1
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
2
|
Yu G, Liu G, Liu T, Fink EH, Esker AR. Activities of Family 18 Chitinases on Amorphous Regenerated Chitin Thin Films and Dissolved Chitin Oligosaccharides: Comparison with Family 19 Chitinases. Biomacromolecules 2023; 24:566-575. [PMID: 36715568 DOI: 10.1021/acs.biomac.2c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Changes in mass and viscoelasticity of chitin layers in fungal cell walls during chitinase attack are vital for understanding bacterial invasion of and human defense against fungi. In this work, regenerated chitin (RChitin) thin films mimicked the fungal chitin layers and facilitated studies of degradation by family 18 chitinases from Trichoderma viride (T. viride) and family 19 chitinases from Streptomyces griseus (S. griseus) that possessed chitin-binding domains (CBDs) that were absent in the family 18 chitinases. Degradation was monitored via a quartz crystal microbalance with dissipation monitoring (QCM-D) in real time at various pH and temperatures. Compared to substrates of colloidal chitin or dissolved chitin derivatives and analogues, the degradation of RChitin films was deeply affected by chitinase adsorption. While the family 18 chitinases had greater solution activity on chitin oligosaccharides, the family 19 chitinases exhibited greater surface activity on RChitin films, illustrating the importance of CBDs for insoluble substrates.
Collapse
Affiliation(s)
- Guoqiang Yu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Gehui Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Tianyi Liu
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Ethan H Fink
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Alan R Esker
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia24061, United States.,Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia24061, United States
| |
Collapse
|
3
|
Sukhavattanakul P, Pisitsak P, Ummartyotin S, Narain R. Polysaccharides for Medical Technology: Properties and Applications. Macromol Biosci 2023; 23:e2200372. [PMID: 36353915 DOI: 10.1002/mabi.202200372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Indexed: 11/12/2022]
Abstract
Over the past decade, the use of polysaccharides has gained tremendous attention in the field of medical technology. They have been applied in various sectors such as tissue engineering, drug delivery system, face mask, and bio-sensing. This review article provides an overview and background of polysaccharides for biomedical uses. Different types of polysaccharides, for example, cellulose and its derivatives, chitin and chitosan, hyaluronic acid, alginate, and pectin are presented. They are fabricated in various forms such as hydrogels, nanoparticles, membranes, and as porous mediums. Successful development and improvement of polysaccharide-based materials will effectively help users to enhance their quality of personal health, decrease cost, and eventually increase the quality of life with respect to sustainability.
Collapse
Affiliation(s)
- Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Penwisa Pisitsak
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathum, Thani, 12120, Thailand
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G1H9, Canada
| |
Collapse
|
4
|
Yurtsever A, Wang PX, Priante F, Morais Jaques Y, Miyata K, MacLachlan MJ, Foster AS, Fukuma T. Probing the Structural Details of Chitin Nanocrystal-Water Interfaces by Three-Dimensional Atomic Force Microscopy. SMALL METHODS 2022; 6:e2200320. [PMID: 35686343 DOI: 10.1002/smtd.202200320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chitin is one of the most abundant and renewable natural biopolymers. It exists in the form of crystalline microfibrils and is the basic structural building block of many biological materials. Its surface crystalline structure is yet to be reported at the molecular level. Herein, atomic force microscopy (AFM) in combination with molecular dynamics simulations reveals the molecular-scale structural details of the chitin nanocrystal (chitin NC)-water interface. High-resolution AFM images reveal the molecular details of chitin chain arrangements at the surfaces of individual chitin NCs, showing highly ordered, stable crystalline structures almost free of structural defects or disorder. 3D-AFM measurements with submolecular spatial resolution demonstrate that chitin NC surfaces interact strongly with interfacial water molecules creating stable, well-ordered hydration layers. Inhomogeneous encapsulation of the underlying chitin substrate by these hydration layers reflects the chitin NCs' multifaceted surface character with different chain arrangements and molecular packing. These findings provide important insights into chitin NC structures at the molecular level, which is critical for developing the properties of chitin-based nanomaterials. Furthermore, these results will contribute to a better understanding of the chemical and enzymatic hydrolysis of chitin and other native polysaccharides, which is also essential for the enzymatic conversion of biomass.
