1
|
Marchena M, Lambert E, Bogdanović B, Quadir F, Neri-Cruz CE, Luo J, Nadal C, Migliorini E, Gautrot JE. BMP-Binding Polysulfonate Brushes to Control Growth Factor Presentation and Regulate Matrix Remodelling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40455-40468. [PMID: 39072446 PMCID: PMC11310902 DOI: 10.1021/acsami.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Bone morphogenetic proteins (BMPs) are important targets to incorporate in biomaterial scaffolds to orchestrate tissue repair. Glycosaminoglycans (GAGs) such as heparin allow the capture of BMPs and their retention at the surface of biomaterials at safe concentrations. Although heparin has strong affinities for BMP2 and BMP4, two important types of growth factors regulating bone and tissue repair, it remains difficult to embed stably at the surface of a broad range of biomaterials and degrades rapidly in vitro and in vivo. In this report, biomimetic poly(sulfopropyl methacrylate) (PSPMA) brushes are proposed as sulfated GAG mimetic interfaces for the stable capture of BMPs. The growth of PSPMA brushes via a surface-initiated activator regenerated by electron transfer polymerization is investigated via ellipsometry, prior to characterization of swelling and surface chemistry via X-ray photoelectron spectroscopy and Fourier transform infrared. The capacity of PSPMA brushes to bind BMP2 and BMP4 is then characterized via surface plasmon resonance. BMP2 is found to anchor particularly stably and at high density at the surface of PSPMA brushes, and a strong impact of the brush architecture on binding capacity is observed. These results are further confirmed using a quartz crystal microbalance with dissipation monitoring, providing some insights into the mode of adsorption of BMPs at the surface of PSPMA brushes. Primary adsorption of BMP2, with relatively little infiltration, is observed on thick dense brushes, implying that this growth factor should be accessible for further binding of corresponding cell membrane receptors. Finally, to demonstrate the impact of PSPMA brushes for BMP2 capture, dermal fibroblasts were then cultured at the surface of functionalized PSPMA brushes. The presence of BMP2 and the architecture of the brush are found to have a significant impact on matrix deposition at the corresponding interfaces. Therefore, PSPMA brushes emerge as attractive coatings for scaffold engineering and stable capture of BMP2 for regenerative medicine applications.
Collapse
Affiliation(s)
- Metzli
Hernandez Marchena
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Lambert
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Bojana Bogdanović
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Fauzia Quadir
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Carlos E. Neri-Cruz
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Jiajun Luo
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Clemence Nadal
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| | - Elisa Migliorini
- University
Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, 17 Av des Martyrs, Grenoble 38000, France
| | - Julien E. Gautrot
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, U.K.
| |
Collapse
|
2
|
Somarathne RP, Amarasekara DL, Kariyawasam CS, Robertson HA, Mayatt R, Gwaltney SR, Fitzkee NC. Protein Binding Leads to Reduced Stability and Solvated Disorder in the Polystyrene Nanoparticle Corona. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305684. [PMID: 38247186 PMCID: PMC11209821 DOI: 10.1002/smll.202305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, a model is developed for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, it is found that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, supports a highly solvated, disordered protein corona anchored at a small number of attachment sites. The scaling of the stoichiometry versus nanoparticle size is consistent with disordered polymer dimensions. Moreover, it is found that proteins are destabilized less in the presence of larger nanoparticles, and hydrophobic exposure decreases at lower curvatures. The observations hold for proteins on flat polystyrene surfaces, which have the lowest hydrophobic exposure. The model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.
Collapse
Affiliation(s)
- Radha P Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dhanush L Amarasekara
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Harley A Robertson
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Steven R Gwaltney
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| |
Collapse
|
3
|
Popova TO, Zhulina EB, Borisov OV. Interaction of Polyanionic and Polycationic Brushes with Globular Proteins and Protein-like Nanocolloids. Biomimetics (Basel) 2023; 8:597. [PMID: 38132536 PMCID: PMC10741738 DOI: 10.3390/biomimetics8080597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
A large number of experimental studies have demonstrated that globular proteins can be absorbed from the solution by both polycationic and polyanionic brushes when the net charge of protein globules is of the same or of the opposite sign with respect to that of brush-forming polyelectrolyte chains. Here, we overview the results of experimental studies on interactions between globular proteins and polycationic or polyanionic brushes, and present a self-consistent field theoretical model that allows us to account for the asymmetry of interactions of protein-like nanocolloid particles comprising weak (pH-sensitive) cationic and anionic groups with a positively or negatively charged polyelectrolyte brush. The position-dependent insertion free energy and the net charge of the particle are calculated. The theoretical model predicts that if the numbers of cationic and anionic ionizable groups of the protein are approximately equal, then the interaction patterns for both cationic and anionic brushes at equal offset on the "wrong side" from the isoelectric point (IEP), i.e., when the particle and the brush charge are of the same sign, are similar. An essential asymmetry in interactions of particles with polycationic and polyanionic brushes is predicted when fractions of cationic and anionic groups differ significantly. That is, at a pH above IEP, the anionic brush better absorbs negatively charged particles with a larger fraction of ionizable cationic groups and vice versa.
