1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Crisp AR, Short B, Rowan L, Ramage G, Rehman IU, Short RD, Williams C. Investigating the chemical pathway to the formation of a single biofilm using infrared spectroscopy. Biofilm 2023; 6:100141. [PMID: 37449091 PMCID: PMC10336410 DOI: 10.1016/j.bioflm.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diagnosing biofilm infections has remained a constant challenge for the last 50 years. Existing diagnostic methods struggle to identify the biofilm phenotype. Moreover, most methods of biofilm analysis destroy the biofilm making the resultant data interpretation difficult. In this study we introduce Fourier Transform Infra-Red (FTIR) spectroscopy as a label-free, non-destructive approach to monitoring biofilm progression. We have utilised FTIR in a novel application to evaluate the chemical composition of bacterial biofilms without disrupting the biofilm architecture. S. epidermidis (RP62A) was grown onto calcium fluoride slides for periods of 30 min-96 h, before semi-drying samples for analysis. We report the discovery of a chemical marker to distinguish between planktonic and biofilm samples. The appearance of new proteins in biofilm samples of varying maturity is exemplified in the spectroscopic data, highlighting the potential of FTIR for identifying the presence and developmental stage of a single biofilm.
Collapse
Affiliation(s)
- Amy R. Crisp
- Engineering Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Bryn Short
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laurence Rowan
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Robert D. Short
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | | |
Collapse
|
3
|
Sportelli MC, Kranz C, Mizaikoff B, Cioffi N. Recent advances on the spectroscopic characterization of microbial biofilms: A critical review. Anal Chim Acta 2022; 1195:339433. [DOI: 10.1016/j.aca.2022.339433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023]
|
4
|
Dubus M, Varin J, Papa S, Chevrier J, Quilès F, Francius G, Audonnet S, Mauprivez C, Gangloff S, Siboni R, Ohl X, Reffuveille F, Kerdjoudj H. Bone marrow mesenchymal stem cells offer an immune-privileged niche to Cutibacterium acnes in case of implant-associated osteomyelitis. Acta Biomater 2022; 137:305-315. [PMID: 34678484 DOI: 10.1016/j.actbio.2021.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/23/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
Considered as some of the most devastating complications, Cutibacterium acnes (C. acnes)-related osteomyelitis are among the hardest infections to diagnose and treat. Mesenchymal stem cells (MSCs) secrete number of immunomodulatory and antimicrobial soluble factors, making them an attractive treatment for bacterial infection. In this study, we examined MSCs/C. acnes interaction and analyzed the subsequent MSCs and bacteria's behaviors. Human bone marrow-derived MSCs were infected by C. acnes clinical strain harvested from non-infected bone site. Following 3 h of interaction, around 4% of bacteria were found in the intracellular compartment. Infected MSCs increased the secretion of prostaglandin E2 and indolamine 2,3 dioxygenase immunomodulatory mediators. Viable intracellular bacteria analyzed by infrared spectroscopy and atomic force microscopy revealed deep modifications in the wall features. In comparison with unchallenged bacteria, the viable intracellular bacteria showed (i) an increase in biofilm formation on orthopaedical-based materials, (ii) an increase in the invasiveness of osteoblasts and (iii) persistence in macrophage, suggesting the acquisition of virulence factors. Overall, these results showed a direct impact of C. acnes on bone marrow-derived MSCs, suggesting that blocking the C. acnes/MSCs interactions may represent an important new approach to manage chronic osteomyelitis infections. STATEMENT OF SIGNIFICANCE: The interaction of bone commensal C. acnes with bone marrow mesenchymal stem cells induces modifications in C. acnes wall characteristics. These bacteria increased (i) the biofilm formation on orthopaedical-based materials, (ii) the invasiveness of bone forming cells and (iii) the resistance to macrophage clearance through the modification of the wall nano-features and/or the increase in catalase production.