Collapse
Affiliation(s)
- Ayhan Yurtsever
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Pei-Xi Wang
- Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, V6T 1Z1, Canada
| | - Fabio Priante
- Department of Applied Physics, Aalto University, FI-00076, Helsinki, Finland
| | - Ygor Morais Jaques
- Department of Applied Physics, Aalto University, FI-00076, Helsinki, Finland
| | - Kazuki Miyata
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mark J MacLachlan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Department of Chemistry, University of British Columbia 2036 Main Mall, Vancouver, V6T 1Z1, Canada
| | - Adam S Foster
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Department of Applied Physics, Aalto University, FI-00076, Helsinki, Finland
| | - Takeshi Fukuma
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
5
|
Kang K, Liu Y, Song X, Xu L, Zhang W, Jiao Y, Zhao Y. Hemostatic Performance of ɑ-Chitin/gelatin Composite Sponges with Directional Pore Structure. Macromol Biosci 2022; 22:e2200020. [PMID: 35488361 DOI: 10.1002/mabi.202200020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/19/2022] [Indexed: 11/07/2022]
Abstract
Biomedical materials with effective hemostatic properties are in great demand in clinical and battlefield application for severe hemorrhage control. In this study, nearly amorphous chitin is obtained by treating α-chitin with superfine grinding, and the solubility of chitin in hexafluoro-2-propanol (HFIP) is significantly increased. Chitin and gelatin mixtures are prepared by adding different amount of gelatin to the 8mg ml-1 chitin solution. In the presence water (non-solvent), the mixtures are gelled as HFIP is replaced by water, and chitin/gelatin composite sponges with directional pore structure are prepared by directional freeze drying of the hydrogel. The structure, porosity, liquid absorbing capacity, biodegradability, and hemostatic properties of the sponges with different ratios of gelatin are investigated. The results show that the sponge with the mass ratio of chitin/gelatin of 1:1 is potential hemostatic material with high absorbing capacity, hemocompatibility, and the best hemostatic performance. The in vivo study demonstrates that hemostatic time of the composite sponge (73 s) is much shorter than of that of gauze (193 s), chitin sponge (132s) as well as gelatin sponge (116 s) in rat femoral artery injury model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kai Kang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunen Liu
- Shenyang Medical College, No.146 Huanghe North Street, Shenyang, 110034, China
| | - Xiaoqiang Song
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.,School of Materials science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Xu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wenchang Zhang
- Jihua Laboratory, No.28 Island Ring South Road, Guicheng Street, Foshan, Guangdong, 528200, China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Zhao
- Jihua Laboratory, No.28 Island Ring South Road, Guicheng Street, Foshan, Guangdong, 528200, China
| |
Collapse
|
6
|
Bedi N, Srivastava DK, Srivastava A, Mahapatra S, Dkhar DS, Chandra P, Srivastava A. Marine Biological Macromolecules as Matrix Material for Biosensor fabrication. Biotechnol Bioeng 2022; 119:2046-2063. [PMID: 35470439 DOI: 10.1002/bit.28122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/19/2022] [Accepted: 04/23/2022] [Indexed: 11/06/2022]
Abstract
The Ocean covers two-third of our planet and has great biological heterogeneity. Marine organisms like algae, vertebrates, invertebrates, and microbes are known to provide many natural products with biological activities as well as potent sources of biomaterials for therapeutic, biomedical, biosensors, and climate stabilization. Over the years, the field of biosensors have gained huge attention due to their extraordinary ability to provide early disease diagnosis, rapid detection of various molecules and substances along with long term monitoring. This review aims to focus on the properties and employment of various biomaterials (Carbohydrate polymers, proteins, polyacids etc) of marine origin such as Alginate, Chitin, Chitosan, Fucoidan, Carrageenan, Chondroitin Sulfate (CS), Hyaluronic acid (HA), Collagen, marine pigments, marine nanoparticles, Hydroxyapatite (HAp), Biosilica, lectins, and marine whole cell in the design and development of biosensors. Further, this review also covers the source of such marine biomaterials and their promising evolution in the fabrication of biosensors that are potent to be employed in the biomedical, environmental science and agricultural sciences domains. The use of such fabricated biosensors harness the system with excellent specificity, selectivity, biocompatibility, thermally stable and minimal cost advantages. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Namita Bedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | | | - Arti Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobiotechnology, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Ashutosh Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, India.,Amity Institute of Marine Science and Technology, Amity University Uttar Pradesh, Sector 125, Noida, India
| |
Collapse
|
7
|
Katan T, Kargl R, Mohan T, Steindorfer T, Mozetič M, Kovač J, Stana Kleinschek K. Solid Phase Peptide Synthesis on Chitosan Thin Films. Biomacromolecules 2022; 23:731-742. [PMID: 35023341 PMCID: PMC8924862 DOI: 10.1021/acs.biomac.1c01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Stable chitosan thin
films can be promising substrates for creating
nanometric peptide-bound polyglucosamine layers. Those are of scientific
interest since they can have certain structural similarities to bacterial
peptidoglycans. Such films were deposited by spin coating from chitosan
solutions and modified by acetylation and N-protected
amino acids. The masses of deposited materials and their stability
in aqueous solutions at different pH values and water interaction
were determined with a quartz crystal microbalance with dissipation
(QCM-D). The evolution of the surface composition was followed by
X-ray photoelectron (XPS) and attenuated total reflectance infrared
(ATR-IR) spectroscopy. Morphological changes were measured by atomic
force microscopy (AFM), while the surface wettability was monitored
by by static water contact angle measurements. The combination of
the characterization techniques enabled an insight into the surface
chemistry for each treatment step and confirmed the acetylation and
coupling of N-protected glycine peptides. The developed
procedures are seen as first steps toward preparing thin layers of
acetylated chitin, potentially imitating the nanometric peptide substituted
glycan layers found in bacterial cell walls.