Collapse
Affiliation(s)
- Tatiana O. Popova
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Oleg V. Borisov
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
- CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, 64053 Pau, France
| |
Collapse
|
4
|
Somarathne RP, Amarasekara DL, Kariyawasam CS, Robertson HA, Mayatt R, Fitzkee NC. Protein Binding Leads to Reduced Stability and Solvated Disorder in the Polystyrene Nanoparticle Corona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548033. [PMID: 37461509 PMCID: PMC10350082 DOI: 10.1101/2023.07.06.548033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Understanding the conformation of proteins in the nanoparticle corona has important implications in how organisms respond to nanoparticle-based drugs. These proteins coat the nanoparticle surface, and their properties will influence the nanoparticle's interaction with cell targets and the immune system. While some coronas are thought to be disordered, two key unanswered questions are the degree of disorder and solvent accessibility. Here, using a comprehensive thermodynamic approach, along with supporting spectroscopic experiments, we develop a model for protein corona disorder in polystyrene nanoparticles of varying size. For two different proteins, we find that binding affinity decreases as nanoparticle size increases. The stoichiometry of binding, along with changes in the hydrodynamic size, support a highly solvated, disordered protein corona anchored at a small number of enthalpically-driven attachment sites. The scaling of the stoichiometry vs. nanoparticle size is consistent disordered polymer dimensions. Moreover, we find that proteins are destabilized less severely in the presence of larger nanoparticles, and this is supported by measurements of hydrophobic exposure, which becomes less pronounced at lower curvatures. Our observations hold for flat polystyrene surfaces, which, when controlled for total surface area, have the lowest hydrophobic exposure of all systems. Our model provides an explanation for previous observations of increased amyloid fibrillation rates in the presence of larger nanoparticles, and it may rationalize how cell receptors can recognize protein disorder in therapeutic nanoparticles.
Collapse
Affiliation(s)
- Radha P. Somarathne
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | | | | | - Harley A. Robertson
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Railey Mayatt
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
5
|
Muronetz VI, Pozdyshev DV, Semenyuk PI. Polyelectrolytes for Enzyme Immobilization and the Regulation of Their Properties. Polymers (Basel) 2022; 14:polym14194204. [PMID: 36236151 PMCID: PMC9571273 DOI: 10.3390/polym14194204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In this review, we considered aspects related to the application of polyelectrolytes, primarily synthetic polyanions and polycations, to immobilize enzymes and regulate their properties. We mainly focused on the description of works in which polyelectrolytes were used to create complex and unusual systems (self-regulated enzyme-polyelectrolyte complexes, artificial chaperones, polyelectrolyte brushes, layer-by-layer immobilization and others). These works represent the field of "smart polymers", whilst the trivial use of charged polymers as carriers for adsorption or covalent immobilization of proteins is beyond the scope of this short review. In addition, we have included a section on the molecular modeling of interactions between proteins and polyelectrolytes, as modeling the binding of proteins with a strictly defined, and already known, spatial structure, to disordered polymeric molecules has its own unique characteristics.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
- Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-(495)939-14-56
| | - Denis V. Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| | - Pavel I. Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119992 Moscow, Russia
| |
Collapse
|
6
|
Kumar K, Venkatesu P. Role of protein-copolymer assembly in controlling micellization process of amphiphilic triblock copolymer. J Colloid Interface Sci 2022; 608:2142-2157. [PMID: 34758421 DOI: 10.1016/j.jcis.2021.10.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS Triblock copolymer poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) forms a well-known micellar assembly at a particular temperature. Apart from regular assembly within the copolymer, it is crucial to explore additional assembly behaviour via simple exposure of proteins which unveils biased interactions with blocks of copolymer. The current work focuses on the examination of Pluronic F108 i.e. PEG-PPG-PEG with two different proteins i.e. α-chymotrypsin (CT) and lysozyme (LSZ), aiming at probing the critical micellization temperature (CMT) and molecular level interactions. EXPERIMENTS Potential role of protein-copolymer assembly formation at a particular concentration of protein in modulating CMT was shown by a systematic experimental approach combined with a series of physicochemical methods. The sophisticated multiple techniques include fluorescence spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, dynamic light scattering (DLS), zeta potential measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Furthermore, molecular docking studies were also employed to correlate theoretical insights with experimental findings. FINDINGS CT and LSZ decrease CMT in regular concentration-dependent manner except for particular concentration (1.5 mg/mL) of LSZ which shows anomalous behaviour in steady-state fluorescence spectroscopy, temperature dependent fluorescence spectroscopy, Raman spectroscopy and DLS measurements. SEM and TEM results clearly reveal protein-copolymer assembly formation. The assembled structure has different biophysical properties. Docking studies elucidate several bio macromolecular interactions which can be involved in assembly formation. Based on obtained results from biophysical techniques mechanism of CMT variation was deduced. Obtained results can be useful in biosensors and targeted drug delivery systems.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | | |
Collapse
|
7
|
Borówko M, Staszewski T. Adsorption on Ligand-Tethered Nanoparticles. Int J Mol Sci 2021; 22:ijms22168810. [PMID: 34445511 PMCID: PMC8396279 DOI: 10.3390/ijms22168810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
We use coarse-grained molecular dynamics simulations to study adsorption on ligand-tethered particles. Nanoparticles with attached flexible and stiff ligands are considered. We discuss how the excess adsorption isotherm, the thickness of the polymer corona, and its morphology depend on the number of ligands, their length, the size of the core, and the interaction parameters. We investigate the adsorption-induced structural transitions of polymer coatings. The behavior of systems involving curved and flat "brushes" is compared.