Collapse
|
5
|
Doppler P, Gasser C, Kriechbaum R, Ferizi A, Spadiut O. In Situ Quantification of Polyhydroxybutyrate in Photobioreactor Cultivations of Synechocystis sp. Using an Ultrasound-Enhanced ATR-FTIR Spectroscopy Probe. Bioengineering (Basel) 2021; 8:bioengineering8090129. [PMID: 34562950 PMCID: PMC8469707 DOI: 10.3390/bioengineering8090129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a very promising alternative to most petroleum-based plastics with the huge advantage of biodegradability. Biotechnological production processes utilizing cyanobacteria as sustainable source of PHB require fast in situ process analytical technology (PAT) tools for sophisticated process monitoring. Spectroscopic probes supported by ultrasound particle traps provide a powerful technology for in-line, nondestructive, and real-time process analytics in photobioreactors. This work shows the great potential of using ultrasound particle manipulation to improve spectroscopic attenuated total reflection Fourier-transformed mid-infrared (ATR-FTIR) spectra as a monitoring tool for PHB production processes in photobioreactors.
Collapse
Affiliation(s)
- Philipp Doppler
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria; (P.D.); (R.K.)
| | - Christoph Gasser
- usePAT GmbH, Schönbrunner Strasse 231/2.01, 1120 Vienna, Austria; (C.G.); (A.F.)
| | - Ricarda Kriechbaum
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria; (P.D.); (R.K.)
| | - Ardita Ferizi
- usePAT GmbH, Schönbrunner Strasse 231/2.01, 1120 Vienna, Austria; (C.G.); (A.F.)
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria; (P.D.); (R.K.)
- Correspondence: ; Tel.: +43-1-58801-166473
| |
Collapse
|
6
|
Alkhalaf SA, Ramadan AR, Obuekwe C, El Nayal AM, Abotalib N, Ismail W. Heavy Vacuum Gas Oil Upregulates the Rhamnosyltransferases and Quorum Sensing Cascades of Rhamnolipids Biosynthesis in Pseudomonas sp. AK6U. Molecules 2021; 26:molecules26144122. [PMID: 34299397 PMCID: PMC8307569 DOI: 10.3390/molecules26144122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
We followed a comparative approach to investigate how heavy vacuum gas oil (HVGO) affects the expression of genes involved in biosurfactants biosynthesis and the composition of the rhamnolipid congeners in Pseudomonas sp. AK6U. HVGO stimulated biosurfactants production as indicated by the lower surface tension (26 mN/m) and higher yield (7.8 g/L) compared to a glucose culture (49.7 mN/m, 0.305 g/L). Quantitative real-time PCR showed that the biosurfactants production genes rhlA and rhlB were strongly upregulated in the HVGO culture during the early and late exponential growth phases. To the contrary, the rhamnose biosynthesis genes algC, rmlA and rmlC were downregulated in the HVGO culture. Genes of the quorum sensing systems which regulate biosurfactants biosynthesis exhibited a hierarchical expression profile. The lasI gene was strongly upregulated (20-fold) in the HVGO culture during the early log phase, whereas both rhlI and pqsE were upregulated during the late log phase. Rhamnolipid congener analysis using high-performance liquid chromatography-mass spectrometry revealed a much higher proportion (up to 69%) of the high-molecularweight homologue Rha–Rha–C10–C10 in the HVGO culture. The results shed light on the temporal and carbon source-mediated shifts in rhamonlipids’ composition and regulation of biosynthesis which can be potentially exploited to produce different rhamnolipid formulations tailored for specific applications.
Collapse
Affiliation(s)
- Sarah A. Alkhalaf
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama 26671, Bahrain; (S.A.A.); (A.M.E.N.); (N.A.)
| | - Ahmed R. Ramadan
- Health Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama 26671, Bahrain;
| | - Christian Obuekwe
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait 12037, Kuwait;
| | - Ashraf M. El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama 26671, Bahrain; (S.A.A.); (A.M.E.N.); (N.A.)
| | - Nasser Abotalib
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama 26671, Bahrain; (S.A.A.); (A.M.E.N.); (N.A.)
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama 26671, Bahrain; (S.A.A.); (A.M.E.N.); (N.A.)