Collapse
Affiliation(s)
- Tadeja Katan
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Tamilselvan Mohan
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Tobias Steindorfer
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute (IJS), Jamova 39, 1000 Ljubljana, Slovenia
| | - Janez Kovač
- Department of Surface Engineering, Jožef Stefan Institute (IJS), Jamova 39, 1000 Ljubljana, Slovenia
| | - Karin Stana Kleinschek
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
8
|
Singla S, Htut KZ, Zhu R, Davis A, Ma J, Ni QZ, Burkart MD, Maurer C, Miyoshi T, Dhinojwala A. Isolation and Characterization of Allomelanin from Pathogenic Black Knot Fungus-a Sustainable Source of Melanin. ACS OMEGA 2021; 6:35514-35522. [PMID: 34984283 PMCID: PMC8717558 DOI: 10.1021/acsomega.1c05030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Melanin, a widespread pigment found in many taxa, is widely recognized for its high refractive index, ultraviolet (UV) protection, radical quenching ability, metal binding, and many other unique properties. The aforementioned characteristic traits make melanin a potential candidate for biomedical, separation, structural coloration, and space applications. However, the commercially available natural (sepia) and synthetic melanin are very expensive, limiting their use in various applications. Additionally, eumelanin has been the primary focus in most of these studies. In the present study, we demonstrate that melanin can be extracted from the pathogenic black knot fungus Apiosporina morbosa with a yield of ∼10% using the acid-base extraction method. The extracted melanin shows irregular morphology. Chemical characterization using X-ray photoelectron spectroscopy, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy reveals that the melanin derived from black knots is the less explored nitrogen-free allomelanin. Additionally, the extracted melanin shows broadband UV absorption typical of other types of melanin. Because of the wide availability and low cost of black knots and the invasive nature of the fungus, black knots can serve as an alternative green source for obtaining allomelanin at a low cost, which could stimulate its use as an UV light absorber and antioxidant in cosmetics and packaging industries.
Collapse
Affiliation(s)
- Saranshu Singla
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - K. Zin Htut
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Runyao Zhu
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Amara Davis
- Department
of Chemical Engineering, The University
of Akron, Akron, Ohio 44325, United
States
| | - Jiayang Ma
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Qing Zhe Ni
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093, United States
| | - Michael D. Burkart
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92093, United States
| | | | - Toshikazu Miyoshi
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School
of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
9
|
Spirk S, Palasingh C, Nypelö T. Current Opportunities and Challenges in Biopolymer Thin Film Analysis—Determination of Film Thickness. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.755446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polymer thin films with thickness below 100 nm are a fascinating class of 2D materials with commercial and research applications in many branches ranging from coatings to photoresists and insulating materials, to mention just a few uses. Biopolymers have extended the scope of polymer thin films with unique materials such as cellulose, cellulose nanocrystals, cellulose nanofibrils with tunable water uptake, crystallinity and optical properties. The key information needed in thin biopolymer film use and research is film thickness. It is often challenging to determine precisely and hence several techniques and their combinations are used. Additional challenges with hydrophilic biopolymers such as cellulose are the presence of humidity and the soft and often heterogenous structure of the films. This minireview summarizes currently used methods and techniques for biopolymer thin film thickness analysis and outlines challenges for accurate and reproducible characterization. Cellulose is chosen as the representative biopolymer.
Collapse
|
10
|
Jin SA, Khan SA, Spontak RJ, Rojas OJ. Anion-Specific Water Interactions with Nanochitin: Donnan and Osmotic Pressure Effects as Revealed by Quartz Microgravimetry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11242-11250. [PMID: 34520662 PMCID: PMC8516332 DOI: 10.1021/acs.langmuir.1c01585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of new materials emphasizes greater use of sustainable and eco-friendly resources, including those that take advantage of the unique properties of nanopolysaccharides. Advances in this area, however, necessarily require a thorough understanding of interactions with water. Our contribution to this important topic pertains to the swelling behavior of partially deacetylated nanochitin (NCh), which has been studied here by quartz crystal microgravimetry. Ultrathin films of NCh supported on gold-coated resonators have been equilibrated in aqueous electrolyte solutions (containing NaF, NaCl, NaBr, NaNO3, Na2SO4, Na2SO3, or Na3PO4) at different ionic strengths. As anticipated, NCh displays contrasting swelling/deswelling responses, depending on the ionic affinities and valences of the counterions. The extent of water uptake induced by halide anions, for instance, follows a modified Hofmeister series with F- producing the highest swelling. In marked contrast, Cl- induces film dehydration. We conclude that larger anions promote deswelling such that water losses increase with increasing anion valence. Results such as the ones reported here are critical to ongoing efforts designed to dry chitin nanomaterials and develop bio-based and sustainable materials, including particles, films, coatings, and other nanostructured assemblies, for various devices and applications.