Collapse
|
8
|
Walkowiak J, Gradzielski M, Zauscher S, Ballauff M. Interaction of Proteins with a Planar Poly(acrylic acid) Brush: Analysis by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). Polymers (Basel) 2020; 13:polym13010122. [PMID: 33396873 PMCID: PMC7795234 DOI: 10.3390/polym13010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
We describe the preparation of a poly(acrylic acid) (PAA) brush, polymerized by atom transfer radical polymerization (ATRP) of tert-butyl acrylate (tBA) and subsequent acid hydrolysis, on the flat gold surfaces of quartz-crystal microbalance (QCM) crystals. The PAA brushes were characterized by Fourier transform infrared (FT-IR) spectroscopy, ellipsometry and water contact angle analysis. The interaction of the PAA brushes with human serum albumin (HSA) was studied for a range of ionic strengths and pH conditions by quartz-crystal microbalance with dissipation monitoring (QCM-D). The quantitative analysis showed a strong adsorption of protein molecules onto the PAA brush. By increasing the ionic strength, we were able to release a fraction of the initially bound HSA molecules. This finding highlights the importance of counterions in the polyelectrolyte-mediated protein adsorption/desorption. A comparison with recent calorimetric studies related to the binding of HSA to polyelectrolytes allowed us to fully analyze the QCM data based on the results of the thermodynamic analysis of the binding process.
Collapse
Affiliation(s)
- Jacek Walkowiak
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands;
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Straße des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Stefan Zauscher
- Mechanical Engineering and Material Sciences, Duke University, Durham, NC 27708, USA
- Correspondence: (S.Z.); (M.B.)
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
- Correspondence: (S.Z.); (M.B.)
| |
Collapse
|
9
|
Ye Z, Li L, Dai L, Wang Y, Yang Q, von Klitzing R, Guo X. Selective uptake of different proteins by annealed and quenched cationic spherical polyelectrolyte brushes. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhishuang Ye
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Li Li
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Yunwei Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | - Qingsong Yang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
| | | | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai China
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan Shihezi University Xinjiang China
| |
Collapse
|
10
|
Staszewski T, Borówko M. Adsorption-induced co-assembly of hairy and isotropic particles. Phys Chem Chem Phys 2020; 22:8757-8767. [PMID: 32281995 DOI: 10.1039/c9cp06854f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use coarse-grained molecular dynamics simulations to study the behavior of polymer-tethered particles immersed in fluids of isotropic particles. Particles modified with weakly anchored, mobile ligands are considered. We discuss how the concentration of fluid particles affects the morphology of an isolated hairy particle. It is shown that hairy particles present different morphologies including typical core-shell, octopus-like and corn-like, depending on fluid-segment interactions and the fluid density. The mechanism of changes in the shape of hairy particles is explained. The reconfiguration of the polymer corona arises from adsorption of fluid particles "on chains". The adsorbed fluid particles form bridges between the chains. This causes the mobile ligands to merge into clusters on the core surface. A part of the core remains empty so the hairy particle becomes a Janus-like object. We also study co-assembly in mixtures of hairy and isotropic particles. Depending on the strength of fluid-segment interactions, hairy particles with fluid particles trapped inside their coronas remain isolated or form mixed clusters of different structures. The aggregation of hairy particles results from the formation of bridges between chains belonging to different cores by fluid particles.
Collapse
Affiliation(s)
- Tomasz Staszewski
- Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Poland.
| | | |
Collapse
|
11
|
Veisi H, Mohammadi P, Ozturk T. Design, synthesis, characterization, and catalytic properties of g-C3N4-SO3H as an efficient nanosheet ionic liquid for one-pot synthesis of pyrazolo[3,4-b]pyridines and bis(indolyl)methanes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Wang Z, Chen K, Hua C, Guo X. Conformation Variation and Tunable Protein Adsorption through Combination of Poly(acrylic acid) and Antifouling Poly( N-(2-hydroxyethyl) acrylamide) Diblock on a Particle Surface. Polymers (Basel) 2020; 12:E566. [PMID: 32143509 PMCID: PMC7182850 DOI: 10.3390/polym12030566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Adsorption and desorption of proteins on biomaterial surfaces play a critical role in numerous biomedical applications. Spherical diblock polymer brushes (polystyrene with photoiniferter (PSV) as the core) with different block sequence, poly(acrylic acid)-b-poly(N-(2-hydroxyethyl) acrylamide) (PSV@PAA-b-PHEAA) and poly(N-(2-hydroxyethyl) acrylamide)-b-poly(acrylic acid) (PSV@PHEAA-b-PAA) were prepared via surface-initiated photoiniferter-mediated polymerization (SI-PIMP) and confirmed by a series of characterizations including TEM, Fourier transform infrared (FTIR) and elemental analysis. Both diblock polymer brushes show typical pH-dependent properties measured by dynamic light scattering (DLS) and Zeta potential. It is interesting to find out that conformation of PSV@PAA-b-PHEAA uniquely change with pH values, which is due to cooperation of electrostatic repulsion and steric hindrance. High-resolution turbidimetric titration was applied to explore the behavior of bovine serum albumin (BSA) binding to diblock polymer brushes, and the protein adsorption could be tuned by the existence of PHEAA as well as apparent PAA density. These studies laid a theoretical foundation for design of diblock polymer brushes and a possible application in biomedical fields.
Collapse
Affiliation(s)
- Zun Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chen Hua
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| |
Collapse
|
13
|
Prozeller D, Morsbach S, Landfester K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle-protein interactions. NANOSCALE 2019; 11:19265-19273. [PMID: 31549702 DOI: 10.1039/c9nr05790k] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Isothermal titration calorimetry (ITC) is a complementary technique that can be used for investigations of protein adsorption on nanomaterials, as it quantifies the thermodynamic parameters of intermolecular interactions in situ. As soon as nanomaterials enter biological media, a corona of proteins forms around the nanomaterials, which influences the surface properties and therefore the behavior of nanomaterials tremendously. ITC enhances our understanding of nanoparticle-protein interactions, as it provides information on binding affinity (in form of association constant Ka), interaction mechanism (in form of binding enthalpy ΔH, binding entropy ΔS and Gibbs free energy ΔG) and binding stoichiometry n. Therefore, as a complementary method, ITC enhances our mechanistic understanding of the protein corona. In this minireview, the information obtained from a multitude of ITC studies regarding different nanomaterials and proteins are gathered and relations between nanomaterials' properties and their resulting interactions undergone with proteins are deduced. Nanomaterials formed of a hydrophilic material without strongly charged surface and steric stabilization experience the weakest interactions with proteins. As a result, such nanomaterials undergo the least unspecific protein-interactions and are most promising for allowing an engineering of the protein corona.