- Correspondence:
| |
Collapse
|
7
|
Woodcock SD, Syson K, Little RH, Ward D, Sifouna D, Brown JKM, Bornemann S, Malone JG. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa. PLoS Genet 2021; 17:e1009524. [PMID: 33872310 PMCID: PMC8084333 DOI: 10.1371/journal.pgen.1009524] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress. Author summary To survive outside their host, pathogenic bacteria must withstand various environmental stresses. The sugar molecule trehalose is associated with a range of abiotic stress tolerances, particularly osmotic shock. In this study, we analyse the trehalose metabolic network in the human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is intimately connected to the biosynthesis of branched α-glucan, or glycogen. Disruption of either trehalose or glycogen biosynthesis significantly reduces the ability of PAO1 to survive on steel work surfaces. While both trehalose and glycogen are important for stress tolerance, they counter very different stresses. Trehalose is important for the osmotic stress response, and survival in conditions of elevated salt. On the other hand, glycogen is responsible for desiccation tolerance and survival in low humidity environments. Trehalose does not apparently contribute to desiccation tolerance, marking a clear distinction between the roles of trehalose and glycogen in mediating abiotic stress responses in P. aeruginosa.
Collapse
Affiliation(s)
- Stuart D. Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard H. Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Despoina Sifouna
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - James K. M. Brown
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Hinchliffe JD, Parassini Madappura A, Syed Mohamed SMD, Roy I. Biomedical Applications of Bacteria-Derived Polymers. Polymers (Basel) 2021; 13:1081. [PMID: 33805506 PMCID: PMC8036740 DOI: 10.3390/polym13071081] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Plastics have found widespread use in the fields of cosmetic, engineering, and medical sciences due to their wide-ranging mechanical and physical properties, as well as suitability in biomedical applications. However, in the light of the environmental cost of further upscaling current methods of synthesizing many plastics, work has recently focused on the manufacture of these polymers using biological methods (often bacterial fermentation), which brings with them the advantages of both low temperature synthesis and a reduced reliance on potentially toxic and non-eco-friendly compounds. This can be seen as a boon in the biomaterials industry, where there is a need for highly bespoke, biocompatible, processable polymers with unique biological properties, for the regeneration and replacement of a large number of tissue types, following disease. However, barriers still remain to the mass-production of some of these polymers, necessitating new research. This review attempts a critical analysis of the contemporary literature concerning the use of a number of bacteria-derived polymers in the context of biomedical applications, including the biosynthetic pathways and organisms involved, as well as the challenges surrounding their mass production. This review will also consider the unique properties of these bacteria-derived polymers, contributing to bioactivity, including antibacterial properties, oxygen permittivity, and properties pertaining to cell adhesion, proliferation, and differentiation. Finally, the review will select notable examples in literature to indicate future directions, should the aforementioned barriers be addressed, as well as improvements to current bacterial fermentation methods that could help to address these barriers.
Collapse
Affiliation(s)
| | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S1 3JD, UK; (J.D.H.); (A.P.M.); (S.M.D.S.M.)
| |
Collapse
|
9
|
Huang Y, Pei Q, Deng R, Zheng X, Guo J, Guo D, Yang Y, Liang S, Shi C. Inactivation Efficacy of 405 nm LED Against Cronobacter sakazakii Biofilm. Front Microbiol 2020; 11:610077. [PMID: 33329502 PMCID: PMC7728857 DOI: 10.3389/fmicb.2020.610077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
The objectives of this study were to evaluate the inactivation efficacy of a 405-nm light-emitting diode (LED) against Cronobacter sakazakii biofilm formed on stainless steel and to determine the sensitivity change of illuminated biofilm to food industrial disinfectants. The results showed that LED illumination significantly reduced the population of viable biofilm cells, showing reduction of 2.0 log (25°C), 2.5 log (10°C), and 2.0 log (4°C) between the non-illuminated and LED-illuminated groups at 4 h. Images of confocal laser scanning microscopy and scanning electron microscopy revealed the architectural damage to the biofilm caused by LED illumination, which involved destruction of the stereoscopic conformation of the biofilm. Moreover, the loss of biofilm components (mainly polysaccharide and protein) was revealed by attenuated total reflection Fourier-transformed infrared spectroscopy, and the downregulation of genes involved in C. sakazakii biofilm formation was confirmed by real time quantitative PCR analysis, with greatest difference observed in fliD. In addition, the sensitivity of illuminated-biofilm cells to disinfectant treatment was found to significantly increased, showing the greatest sensitivity change with 1.5 log reduction between non-LED and LED treatment biofilms in the CHX-treated group. These results indicated that 405 nm LED illumination was effective at inactivating C. sakazakii biofilm adhering to stainless steel. Therefore, the present study suggests the potential of 405 nm LED technology in controlling C. sakazakii biofilms in food processing and storage, minimizing the risk of contamination.