Collapse
Affiliation(s)
- Soo-Ah Jin
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Saad A. Khan
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Richard J. Spontak
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department
of Materials Science & Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J. Rojas
- Department
of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Bioproducts
Institute, Departments of Chemical & Biological Engineering, Chemistry and Wood Science University of British Columbia, Vancouver V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, Aalto University, Espoo 02150, Finland
| |
Collapse
|
11
|
Kittle J, Levin J, Levin N. Water Content of Polyelectrolyte Multilayer Films Measured by Quartz Crystal Microbalance and Deuterium Oxide Exchange. SENSORS 2021; 21:s21030771. [PMID: 33498836 PMCID: PMC7866239 DOI: 10.3390/s21030771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 01/15/2023]
Abstract
Water content of natural and synthetic, thin, polymer films is of considerable interest to a variety of fields because it governs properties such as ion conductivity, rigidity, porosity, and mechanical strength. Measuring thin film water content typically requires either complicated and expensive instrumentation or use of multiple instrumental techniques. However, because a quartz crystal microbalance (QCM) is sensitive to changes in mass and viscosity, deuterated solvent exchange has emerged as a simple, single-instrument, in situ method to quantify thin film water content. Relatively few studies, though, have employed this technique to measure water content of polyelectrolyte multilayers formed by layer-by-layer (LbL) assembly. In this work, poly (allyl amine) (PAH) and poly (styrene sulfonate) (PSS) films of up to nine layers were formed and the water content for each layer was measured via QCM with deuterium oxide exchange. The well-characterized nature of PAH/PSS films facilitated comparisons of the technique used in this work to other instrumental methods. Water content results showed good agreement with the literature and good precision for hydrated films thicker than 20 nm. Collectively, this work highlights the utility, repeatability, and limitations of this deuterated exchange technique in measuring the solvent content of thin films.
Collapse
|
12
|
Chen H, Li X, Yu W, Wang J, Shi Z, Xiong C, Yang Q. Chitin/MoS 2 Nanosheet Dielectric Composite Films with Significantly Enhanced Discharge Energy Density and Efficiency. Biomacromolecules 2020; 21:2929-2937. [PMID: 32469526 DOI: 10.1021/acs.biomac.0c00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
High-performance dielectric nanomaterials have received increasing attention due to their important applications in the field of energy storage. Among various dielectric materials, polymer nanocomposite is one of the most promising candidates. However, the problems of environmental pollution caused by polymer-based dielectric materials have been extensively studied in recent years, which need to be solved urgently, leading to the search for new biodegradable dielectric materials. Herein, we report composite materials based on biodegradable and renewable chitin and molybdenum disulfide (MoS2) nanosheets for the first time. The MoS2 nanosheets were first fabricated by glycerol/urea system and then KOH/urea aqueous solution was used to directly dissolve chitin at low temperature together with the dispersion of the MoS2 nanosheets in a simple green process. The two-dimensional MoS2 nanosheets possess high polarization strength, and a large specific surface area can enhance the interfacial polarization with chitin; meanwhile, it can serve as a charge breakdown barrier to hinder the propagation of electrical tree branches. The results also show that the dielectric constant and breakdown strength of the chitin/MoS2 nanocomposites were increased, while the dielectric loss remained low. When the MoS2 content was 5 wt %, the charge and discharge efficiencies of the composite film were more than 80%, and the breakdown strength also reached 350 MV m-1, thus resulting in a high discharge energy density of 4.91 J cm-3, which was more than twice of the neat chitin (2.17 J cm-3). Furthermore, the nanocomposite films exhibited good thermal stability. Therefore, these chitin-based nanocomposite films are promising as high-performance biomass-based dielectric capacitors.