Collapse
Affiliation(s)
- Domenik Prozeller
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
14
|
Liu XR, Pan C, Wang YM. PMOXA/PAA brushes toward on-line preconcentration for BSA in capillary electrophoresis. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1805130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xiao-ru Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chao Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yan-mei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Xu X, Angioletti-Uberti S, Lu Y, Dzubiella J, Ballauff M. Interaction of Proteins with Polyelectrolytes: Comparison of Theory to Experiment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5373-5391. [PMID: 30095921 DOI: 10.1021/acs.langmuir.8b01802] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We discuss recent investigations of the interaction of polyelectrolytes with proteins. In particular, we review our recent studies on the interaction of simple proteins such as human serum albumin (HSA) and lysozyme with linear polyelectrolytes, charged dendrimers, charged networks, and polyelectrolyte brushes. In all cases discussed here, we combined experimental work with molecular dynamics (MD) simulations and mean-field theories. In particular, isothermal titration calorimetry (ITC) has been employed to obtain the respective binding constants Kb and the Gibbs free energy of binding. MD simulations with explicit counterions but implicit water demonstrate that counterion release is the main driving force for the binding of proteins to strongly charged polyelectrolytes: patches of positive charges located on the surface of the protein become multivalent counterions of the polyelectrolyte, thereby releasing a number of counterions condensed on the polyelectrolyte. The binding Gibbs free energy due to counterion release is predicted to scale with the logarithm of the salt concentration in the system, which is verified by both simulations and experiment. In several cases, namely, for the interaction of proteins with linear polyelectrolytes and highly charged hydrophilic dendrimers, the binding constant could be calculated from simulations to very good approximation. This finding demonstrated that in these cases explicit hydration effects do not contribute to the Gibbs free energy of binding. The Gibbs free energy can also be used to predict the kinetics of protein uptake by microgels for a given system by applying dynamic density functional theory. The entire discussion demonstrates that the direct comparison of theory with experiments can lead to a full understanding of the interaction of proteins with charged polymers. Possible implications for applications, such as drug design, are discussed.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemical Engineering , Nanjing University of Science and Technology , 200 Xiao Ling Wei , Nanjing 210094 , P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials , Imperial College London , London SW7 2AZ - UK , U.K
- International Research Centre for Soft Matter , Beijing University of Chemical Technology , 100099 Beijing , PR China
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Joachim Dzubiella
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Physikalisches Institut , Albert-Ludwigs-Universität , 79104 Freiburg , Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , 14109 Berlin , Germany
- Institut für Physik , Humboldt-Universität zu Berlin , 12489 Berlin , Germany
| |
Collapse
|
16
|
Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ran Q, Xu X, Dzubiella J, Haag R, Ballauff M. Thermodynamics of the Binding of Lysozyme to a Dendritic Polyelectrolyte: Electrostatics Versus Hydration. ACS OMEGA 2018; 3:9086-9095. [PMID: 31459043 PMCID: PMC6644519 DOI: 10.1021/acsomega.8b01493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/30/2018] [Indexed: 05/25/2023]
Abstract
The interaction between dendritic polyglycerol sulfate (dPGS) of the second generation and lysozyme was studied by isothermal titration calorimetry (ITC) at different temperatures and salt concentrations. Analysis by ITC showed that 2-3 lysozyme molecules were bound to each dPGS. The resulting binding constant K b and the Gibbs free energy ΔG o decreased markedly with increasing salt concentration but were nearly independent of temperature. The salt dependence of K b led to the conclusion that ca. 3 counterions bound to dPGS were released upon complex formation. The gain in entropy ΔG ci by this counterion-release scales logarithmically with salt concentration and is the main driving force for binding. The temperature dependence of ΔG o was analyzed by the nonlinear van't Hoff plot, taking into account a finite heat capacity change ΔC p,vH. This evaluation led to the binding enthalpy ΔH vH and the binding entropy ΔS vH. Both quantities varied strongly with temperature and even changed sign, but they compensated each other throughout the entire range of temperature. Coarse-grained computer simulations with explicit salt and implicit water were used to obtain the binding free energies that agreed with ITC results. Thus, electrostatic factors were the driving forces for binding whereas all hydration contributions leading to the strongly varying ΔH vH and ΔS vH canceled out. The calorimetric enthalpy ΔH ITC measured directly by ITC differed largely from ΔH vH. ITC measurements done in two buffer systems with different ionization enthalpies revealed that binding was linked to buffer ionization and a partial protonation of the protein.
Collapse
Affiliation(s)
- Qidi Ran
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute
of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Xiao Xu
- School
of Chemical Engineering, Nanjing University
of Science and Technology, 200 Xiao Ling Wei, 210094 Nanjing, P. R. China
| | - Joachim Dzubiella
- Institute
of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Physikalisches
Institut, Albert-Ludwigs-Universität, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Rainer Haag
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustr. 3, 14195 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
| | - Matthias Ballauff
- Institute
of Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow-Seehof, Germany
- Institut
für Physik, Humboldt-Universität
zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
| |
Collapse
|
18
|
Colak B, Di Cio S, Gautrot JE. Biofunctionalized Patterned Polymer Brushes via Thiol–Ene Coupling for the Control of Cell Adhesion and the Formation of Cell Arrays. Biomacromolecules 2018; 19:1445-1455. [DOI: 10.1021/acs.biomac.7b01436] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Pan C, Liu X, Gong K, Mumtaz F, Wang Y. Dopamine assisted PMOXA/PAA brushes for their switchable protein adsorption/desorption. J Mater Chem B 2018; 6:556-567. [DOI: 10.1039/c7tb02209c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PMOXA/PAA mixed brushes with switchable protein adsorption/desorption properties were prepared by sequentially grafting PMOXA-NH2 and PAA-SH onto PDA-coated substrates.