Collapse
Affiliation(s)
- Yixiao Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Quanwei Pei
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruisha Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaoying Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jialu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Sen Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Role of ionic strength in the retention and initial attachment ofPseudomonas putidato quartz sand. Biointerphases 2018; 13:041005. [DOI: 10.1116/1.5027735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Yu Q, Zhang B, Li J, Du T, Yi X, Li M, Chen W, Alvarez PJJ. Graphene oxide significantly inhibits cell growth at sublethal concentrations by causing extracellular iron deficiency. Nanotoxicology 2017; 11:1102-1114. [DOI: 10.1080/17435390.2017.1398357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Tingting Du
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Xiao Yi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Science, Nankai University, Tianjin, China
| | - Wei Chen
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
13
|
Perni S, Preedy EC, Landini P, Prokopovich P. Influence of csgD and ompR on Nanomechanics, Adhesion Forces, and Curli Properties of E. coli. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7965-7974. [PMID: 27434665 DOI: 10.1021/acs.langmuir.6b02342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Curli are bacterial appendages involved in the adhesion of cells to surfaces; their synthesis is regulated by many genes such as csgD and ompR. The expression of the two curli subunits (CsgA and CsgB) in Escherichia coli (E. coli) is regulated by CsgD; at the same time, csgD transcription is under the control of OmpR. Therefore, both genes are involved in the control of curli production. In this work, we elucidated the role of these genes in the nanomechanical and adhesive properties of E. coli MG1655 (a laboratory strain not expressing significant amount of curli) and its curli-producing mutants overexpressing OmpR and CsgD, employing atomic force microscopy (AFM). Nanomechanical analysis revealed that the expression of these genes gave origin to cells with a lower Young's modulus (E) and turgidity (P0), whereas the adhesion forces were unaffected when genes involved in curli formation were expressed. AFM was also employed to study the primary structure of the curli expressed through the freely jointed chain (FJC) model for polymers. CsgD increased the number of curli on the surface more than OmpR did, and the overexpression of both genes did not result in a greater number of curli. Neither of the genes had an impact on the structure (total length of the polymer and number and length of Kuhn segments) of the curli. Our results further suggest that, despite the widely assumed role of curli in cell adhesion, cell adhesion force is also dictated by surface properties because no relation between the number of curli expressed on the surface and cell adhesion was found.