Collapse
Affiliation(s)
- Huan Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xueqian Li
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenchao Yu
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Jinyu Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Zhuqun Shi
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanxi Xiong
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Quanling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| |
Collapse
|
13
|
In situ generated silica reinforced polyvinyl alcohol/liquefied chitin biodegradable films for food packaging. Carbohydr Polym 2020; 238:116182. [DOI: 10.1016/j.carbpol.2020.116182] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
|
14
|
Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Liu J, Zhu Y, Wang C, Goodell B, Esker AR. Chelator-mediated biomimetic degradation of cellulose and chitin. Int J Biol Macromol 2020; 153:433-440. [PMID: 32109470 DOI: 10.1016/j.ijbiomac.2020.02.262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 01/26/2023]
Abstract
Non-enzymatic degradation of wood via a chelator-mediated Fenton (CMF) system is the primary method for initial attack in brown rot fungal decomposition of wood, the most common type of fungal degradation of terrestrial carbon biomass on the planet. In this study, the degradation of thin films of cellulose and chitin by a CMF system was investigated and compared to enzymatic hydrolysis. The kinetics of the rapid cellulose and chitin deconstruction and the morphologies of the degraded cellulose and chitin surfaces were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM), respectively. The QCM-D results quantitatively indicated that ~90 wt% of the regenerated cellulose or chitin was capable of being deconstructed by CMF action alone. While enzymatic degradation was consistent with stripping of layers from the surface of the cellulose or chitin films, the CMF process exhibited a pronounced two stage process with a rapid initial depolymerization throughout the films. The initial degradation rates for both model surfaces by the CMF system were faster than enzyme action. This research suggests that the CMF process should be applicable for the deconstruction of a wide variety of polysaccharides over Fenton chemistry alone.
Collapse
Affiliation(s)
- Jianzhao Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yuan Zhu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Barry Goodell
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Alan R Esker
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
16
|
Effective dye adsorption behavior of poly(vinyl alcohol)/chitin nanofiber/Fe(III) complex. Int J Biol Macromol 2019; 137:296-306. [DOI: 10.1016/j.ijbiomac.2019.06.213] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022]
|
17
|
Nuclear-targeted p53 and DOX co-delivery of chitosan derivatives for cancer therapy in vitro and in vivo. Colloids Surf B Biointerfaces 2019; 183:110440. [PMID: 31450059 DOI: 10.1016/j.colsurfb.2019.110440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/17/2019] [Accepted: 08/15/2019] [Indexed: 11/24/2022]
Abstract
The nucleus is one of the most important cellular organelles. Chitosan-grafted poly-(N-3-carbobenzyloxy-lysine) (CCL) decorated with human immunodeficiency virus-1 transactivator of transcription (TAT) can co-deliver p53 and doxorubicin into the nucleus simultaneously, such that their antitumor functions are exerted. However, TAT-CCL has been shown to have an anti-tumor effect only in vitro; the effect in vivo was unsatisfactory. Here, a unique nucleus-targeted delivery system based on amidized TAT (aTAT)-CCL with aTAT functional on the surface was designed to achieve a highly efficient nucleus-targeting gene and drug delivery system for effective cancer cell elimination in vitro and in vivo. In this delivery system, TAT is amidized to inhibit its nonspecific interactions. Confocal laser scanning microscopy observations revealed that if aTAT-CCL was incubated in pH 5.0 acetate buffer solution for 24 h before use (named aTAT-CCL-HB), more aTAT-CCL-HB entered the nucleus compared with aTAT-CCL or CCL. aTAT-CCL-HB can also achieve high gene transfection and drug delivery efficiencies and low viability in HepG2 cells. However, only aTAT-CCL achieved extensive circulation in the blood compartment and high antitumor activity in vivo. Amidization of TAT in vectors may become a promising strategy for nucleus-targeted delivery systems, especially in in vivo applications.
Collapse
|
18
|
Burnett ME, Bodiford N, Goulet ME, Coffer JL, Green KN. Environmental effects of chitosan as an immobilization medium for electrochemically active small molecules. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1655550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Marianne E. Burnett
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Nelli Bodiford
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Meghen E. Goulet
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Jeffery L. Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Kayla N. Green
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
19
|
Molina BG, Cuesta S, Puiggalí-Jou A, del Valle LJ, Armelin E, Alemán C. Perforated polyester nanomebranes as templates of electroactive and robust free-standing films. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Wang GH, Chen H, Cai YY, Li L, Yang HK, Li Q, He ZJ, Lin JT. Efficient gene vector with size changeable and nucleus targeting in cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:568-575. [DOI: 10.1016/j.msec.2018.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
|
21
|
Casteleijn MG, Richardson D, Parkkila P, Granqvist N, Urtti A, Viitala T. Spin coated chitin films for biosensors and its analysis are dependent on chitin-surface interactions. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
TAT-conjugated chitosan cationic micelle for nuclear-targeted drug and gene co-delivery. Colloids Surf B Biointerfaces 2017; 162:326-334. [PMID: 29223647 DOI: 10.1016/j.colsurfb.2017.11.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/04/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Abstract
We developed a high-efficiency nucleus-targeted co-delivery vector that delivers genes and drugs directly into the nucleus of cancer cells. The system is based on grafted poly-(N-3-carbobenzyloxy-lysine) (CPCL) with transactivator of transcription (TAT)- chitosan on the surface. It is designed to perform highly efficient nucleus- targeted gene and drug co-delivery. Confocal laser scanning microscopy (CLSM) revealed that more TAT-CPCL entered the nucleus than does CPCL alone. The TAT-modified vector serves as a gene and drug co-delivery mechanism to achieve high gene transfection efficiency, high apoptosis and low viability in HeLa cells. TAT-CPCL may become a vector for cancer gene treatment and a template for designing better co-deliver systems.
