matrix in secondary cell walls that enhances mechanical strength and resists microbial decay. While the importance of the lignin matrix is well documented and the biosynthetic pathways for monolignols are known, the process by which lignin precursors or monolignols are transported and polymerized to form this matrix remains a subject of considerable debate. In this study, we have synthesized and tested an analog of coniferyl alcohol that has been modified to contain an ethynyl group at the C-3 position. This modification enables fluorescent tagging and imaging of this molecule after its incorporation into plant tissue by click chemistry-assisted covalent labeling with a fluorescent azide dye, and confers a distinct Raman signature that could be used for Raman imaging. We found that this monolignol analog is incorporated into in vitro-polymerized dehydrogenation polymer (DHP) lignin and into root epidermal cell walls of 4-day-old Arabidopsis seedlings. Incorporation of the analog in stem sections of 6-week-old Arabidopsis thaliana plants and labeling with an Alexa-594 azide dye revealed the precise locations of new lignin polymerization. Results from this study indicate that this molecule can provide high-resolution localization of lignification during plant cell wall maturation and lignin matrix assembly.
Collapse
|
17
|
Bukowski N, Pandey JL, Doyle L, Richard TL, Anderson CT, Zhu Y. Development of a clickable designer monolignol for interrogation of lignification in plant cell walls. Bioconjug Chem 2014; 25:2189-96. [PMID: 25405515 DOI: 10.1021/bc500411u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lignin is an abundant and essential polymer in land plants. It is a prime factor in the recalcitrance of lignocellulosic biomass to agricultural and industrial end-uses such as forage, pulp and papermaking, and biofuels. To better understand lignification at the molecular level, we are developing a lignin spectroscopic and imaging toolbox on one "negligible" auxiliary. Toward that end, we describe the design, synthesis, and characterization of a new designer monolignol, 3-O-propargylcaffeyl alcohol, which contains a bioorthogonal alkynyl functional group at the 3-O-position. Importantly, our data indicate that this monolignol does not alter the fidelity of lignification. We demonstrate that the designer monolignol provides a platform for multiple spectroscopic and imaging approaches to reveal temporal and spatial details of lignification, the knowledge of which is critical to reap the potential of energy-rich renewable plant biomass for sustainable liquid fuels and other diverse economic applications.
Collapse
Affiliation(s)
- Natalie Bukowski
- Department of Chemistry, Altoona College, The Pennsylvania State University , Altoona, Pennsylvania 16601, United States
| | | | | | | | | | | |
Collapse
|
18
|
Lignin bioengineering. Curr Opin Biotechnol 2014; 26:189-98. [DOI: 10.1016/j.copbio.2014.01.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/24/2013] [Accepted: 01/06/2014] [Indexed: 01/08/2023]
|
19
|
Tobimatsu Y, Wouwer DVD, Allen E, Kumpf R, Vanholme B, Boerjan W, Ralph J. A click chemistry strategy for visualization of plant cell wall lignification. Chem Commun (Camb) 2014; 50:12262-5. [DOI: 10.1039/c4cc04692g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Monolignol mimics bearing chemical reporter tags and bioorthogonal click chemistry were commissioned to visualize plant cell wall lignins in vivo.
Collapse
Affiliation(s)
- Yuki Tobimatsu
- Department of Biochemistry and the US Department of Energy's Great Lakes Bioenergy Research Center (GLBRC)
- the Wisconsin Energy Institute
- University of Wisconsin
- Madison, USA
| | - Dorien Van de Wouwer
- Department of Plant Systems Biology
- VIB
- Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics
- Ghent University
| | - Eric Allen
- Department of Biochemistry and the US Department of Energy's Great Lakes Bioenergy Research Center (GLBRC)
- the Wisconsin Energy Institute
- University of Wisconsin
- Madison, USA
| | - Robert Kumpf
- Department of Plant Systems Biology
- VIB
- Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics
- Ghent University
| | - Bartel Vanholme
- Department of Plant Systems Biology
- VIB
- Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics
- Ghent University
| | - Wout Boerjan
- Department of Plant Systems Biology
- VIB
- Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics
- Ghent University
| | - John Ralph
- Department of Biochemistry and the US Department of Energy's Great Lakes Bioenergy Research Center (GLBRC)
- the Wisconsin Energy Institute
- University of Wisconsin
- Madison, USA
| |
Collapse
|
20
|
Tobimatsu Y, Wagner A, Donaldson L, Mitra P, Niculaes C, Dima O, Kim JI, Anderson N, Loque D, Boerjan W, Chapple C, Ralph J. Visualization of plant cell wall lignification using fluorescence-tagged monolignols. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:357-66. [PMID: 23889038 PMCID: PMC4238399 DOI: 10.1111/tpj.12299] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/19/2013] [Accepted: 07/18/2013] [Indexed: 05/15/2023]
Abstract
Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.