Collapse
Affiliation(s)
- Stefano Perni
- Cardiff School of Pharmacy and Pharmaceutical Science, Cardiff University , Cardiff, U.K. CF10 3NB
| | - Emily Callard Preedy
- Cardiff School of Pharmacy and Pharmaceutical Science, Cardiff University , Cardiff, U.K. CF10 3NB
| | - Paolo Landini
- Department of Biomolecular Sciences and Biotechnology, University of Milan , 20122 Milan, Italy
| | - Polina Prokopovich
- Cardiff School of Pharmacy and Pharmaceutical Science, Cardiff University , Cardiff, U.K. CF10 3NB
| |
Collapse
|
14
|
Pellizzoni E, Ravalico F, Scaini D, Delneri A, Rizzo R, Cescutti P. Biofilms produced by Burkholderia cenocepacia: influence of media and solid supports on composition of matrix exopolysaccharides. MICROBIOLOGY-SGM 2015; 162:283-294. [PMID: 26586192 DOI: 10.1099/mic.0.000214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bacteria usually grow forming biofilms, which are communities of cells embedded in a self-produced dynamic polymeric matrix, characterized by a complex three-dimensional structure. The matrix holds cells together and above a surface, and eventually releases them, resulting in colonization of other surfaces. Although exopolysaccharides (EPOLs) are important components of the matrix, determination of their structure is usually performed on samples produced in non-biofilm conditions, or indirectly through genetic studies. Among the Burkholderia cepacia complex species, Burkholderia cenocepacia is an important pathogen in cystic fibrosis (CF) patients and is generally more aggressive than other species. In the present investigation, B. cenocepacia strain BTS2, a CF isolate, was grown in biofilm mode on glass slides and cellulose membranes, using five growth media, one of which mimics the nutritional content of CF sputum. The structure of the matrix EPOLs was determined by 1H-NMR spectroscopy, while visualization of the biofilms on glass slides was obtained by means of confocal laser microscopy, phase-contrast microscopy and atomic force microscopy. The results confirmed that the type of EPOLs biosynthesized depends both on the medium used and on the type of support, and showed that mucoid conditions do not always lead to significant biofilm production, while bacteria in a non-mucoid state can still form biofilm containing EPOLs.
Collapse
Affiliation(s)
- Elena Pellizzoni
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Fabio Ravalico
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Denis Scaini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Ambra Delneri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, via L. Giorgieri 1, Bdg C11, 34127Trieste, Italy
| |
Collapse
|
15
|
Quilès F, Saadi S, Francius G, Bacharouche J, Humbert F. In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:75-84. [PMID: 26525662 DOI: 10.1016/j.bbamem.2015.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/29/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022]
Abstract
Against the increase of bacterial resistance to traditional antibiotics, antimicrobial peptides (AMP) are considered as promising alternatives. Bacterial biofilms are more resistant to antibiotics that their planktonic counterpart. The purpose of this study was to investigate the action of an AMP against a nascent bacterial biofilm. The activity of dermaseptin S4 derivative S4(1-16)M4Ka against 6 h-old Pseudomonas fluorescens biofilms was assessed by using a combination of Attenuated Total Reflectance-Fourier Transform InfraRed (ATR-FTIR) spectroscopy in situ and in real time, fluorescence microscopy using the Baclight™ kit, and Atomic Force Microscopy (AFM, imaging and force spectroscopy). After exposure to the peptide at three concentrations, different dramatic and fast changes over time were observed in the ATR-FTIR fingerprints reflecting a concentration-dependent action of the AMP. The ATR-FTIR spectra revealed major biochemical and physiological changes, adsorption/accumulation of the AMP on the bacteria, loss of membrane lipids, bacterial detachment, bacterial regrowth, or inhibition of biofilm growth. AFM allowed estimating at the nanoscale the effect of the AMP on the nanomechanical properties of the sessile bacteria. The bacterial membrane elasticity data measured by force spectroscopy were consistent with ATR-FTIR spectra, and they allowed suggesting a mechanism of action of this AMP on sessile P. fluorescens. The combination of these three techniques is a powerful tool for in situ and in real time monitoring the activity of AMPs against bacteria in a biofilm.
Collapse
Affiliation(s)
- Fabienne Quilès
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France; Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France.