Collapse
|
23
|
Solairaj D, Rameshthangam P, Muthukumaran P, Wilson J. Studies on electrochemical glucose sensing, antimicrobial activity and cytotoxicity of fabricated copper nanoparticle immobilized chitin nanostructure. Int J Biol Macromol 2017; 101:668-679. [PMID: 28363648 DOI: 10.1016/j.ijbiomac.2017.03.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
In this study, copper nanoparticle immobilized chitin nanocomposite (CNP/CuNP) was synthesized and used for the development of non-enzymatic electrochemical sensor. The CNP/CuNP was characterized by X-ray diffraction (XRD), fourier transform infra red (FTIR) spectroscopy and high resolution transmission electron microscopy (HRTEM) analysis. The glucose sensing property of CNP/CuNP was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). As a result of the synergistic effect of CNP and CuNP, the modified electrode displayed effective electro-oxidation of glucose in 0.1M NaOH solution. At 0.45V potential the modified electrode showed response towards glucose in the linear range of 1-1000μM with a lowest detection limit of 0.776μM with better selectivity and stability. In addition, the antimicrobial activity of CNP/CuNP was evaluated against bacterial and fungal strains. CNP/CuNP displayed enhanced antimicrobial activity when compared to CNP and CuNP alone. Similarly, cytotoxicity of CNP/CuNP was tested against Artemia salina, which showed no toxic effect in the tested concentration.
Collapse
Affiliation(s)
- Dhanasekaran Solairaj
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Palanivel Rameshthangam
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| | - Palanisamy Muthukumaran
- Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Jeyaraj Wilson
- Department of Bioelectronics and Biosensors, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
24
|
Wansapura PT, Dassanayake RS, Hamood A, Tran P, Moussa H, Abidi N. Preparation of chitin-CdTe quantum dots films and antibacterial effect onStaphylococcus aureusandPseudomonas aeruginosa. J Appl Polym Sci 2017. [DOI: 10.1002/app.44904] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Poorna Tharaka Wansapura
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute; Texas Tech University; Lubbock Texas 79409
| | - Rohan Suranga Dassanayake
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute; Texas Tech University; Lubbock Texas 79409
| | - Abdul Hamood
- Department of Microbiology and Immunology; Texas Tech University Health Science Center; Lubbock Texas 79430
| | - Phat Tran
- Department of Microbiology and Immunology; Texas Tech University Health Science Center; Lubbock Texas 79430
| | - Hanna Moussa
- Department of Mechanical Engineering; Texas Tech University; Lubbock Texas 79409
| | - Noureddine Abidi
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute; Texas Tech University; Lubbock Texas 79409
| |
Collapse
|
25
|
Villares A, Bizot H, Moreau C, Rolland-Sabaté A, Cathala B. Effect of xyloglucan molar mass on its assembly onto the cellulose surface and its enzymatic susceptibility. Carbohydr Polym 2017; 157:1105-1112. [DOI: 10.1016/j.carbpol.2016.10.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/16/2022]
|
26
|
Brown AH, Walsh TR. Elucidating the influence of polymorph-dependent interfacial solvent structuring at chitin surfaces. Carbohydr Polym 2016; 151:916-925. [DOI: 10.1016/j.carbpol.2016.05.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 12/20/2022]
|
27
|
Ganner T, Sattelkow J, Rumpf B, Eibinger M, Reishofer D, Winkler R, Nidetzky B, Spirk S, Plank H. Direct-Write Fabrication of Cellulose Nano-Structures via Focused Electron Beam Induced Nanosynthesis. Sci Rep 2016; 6:32451. [PMID: 27585861 PMCID: PMC5009462 DOI: 10.1038/srep32451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/08/2016] [Indexed: 12/23/2022] Open
Abstract
In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution.