Collapse
Affiliation(s)
- Chao Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Xiaoru Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Kai Gong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Fatima Mumtaz
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei 230026
- P. R. China
| |
Collapse
|
20
|
Marschelke C, Raguzin I, Matura A, Fery A, Synytska A. Controlled and tunable design of polymer interface for immobilization of enzymes: does curvature matter? SOFT MATTER 2017; 13:1074-1084. [PMID: 28094405 DOI: 10.1039/c6sm02380k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Control and tuning of surface properties is indispensable for the programmed and rational design of materials. Particularly, polymeric brush-modified colloids can be used as carrier materials for enzyme immobilization. Although it is of prime importance to control the brush architecture, there is still a lack of systematic investigations concerning the impact of grafting density on the properties of the designed interface, as well as on the immobilization of biomolecules. In this work, we investigate the surface properties of polymer brushes with different grafting densities prepared using a "grafting from" approach on flat and on colloidal particle substrates by varying the density of initiator groups. In this way, we control and tune interfacial properties of the carrier material such as swelling, charge, adhesion as well as adsorption of laccase from Trametes versicolor on the grafted polyelectrolyte layer. We show that there is no direct transferability of the results received from planar to curved substrates regarding the swelling behavior in dependence on the grafting density. The maximum of swelling degree of PDMAEMA layers is achieved at 0.34 nm-2 and at 0.1 nm-2 grafting density for planar and curved particle substrates, respectively. The adhesion properties of the polymeric layer on both substrates are also strongly influenced by the grafting density, i.e. a decrease of the grafting density causes a transition from the adhesive to non-adhesive state. As proven by the cryo-TEM and AFM force distance measurements, an immobilization of laccase from Trametes versicolor causes a decrease of the polymer swelling and therefore leads to the changes in the surface morphology, charge and adhesion performance of final polymer-enzyme layer. Moreover, the higher effectiveness and activity of laccase were observed for the intermediate grafting densities which seem to be preferable over the maximum brush densities.
Collapse
Affiliation(s)
- Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | | | | | | | | |
Collapse
|
21
|
Yigit C, Kanduč M, Ballauff M, Dzubiella J. Interaction of Charged Patchy Protein Models with Like-Charged Polyelectrolyte Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:417-427. [PMID: 27983858 DOI: 10.1021/acs.langmuir.6b03797] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the adsorption of charged patchy particle models (CPPMs) on a thin film of a like-charged and dense polyelectrolyte (PE) brush (of 50 monomers per chain) by means of implicit-solvent, explicit-salt Langevin dynamics computer simulations. Our previously introduced set of CPPMs embraces well-defined one- and two-patched spherical globules, each of the same net charge and (nanometer) size, with mono- and multipole moments comparable to those of small globular proteins. We focus on electrostatic effects on the adsorption far away from the isoelectric point of typical proteins, i.e., where charge regulation plays no role. Despite the same net charge of the brush and globule, we observe large binding affinities up to tens of the thermal energy, kBT, which are enhanced by decreasing salt concentration and increasing charge of the patch(es). Our analysis of the distance-resolved potentials of mean force together with a phenomenological description of all leading interaction contributions shows that the attraction is strongest at the brush surface, driven by multipolar, Born (self-energy), and counterion-release contributions, dominating locally over the monopolar and steric repulsions.
Collapse
Affiliation(s)
- Cemil Yigit
- Institut für Physik, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , 14109 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , 14513 Teltow, Germany
| | - Matej Kanduč
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , 14109 Berlin, Germany
| | - Matthias Ballauff
- Institut für Physik, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , 14109 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , 14513 Teltow, Germany
| | - Joachim Dzubiella
- Institut für Physik, Humboldt-Universität zu Berlin , 12489 Berlin, Germany
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin , 14109 Berlin, Germany
- Multifunctional Biomaterials for Medicine, Helmholtz Virtual Institute , 14513 Teltow, Germany
| |
Collapse
|
22
|
Deng J, Wu S, Yao M, Gao C. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles. Sci Rep 2016; 6:31595. [PMID: 27531648 PMCID: PMC4987644 DOI: 10.1038/srep31595] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022] Open
Abstract
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Collapse
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sai Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengyun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Deng J, Li Z, Yao M, Gao C. Influence of Albumin Configuration by the Chiral Polymer-Grafted Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5608-5616. [PMID: 27181989 DOI: 10.1021/acs.langmuir.6b01447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The interaction between nanoparticles (NPs) and proteins is a topic of high relevance for the medical application of NPs. This study reveals the molecular chirality on NP surfaces as an indirect regulator of the interaction between proteins and NPs. Poly(N-acryloyl-valine) (PAV) polymers with d- and l-configurations were conjugated onto gold NPs with a size of 5 nm to obtain the l-PAV-AuNPs and d-PAV-AuNPs, respectively. They had same chemical composition and surface grafting density but different surface chirality. The isothermal titration calorimetry results showed that adsorption of bovine serum albumin onto the l-PAV-AuNPs and d-PAV-AuNPs was primarily driven by electrostatic interaction. Dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching, and isothermal titration calorimetry characterizations revealed that bovine serum albumin molecules adopted both side-on and end-on configurations on the d-PAV-AuNPs, whereas only end-on configuration on the l-PAV-AuNPs.