Collapse
Affiliation(s)
- Yuki Tobimatsu
- Department of Biochemistry and the US Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC), the Wisconsin Energy Institute, University of Wisconsin1552 University Avenue, Madison, WI, 53726, USA
- *For correspondence (e-mails ; )
| | | | | | - Prajakta Mitra
- The US Department of Energy’s Joint BioEnergy Institute (JBEI), Physical Bioscience Division, Lawrence Berkeley National Laboratory5885 Hollis St, Emeryville, CA, 94608, USA
| | - Claudiu Niculaes
- Department of Plant Systems Biology, VIBTechnologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityTechnologiepark 927, B-9052 Gent, Belgium
| | - Oana Dima
- Department of Plant Systems Biology, VIBTechnologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityTechnologiepark 927, B-9052 Gent, Belgium
| | - Jeong Im Kim
- Department of Biochemistry, Purdue University175 South University Street, West Lafayette, IN, 47907, USA
| | - Nickolas Anderson
- Department of Biochemistry, Purdue University175 South University Street, West Lafayette, IN, 47907, USA
| | - Dominique Loque
- The US Department of Energy’s Joint BioEnergy Institute (JBEI), Physical Bioscience Division, Lawrence Berkeley National Laboratory5885 Hollis St, Emeryville, CA, 94608, USA
| | - Wout Boerjan
- Department of Plant Systems Biology, VIBTechnologiepark 927, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityTechnologiepark 927, B-9052 Gent, Belgium
| | - Clint Chapple
- Department of Biochemistry, Purdue University175 South University Street, West Lafayette, IN, 47907, USA
| | - John Ralph
- Department of Biochemistry and the US Department of Energy’s Great Lakes Bioenergy Research Center (GLBRC), the Wisconsin Energy Institute, University of Wisconsin1552 University Avenue, Madison, WI, 53726, USA
- *For correspondence (e-mails ; )
| |
Collapse
|
21
|
Elumalai S, Tobimatsu Y, Grabber JH, Pan X, Ralph J. Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:59. [PMID: 22889353 PMCID: PMC3477100 DOI: 10.1186/1754-6834-5-59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/06/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Lignin is an integral component of the plant cell wall matrix but impedes the conversion of biomass into biofuels. The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as flavonoids into cell wall lignins that are consequently less recalcitrant to biomass processing. In the present study, epigallocatechin gallate (EGCG) was evaluated as a potential lignin bioengineering target for rendering biomass more amenable to processing for biofuel production. RESULTS In vitro peroxidase-catalyzed polymerization experiments revealed that both gallate and pyrogallyl (B-ring) moieties in EGCG underwent radical cross-coupling with monolignols mainly by β-O-4-type cross-coupling, producing benzodioxane units following rearomatization reactions. Biomimetic lignification of maize cell walls with a 3:1 molar ratio of monolignols and EGCG permitted extensive alkaline delignification of cell walls (72 to 92%) that far exceeded that for lignified controls (44 to 62%). Alkali-insoluble residues from EGCG-lignified walls yielded up to 34% more glucose and total sugars following enzymatic saccharification than lignified controls. CONCLUSIONS It was found that EGCG readily copolymerized with monolignols to become integrally cross-coupled into cell wall lignins, where it greatly enhanced alkaline delignification and subsequent enzymatic saccharification. Improved delignification may be attributed to internal trapping of quinone-methide intermediates to prevent benzyl ether cross-linking of lignin to structural polysaccharides during lignification, and to the cleavage of ester intra-unit linkages within EGCG during pretreatment. Overall, our results suggest that apoplastic deposition of EGCG for incorporation into lignin would be a promising plant genetic engineering target for improving the delignification and saccharification of biomass crops.