Collapse
Affiliation(s)
- Thomas Ganner
- Institute for Electron Microscopy and Nanoanalysis, Graz
University of Technology, Steyrergasse 17, A-8010
Graz, Austria
| | - Jürgen Sattelkow
- Institute for Electron Microscopy and Nanoanalysis, Graz
University of Technology, Steyrergasse 17, A-8010
Graz, Austria
| | - Bernhard Rumpf
- Institute for Electron Microscopy and Nanoanalysis, Graz
University of Technology, Steyrergasse 17, A-8010
Graz, Austria
| | - Manuel Eibinger
- Institute of Biotechnology and Biochemical Engineering, Graz
University of Technology, Petersgasse 12, A-8010
Graz, Austria
| | - David Reishofer
- Institute for Chemistry and Technology of Materials, Graz
University of Technology, Stremayrgasse 9, 8010
Graz, Austria
| | - Robert Winkler
- Graz Centre for Electron Microscopy, Steyrergasse
17, A-8010
Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz
University of Technology, Petersgasse 12, A-8010
Graz, Austria
- Austrian Centre of Industrial Biotechnology,
Petersgasse 14, A-8010
Graz, Austria
| | - Stefan Spirk
- Institute for Chemistry and Technology of Materials, Graz
University of Technology, Stremayrgasse 9, 8010
Graz, Austria
| | - Harald Plank
- Institute for Electron Microscopy and Nanoanalysis, Graz
University of Technology, Steyrergasse 17, A-8010
Graz, Austria
- Graz Centre for Electron Microscopy, Steyrergasse
17, A-8010
Graz, Austria
| |
Collapse
|
28
|
Ma Z, Liu D, Zhu Y, Li Z, Li Z, Tian H, Liu H. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants. Carbohydr Polym 2016; 144:230-7. [PMID: 27083813 DOI: 10.1016/j.carbpol.2016.02.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/30/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
Abstract
A novel graphene oxide/chitin nanofibrils (GO-CNF) composite foam as a column adsorbent was prepared for aqueous contaminant disposal. The structures, morphologies and properties of composite foams supported by nanofibrils were characterized. As a special case, the adsorption of methylene blue (MB) on GO-CNF was investigated regarding the static adsorption and column adsorption-desorption tests. Results from equilibrium adsorption isotherms indicated that the adsorption behavior was well-fitted to Langmuir model. The composite foams reinforced by CNF were dimensionally stable during the column adsorption process and could be reused after elution. The removal efficiency of MB was still nearly 90% after 3 cycles. Furthermore, other inorganic or organic pollutants adsorbed by composite foams were also explored. Therefore, this novel composite foam with remarkable properties such as dimensional stability, universal adsorbent for cationic pollutants, high adsorption capacity, and ease of regeneration was a desirable adsorbent in the future practical application of water pollutant treatment.
Collapse
Affiliation(s)
- Zhongshi Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dagang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yi Zhu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zehui Li
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenxuan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Huafeng Tian
- Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Haiqing Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Material Science and Engineering, Fujian Normal University, Fujian 350007, China
| |
Collapse
|
29
|
Villares A, Moreau C, Dammak A, Capron I, Cathala B. Kinetic aspects of the adsorption of xyloglucan onto cellulose nanocrystals. SOFT MATTER 2015; 11:6472-81. [PMID: 26179417 DOI: 10.1039/c5sm01413a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In this work, the adsorption of a neutral flexible polysaccharide, xyloglucan (XG), onto thin cellulose nanocrystal (CNC) surfaces has been investigated to get more insight into the CNC-XG association. Gold-coated quartz crystals were spin-coated with one layer of CNC, and XG adsorption was monitored in situ using a quartz crystal microbalance with dissipation (QCM-D). The adsorption of XG under flow at different concentrations did not result in the same surface concentration, which evidenced a kinetically controlled process. In an attempt to describe the binding of XG to CNCs, adsorption data were fitted to a kinetic model comprising a contribution from XG adsorption onto uncovered CNC surfaces and a contribution from XG adsorption after rearrangement. Kinetic studies evidenced the presence of two adsorption regimes as a function of XG concentration. For low XG concentrations, the kinetic constant for chain rearrangement is comparable to the kinetic constant for adsorption. This fact implies a rearrangement and alignment of XG molecules on CNCs. Differently, for higher XG concentrations, the kinetic constant related to the conformational rearrangement decreases, indicating that XG molecules have no time to laterally rearrange before new XG molecules adsorb.
Collapse
Affiliation(s)
- Ana Villares
- UR1268 Biopolymères Interactions Assemblages, INRA, F-44316 Nantes, France.
| | | | | | | | | |
Collapse
|
30
|
Iijima K, Hashizume M. Application of Polysaccharides as Structural Materials. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1419.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Mineo Hashizume
- Department of Industrial Chemistry, Tokyo University of Science
| |
Collapse
|
31
|
Pérez-Madrigal MM, Armelin E, Puiggalí J, Alemán C. Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications. J Mater Chem B 2015; 3:5904-5932. [DOI: 10.1039/c5tb00624d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Free-standing nanomembranes, which are emerging as versatile elements in biomedical applications, are evolving from being composed of insulating (bio)polymers to electroactive conducting polymers.