Collapse
Affiliation(s)
- Jun Deng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Zheng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Mengyun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|
24
|
Falconer RJ. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. J Mol Recognit 2016; 29:504-15. [PMID: 27221459 DOI: 10.1002/jmr.2550] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
25
|
Heidarizadeh F, Taheri N. Polystyrene-supported basic dicationic ionic liquid as a novel, reusable, and efficient heterogeneous catalyst for the one-pot synthesis of chromene derivatives in water. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2247-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Qu Z, Xu H, Gu H. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14537-14551. [PMID: 26067846 DOI: 10.1021/acsami.5b02912] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.
Collapse
Affiliation(s)
- Zhenyuan Qu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hong Xu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongchen Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
27
|
Yu S, Xu X, Yigit C, van der Giet M, Zidek W, Jankowski J, Dzubiella J, Ballauff M. Interaction of human serum albumin with short polyelectrolytes: a study by calorimetry and computer simulations. SOFT MATTER 2015; 11:4630-4639. [PMID: 25959568 DOI: 10.1039/c5sm00687b] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a comprehensive study of the interaction of human serum albumin (HSA) with poly(acrylic acid) (PAA; number average degree of polymerization: 25) in aqueous solution. The interaction of HSA with PAA is studied in dilute solution as a function of the concentration of added salt (20-100 mM) and temperature (25-37 °C). Isothermal titration calorimetry (ITC) is used to analyze the interaction and to determine the binding constant and related thermodynamic data. It is found that only one PAA chain is bound per HSA molecule. The free energy of binding ΔGb increases with temperature significantly. ΔGb decreases with increasing salt concentration and is dominated by entropic contributions due to the release of bound counterions. Coarse-grained Langevin computer simulations treating the counterions in an explicit manner are used to study the process of binding in detail. These simulations demonstrate that the PAA chains are bound in the Sudlow II site of HSA. Moreover, ΔGb is calculated from the simulations and found to be in very good agreement with the measured data. The simulations demonstrate clearly that the driving force of binding is the release of counterions in full agreement with the ITC-data.
Collapse
Affiliation(s)
- Shun Yu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Semenyuk P, Orlov V, Muronetz V, Izumrudov V. Two-stage binding of a protein to the polyanion: Non-denaturing interaction followed by denaturation. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Delcroix MF, Laurent S, Huet GL, Dupont-Gillain CC. Protein adsorption can be reversibly switched on and off on mixed PEO/PAA brushes. Acta Biomater 2015; 11:68-79. [PMID: 25234158 DOI: 10.1016/j.actbio.2014.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 09/04/2014] [Accepted: 09/09/2014] [Indexed: 12/25/2022]
Abstract
Adsorption of proteins on surfaces placed in biological fluids is a ubiquitous and mostly irreversible phenomenon, desirable or not, but often uncontrolled. Adsorption of most proteins on poly(ethylene oxide) (PEO) brushes is very limited, while the amount of proteins adsorbed on poly(acrylic acid) (PAA) brushes varies with the pH and ionic strength (I) of the protein solution. Mixed brushes of PEO and PAA are designed here to reversibly adsorb and desorb albumin, lysozyme, collagen and immunoglobulin G, four very different proteins in terms of size, solubility and isoelectric point. Protein adsorption and desorption are monitored using X-ray photoelectron spectroscopy, as well as with quartz crystal microbalance for in situ and real-time measurements. Large amounts of protein are adsorbed and then nearly completely desorbed on mixed PEO/PAA brushes by a simple pH and I trigger. The mixed brushes thus nicely combine the properties of pure PAA and pure PEO brushes. These adsorption/desorption cycles are shown to be repeated with high efficiency. The high-performance smart substrates created here could find applications in domains as diverse as biosensors, drug delivery and nanotransport.
Collapse
Affiliation(s)
- M F Delcroix
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | - S Laurent
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | - G L Huet
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | - C C Dupont-Gillain
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
30
|
Liu J, Yu G, Zhou J. Ribonuclease A adsorption onto charged self-assembled monolayers: A multiscale simulation study. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 2014; 114:10976-1026. [PMID: 25353708 DOI: 10.1021/cr500252u] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahentha Krishnamoorthy
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
32
|
Scott C, Mitrovic B, Eastwood S, Kinsel G. Stimuli Response of Cationic Polymer Brush Prepared by ATRP: Application in Peptide Fractionation. POLYMER 2014; 55:3551-3556. [PMID: 25253913 DOI: 10.1016/j.polymer.2014.06.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Random cationic copolymer brushes composed of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and N-isopropylacrylamide (NIPAAm) were synthesized using the atom transfer radical polymerization (ATRP) method. The effects of varying the monomer feed ratios (30:70 and 70:30 DMAEMA:NIPAAm) and polymerization times on the film height, morphology and stimuli response to pH of the brush were evaluated. While the polymerization time was found to have little influence on the properties of the brushes, the monomer feed ratios had a great impact. The 70 % DMAEMA polymer brush had similar height as the 30 % DMAEMA brush after 45 min; however, it had a greater response to pH and morphological change compared to the 30 % DMAEMA. The 70 % DMAEMA brush was used to demonstrate an efficient approach to alleviate the ion suppression effect in MALDI analysis of complex mixtures by effectively fractionating a binary mixture of peptides prior to MALDI-MS analysis.