Collapse
Affiliation(s)
- Sasikumar Elumalai
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA
| | - Yuki Tobimatsu
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
| | - John H Grabber
- U.S. Dairy Forage Research Center, USDA-Agricultural Research Service, 1925 Linden Drive West, Madison, WI, 53706, USA
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA
| | - John Ralph
- Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA
- DOE Great Lakes Bioenergy Research Center, and Wisconsin Bioenergy Initiative, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Progress in the biological synthesis of the plant cell wall: new ideas for improving biomass for bioenergy. Curr Opin Biotechnol 2012; 23:330-7. [DOI: 10.1016/j.copbio.2011.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 12/26/2022]
|
23
|
Tobimatsu Y, Elumalai S, Grabber JH, Davidson CL, Pan X, Ralph J. Hydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid. CHEMSUSCHEM 2012; 5:676-86. [PMID: 22359379 DOI: 10.1002/cssc.201100573] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Indexed: 05/19/2023]
Abstract
The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers, such as rosmarinic acid (RA) and analogous catechol derivatives, into cell-wall lignins that are consequently less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that RA readily underwent peroxidase-catalyzed copolymerization with monolignols and lignin oligomers to form polymers with new benzodioxane inter-unit linkages. Incorporation of RA permitted extensive depolymerization of synthetic lignins by mild alkaline hydrolysis, presumably by cleavage of ester intra-unit linkages within RA. Copolymerization of RA with monolignols into maize cell walls by in situ peroxidases significantly enhanced alkaline lignin extractability and promoted subsequent cell wall saccharification by fungal enzymes. Incorporating RA also improved cell wall saccharification by fungal enzymes and by rumen microflora even without alkaline pretreatments, possibly by modulating lignin hydrophobicity and/or limiting cell wall cross-linking. Consequently, we anticipate that bioengineering approaches for partial monolignol substitution with RA and analogous plant hydroxycinnamates would permit more efficient utilization of plant fiber for biofuels or livestock production.
Collapse
Affiliation(s)
- Yuki Tobimatsu
- Department of Biochemistry, University of Wisconsin-Madison, Enzyme Institute, Madison, Wisconsin 53726, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Lignins are complex phenylpropanoid polymers mostly associated with plant secondary cell walls. Lignins arise primarily via oxidative polymerization of the three monolignols, p-coumaryl, coniferyl, and sinapyl alcohols. Of the two hydroxycinnamyl alcohols that represent incompletely methylated biosynthetic products (and are not usually considered to be monolignols), 5-hydroxyconiferyl alcohol is now well established as incorporating into angiosperm lignins, but incorporation of caffeyl alcohol has not been shown. We report here the presence of a homopolymer of caffeyl alcohol in the seed coats of both monocot and dicot plants. This polymer (C-lignin) is deposited to high concentrations in the seed coat during the early stages of seed development in the vanilla orchid (Vanilla planifolia), and in several members of the Cactaceae. The lignin in other parts of the Vanilla plant is conventionally biosynthesized from coniferyl and sinapyl alcohols. Some species of cacti contain only C-lignin in their seeds, whereas others contain only classical guaiacyl/syringyl lignin (derived from coniferyl and sinapyl alcohols). NMR spectroscopic analysis revealed that the Vanilla seed-coat polymer was massively comprised of benzodioxane units and was structurally similar to the polymer synthesized in vitro by peroxidase-catalyzed polymerization of caffeyl alcohol. CD spectroscopy did not detect any optical activity in the seed polymer. These data support the contention that the C-lignin polymer is produced in vivo via combinatorial oxidative radical coupling that is under simple chemical control, a mechanism analogous to that theorized for classical lignin biosynthesis.
Collapse
|