Collapse
Affiliation(s)
- Maria M. Pérez-Madrigal
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química
- ETSEIB
- Universitat Politècnica de Catalunya
- Barcelona E-08028
- Spain
| |
Collapse
|
32
|
Dahmen JL, Yang Y, Greenlief CM, Stacey G, Hunt HK. Interfacing Whispering Gallery Mode Optical Microresonator Biosensors with the Plant Defense Elicitor Chitin. Colloids Surf B Biointerfaces 2014; 122:241-249. [DOI: 10.1016/j.colsurfb.2014.06.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 01/06/2023]
|
33
|
Torres-Rendon JG, Schacher FH, Ifuku S, Walther A. Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison. Biomacromolecules 2014; 15:2709-17. [DOI: 10.1021/bm500566m] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - Felix H. Schacher
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Jena Center for Soft
Matter (JCSM), Friedrich-Schiller-University Jena, Lessingstr. 8, D-07743 Jena, Germany
| | - Shinsuke Ifuku
- Graduate
School of Engineering, Tottori University, 101-4 Koyama-cho Minami, Tottori, 680-8502, Japan
| | | |
Collapse
|
34
|
Wang C, Esker AR. Nanocrystalline chitin thin films. Carbohydr Polym 2014; 102:151-8. [DOI: 10.1016/j.carbpol.2013.10.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/26/2013] [Accepted: 10/31/2013] [Indexed: 11/28/2022]
|
35
|
Wang C, Kittle JD, Qian C, Roman M, Esker AR. Chitinase Activity on Amorphous Chitin Thin Films: A Quartz Crystal Microbalance with Dissipation Monitoring and Atomic Force Microscopy Study. Biomacromolecules 2013; 14:2622-8. [DOI: 10.1021/bm4004833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Wang
- Department
of Chemistry and ‡Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joshua D. Kittle
- Department
of Chemistry and ‡Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chen Qian
- Department
of Chemistry and ‡Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maren Roman
- Department
of Chemistry and ‡Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alan R. Esker
- Department
of Chemistry and ‡Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
36
|
Grove TZ, Regan L, Cortajarena AL. Nanostructured functional films from engineered repeat proteins. J R Soc Interface 2013; 10:20130051. [PMID: 23594813 DOI: 10.1098/rsif.2013.0051] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Fundamental advances in biotechnology, medicine, environment, electronics and energy require methods for precise control of spatial organization at the nanoscale. Assemblies that rely on highly specific biomolecular interactions are an attractive approach to form materials that display novel and useful properties. Here, we report on assembly of films from the designed, rod-shaped, superhelical, consensus tetratricopeptide repeat protein (CTPR). We have designed three peptide-binding sites into the 18 repeat CTPR to allow for further specific and non-covalent functionalization of films through binding of fluorescein labelled peptides. The fluorescence signal from the peptide ligand bound to the protein in the solid film is anisotropic, demonstrating that CTPR films can impose order on otherwise isotropic moieties. Circular dichroism measurements show that the individual protein molecules retain their secondary structure in the film, and X-ray scattering, birefringence and atomic force microscopy experiments confirm macroscopic alignment of CTPR molecules within the film. This work opens the door to the generation of innovative biomaterials with tailored structure and function.
Collapse
Affiliation(s)
- Tijana Z Grove
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
37
|
Suginta W, Khunkaewla P, Schulte A. Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem Rev 2013; 113:5458-79. [DOI: 10.1021/cr300325r] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wipa Suginta
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Panida Khunkaewla
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Albert Schulte
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| |
Collapse
|
38
|
Dultsev FN, Kolosovsky EA, Mik IA. New procedure to record the rupture of bonds between macromolecules and the surface of the quartz crystal microbalance (QCM). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:13793-13797. [PMID: 22973802 DOI: 10.1021/la302907r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is shown that an increase in the amplitude of QCM shear oscillations during frequency scanning around the resonance frequency is accompanied (at a definite voltage) by distortions in the amplitude-frequency dependence for QCM. We demonstrated that these distortions are connected to the rupture of macromolecules from the QCM surface. It is shown that the identification of the rupture of particles and macromolecules from the QCM surface can be carried out by relying on the analysis of these distortions of the amplitude-frequency dependence. The distortions were distinguished as a signal. The number of broken bonds can be estimated from the value of this distortion signal, and the threshold voltage applied to the system can be used to estimate the rupture force to high accuracy. Using the proposed method, we estimated the strength of a physical bond, which was 3 pN. This procedure can be useful for studying biological objects and represents an advanced step in the development of the REVS (rupture event scanning) technique.
Collapse
Affiliation(s)
- Fedor N Dultsev
- Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia.
| | | | | |
Collapse
|