Collapse
Affiliation(s)
- Colleen Scott
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL 62901-4409, USA
| | - Bojan Mitrovic
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL 62901-4409, USA
| | - Stephanie Eastwood
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL 62901-4409, USA
| | - Gary Kinsel
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL 62901-4409, USA
| |
Collapse
|
33
|
|
34
|
Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R. Protein Interactions with Polymer Coatings and Biomaterials. Angew Chem Int Ed Engl 2014; 53:8004-31. [DOI: 10.1002/anie.201400546] [Citation(s) in RCA: 524] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Indexed: 01/07/2023]
|
35
|
Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R. Wechselwirkungen von Proteinen mit Polymerbeschichtungen und Biomaterialien. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400546] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Delcroix MF, Demoustier-Champagne S, Dupont-Gillain CC. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:268-277. [PMID: 24328402 DOI: 10.1021/la403891k] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The conformation of polymer chains grafted on a substrate influences protein adsorption. In a previous study, adsorption/desorption of albumin was demonstrated on mixed poly(ethylene oxide) (PEO)/poly(acrylic acid) (PAA) brushes, triggered by solutions of adequate pH and ionic strength (I). In the present work, homolayers of PEO or PAA are submitted to saline solutions with pH from 3 to 9 and I from 10(-5) to 10(-1) M, and their conformation is evaluated in real time using quartz crystal microbalance with dissipation monitoring (QCM-D). Shrinkage/swelling of PAA chains and hydration and salt condensation in the brush are evidenced. The adsorption of human serum albumin (HSA) onto such brushes is also monitored in these different saline solutions, leading to a deep understanding of the influence of polymer chain conformation, modulated by pH and I, on protein adsorption. A detailed model of the conformation of PEO/PAA mixed brushes depending on pH and I is then proposed, providing a rationale for the identification of conditions for the successive adsorption and desorption of proteins on such mixed brushes. The adsorption/desorption of albumin on PEO/PAA is demonstrated using QCM-D.
Collapse
Affiliation(s)
- M F Delcroix
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain , Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
37
|
Qu Z, Chen K, Gu H, Xu H. Covalent Immobilization of Proteins on 3D Poly(acrylic acid) Brushes: Mechanism Study and a More Effective and Controllable Process. Bioconjug Chem 2014; 25:370-8. [DOI: 10.1021/bc400530s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhenyuan Qu
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Kaimin Chen
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongchen Gu
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hong Xu
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
38
|
Kudina O, Zakharchenko A, Trotsenko O, Tokarev A, Ionov L, Stoychev G, Puretskiy N, Pryor SW, Voronov A, Minko S. Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Kudina O, Zakharchenko A, Trotsenko O, Tokarev A, Ionov L, Stoychev G, Puretskiy N, Pryor SW, Voronov A, Minko S. Highly Efficient Phase Boundary Biocatalysis with Enzymogel Nanoparticles. Angew Chem Int Ed Engl 2013; 53:483-7. [DOI: 10.1002/anie.201306831] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Indexed: 11/06/2022]
|
40
|
Kabiri M, Bushnak I, McDermot MT, Unsworth LD. Toward a Mechanistic Understanding of Ionic Self-Complementary Peptide Self-Assembly: Role of Water Molecules and Ions. Biomacromolecules 2013; 14:3943-50. [DOI: 10.1021/bm401077b] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Mark T. McDermot
- NanoLife
Group, National Institute for Nanotechnology, National Research Council (Canada), Edmonton, Alberta, Canada
| | - Larry D. Unsworth
- NanoLife
Group, National Institute for Nanotechnology, National Research Council (Canada), Edmonton, Alberta, Canada
| |
Collapse
|
41
|
Durán LVR, Spelzini D, Boeris V, Aguilar CN, Picó GA. Interaction of tannase from Aspergillus niger with polycations applied to its primary recovery. Colloids Surf B Biointerfaces 2013; 110:480-4. [PMID: 23706551 DOI: 10.1016/j.colsurfb.2013.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 01/09/2023]
Abstract
The interaction of tannase (TAH) with chitosan, polyethyleneimine and Eudragit(®)E100 was studied. It was found that TAH selectively binds to these polycations (PC), probably due to the acid nature of the target protein. TAH could interact with these PC depending on the medium conditions. The effect of the interaction on the secondary and tertiary structure of TAH was assayed through circular dichroism and fluorescence spectroscopy. TAH was recovered from Aspergillus niger culture broth by means of precipitation and adsorption using chitosan.
Collapse
Affiliation(s)
- Luis V Rodríguez Durán
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Blvd. Venustiano Carranza and J. Cárdenas s/n, ZIP 25280, Saltillo, Coahuila, Mexico
| | | | | | | | | |
Collapse
|
42
|
Poly(basic ionic liquid) coated magnetic nanoparticles: High-loaded supported basic ionic liquid catalyst. CR CHIM 2013. [DOI: 10.1016/j.crci.2013.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Wang S, Chen K, Kayitmazer AB, Li L, Guo X. Tunable adsorption of bovine serum albumin by annealed cationic spherical polyelectrolyte brushes. Colloids Surf B Biointerfaces 2013; 107:251-6. [DOI: 10.1016/j.colsurfb.2013.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 02/11/2013] [Accepted: 02/15/2013] [Indexed: 11/26/2022]
|
44
|
|
45
|
Wang S, Chen K, Li L, Guo X. Binding between Proteins and Cationic Spherical Polyelectrolyte Brushes: Effect of pH, Ionic Strength, and Stoichiometry. Biomacromolecules 2013; 14:818-27. [DOI: 10.1021/bm301865g] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Siyi Wang
- State Key
Laboratory of Chemical
Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Kaimin Chen
- State Key
Laboratory of Chemical
Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, People’s
Republic of China
| | - Li Li
- State Key
Laboratory of Chemical
Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xuhong Guo
- State Key
Laboratory of Chemical
Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
46
|
Solé M, Brandt W, Arnold U. Striking stabilization ofRana catesbeianaribonuclease 3 by guanidine hydrochloride. FEBS Lett 2013; 587:737-42. [DOI: 10.1016/j.febslet.2013.01.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
|
47
|
Delcroix MF, Huet GL, Conard T, Demoustier-Champagne S, Du Prez FE, Landoulsi J, Dupont-Gillain CC. Design of Mixed PEO/PAA Brushes with Switchable Properties Toward Protein Adsorption. Biomacromolecules 2012; 14:215-25. [DOI: 10.1021/bm301637h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M. F. Delcroix
- Institute of Condensed Matter
and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | - G. L. Huet
- Institute of Condensed Matter
and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | - T. Conard
- IMEC,
Kapeldreef 75, 3001 Leuven, Belgium
| | - S. Demoustier-Champagne
- Institute of Condensed Matter
and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| | - F. E. Du Prez
- Polymer Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent,
Belgium
| | - J. Landoulsi
- Laboratoire de
Réactivité
de Surface, UMR 7197 CNRS, Université Pierre and Marie Curie - Paris VI, 4 Place Jussieu, Case 178, 75252
Paris, France
| | - C. C. Dupont-Gillain
- Institute of Condensed Matter
and Nanosciences, Université catholique de Louvain, Croix du Sud 1 (L7.04.01), 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
48
|
Giacomelli FC, Stepánek P, Schmidt V, Jäger E, Jäger A, Giacomelli C. Light scattering evidence of selective protein fouling on biocompatible block copolymer micelles. NANOSCALE 2012; 4:4504-4514. [PMID: 22688571 DOI: 10.1039/c2nr30623a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Selective protein fouling on block copolymer micelles with well-known potential for tumour-targeting drug delivery was evidenced by using dynamic light scattering measurements. The stability and interaction of block copolymer micelles with model proteins (BSA, IgG, lysozyme and CytC) is reported for systems featuring a hydrophobic (poly[2-(diisopropylamino)-ethyl methacrylate]) (PDPA) core and hydrophilic coronas comprising poly(ethylene oxide)/poly(glycerol monomethacrylate) (PEO-b-PG2MA) or poly[2-(methacryloyloxy)ethyl phosphorylcholine] (PMPC). The results revealed that protein size and hydrophilic chain density play important roles in the observed interactions. The PEO(113)-b-PG2MA(30)-b-PDPA(50) nanoparticles are stable and protein adsorption is prevented at all investigated protein environments. The successful protein-repellent characteristic of these nanoparticles is attributed to a high hydrophilic surface chain density (>0.1 chains per nm(2)) and to the length of the hydrophilic chains. On the other hand, although PMPC also has protein-repellent characteristics, the low surface chain density of the hydrophilic shell is supposed to enable interactions with small proteins. The PMPC(40)-b-PDPA(70) micelles are stable in BSA and IgG environments due to weak repulsion forces between PMPC and the proteins, to the hydration layer, and particularly to a size-effect where the large BSA (R(H) = 4.2 nm) and IgG (R(H) = 7.0 nm) do not easily diffuse within the PMPC shell. Conversely, a clear interaction was observed with the 2.1 nm radius lysozyme. The lysozyme protein can diffuse within the PMPC micellar shell towards the PDPA hydrophobic core in a process favored by its smaller size and the low hydrophilic PMPC surface chain density (∼0.049 chains per nm(2)) as compared to PEO-b-PG2MA (∼0.110 chains per nm(2)). The same behavior was not evidenced with the 2.3 nm radius positively charged CytC, probably due to its higher surface hydrophilicity and the consequent chemical incompatibility with PDPA.
Collapse
Affiliation(s)
- Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Li G, Xu J, Zhao S, Zhu Y, Li L, Guo X. Spherical Polyelectrolyte Brushes on Colloidal Poly(butadiene) Particles. ACTA ACUST UNITED AC 2012. [DOI: 10.1524/zpch.2012.0264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
A novel method to prepare spherical polyelectrolyte brushes (SPB) on the surface of colloidal poly(butadiene) (PB) core without having to use initiators with C=C double bond to attach covalently on the core surface was reported. Making use of the abundant double bonds in PB, spherical poly(acrylic acid) (PAA) bushes were grown from PB core surface by direct thermo-initiated emulsion polymerization using KPS as initiator. The thickness of SPB increased significantly upon increasing pH and decreasing the ionic strength. The grafting density of SPB with PB core was estimated from the relationship between the brush thickness and ionic strength based on the modified Daoud-Cotton model. The grafting density of SPB prepared by thermo-initiated emulsion polymerization (0.122 nm-2) is higher that that of SPB by photo-emulsion polymerization (0.105 nm-2). Using SPB with PB core as nanoreactors, nickel and silver nanoparticles were prepared by reduction of Ni
2+
and Ag
+
absorbed inside SPB as counterions. Relatively high catalytic activities for the reduction of p-nitrophenol by NaBH4 were observed for SPB immobilized Ni or Ag nanoparticles.
Collapse
Affiliation(s)
- Gongsheng Li
- East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, Volksrepublik China
| | - Jun Xu
- East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai 200237, Volksrepublik China
| | - Shifang Zhao
- East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai 200237, Volksrepublik China
| | - Yuanqing Zhu
- East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai 200237, Volksrepublik China
| | - Li Li
- East China University of Science and Technology, State Key Laboratory of Chemical Engineering, Shanghai, Volksrepublik China
| | | |
Collapse
|