| | - Souhir Saadi
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France; Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France; Laboratoire de Biochimie Faculté de Médecine de Sousse, Avenue Mohamed Karoui, 4002 Sousse, Tunisia
| | - Grégory Francius
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France; Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Jalal Bacharouche
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France; Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - François Humbert
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France; Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|
16
|
Burgain J, Scher J, Lebeer S, Vanderleyden J, Corgneau M, Guerin J, Caillet C, Duval JF, Francius G, Gaiani C. Impacts of pH-mediated EPS structure on probiotic bacterial pili–whey proteins interactions. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Almagro G, Viale AM, Montero M, Rahimpour M, Muñoz FJ, Baroja-Fernández E, Bahaji A, Zúñiga M, González-Candelas F, Pozueta-Romero J. Comparative genomic and phylogenetic analyses of Gammaproteobacterial glg genes traced the origin of the Escherichia coli glycogen glgBXCAP operon to the last common ancestor of the sister orders Enterobacteriales and Pasteurellales. PLoS One 2015; 10:e0115516. [PMID: 25607991 PMCID: PMC4301808 DOI: 10.1371/journal.pone.0115516] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022] Open
Abstract
Production of branched α-glucan, glycogen-like polymers is widely spread in the Bacteria domain. The glycogen pathway of synthesis and degradation has been fairly well characterized in the model enterobacterial species Escherichia coli (order Enterobacteriales, class Gammaproteobacteria), in which the cognate genes (branching enzyme glgB, debranching enzyme glgX, ADP-glucose pyrophosphorylase glgC, glycogen synthase glgA, and glycogen phosphorylase glgP) are clustered in a glgBXCAP operon arrangement. However, the evolutionary origin of this particular arrangement and of its constituent genes is unknown. Here, by using 265 complete gammaproteobacterial genomes we have carried out a comparative analysis of the presence, copy number and arrangement of glg genes in all lineages of the Gammaproteobacteria. These analyses revealed large variations in glg gene presence, copy number and arrangements among different gammaproteobacterial lineages. However, the glgBXCAP arrangement was remarkably conserved in all glg-possessing species of the orders Enterobacteriales and Pasteurellales (the E/P group). Subsequent phylogenetic analyses of glg genes present in the Gammaproteobacteria and in other main bacterial groups indicated that glg genes have undergone a complex evolutionary history in which horizontal gene transfer may have played an important role. These analyses also revealed that the E/P glgBXCAP genes (a) share a common evolutionary origin, (b) were vertically transmitted within the E/P group, and (c) are closely related to glg genes of some phylogenetically distant betaproteobacterial species. The overall data allowed tracing the origin of the E. coli glgBXCAP operon to the last common ancestor of the E/P group, and also to uncover a likely glgBXCAP transfer event from the E/P group to particular lineages of the Betaproteobacteria.
Collapse
Affiliation(s)
- Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Alejandro M. Viale
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000 Rosario, Argentina
| | - Manuel Montero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Mehdi Rahimpour
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Manuel Zúñiga
- Dpt. Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Calle Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Fernando González-Candelas
- Unidad Mixta Genómica y Salud, FISABIO-Salud Pública/Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Calle Catedrático José Beltrán Martínez, 246980 Paterna, Valencia, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| |
Collapse
|
18
|
Burgain J, Scher J, Lebeer S, Vanderleyden J, Cailliez-Grimal C, Corgneau M, Francius G, Gaiani C. Significance of bacterial surface molecules interactions with milk proteins to enhance microencapsulation of Lactobacillus rhamnosus GG. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.03.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Wang C, Yadavalli VK. Spatial recognition and mapping of proteins using DNA aptamers. NANOTECHNOLOGY 2014; 25:455101. [PMID: 25338629 DOI: 10.1088/0957-4484/25/45/455101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Atomic force microscopy-based adhesion force measurements have emerged as a powerful tool for the biophysical analyses of biological systems. Such measurements can now be extended to detection and mapping of biomolecules on surfaces via integrated imaging and force spectroscopy techniques. Critical to these experiments is the choice of the biomolecular recognition probe. In this study, we demonstrate how oligonucleotide aptamers can be used as versatile probes to simultaneously image and spatially locate targets on surfaces. We focus on two structurally distinct proteins relevant to the clotting cascade - human α-thrombin and vascular endothelial growth factor. Via AFM-recognition mapping using specific DNA aptamers on a commercially available instrument, we show a clear consistency between height and force measurements obtained simultaneously. Importantly, we are able to observe changes in binding due to changes in the external microenvironment, which demonstrate the ability to study fluctuating biological systems in real time. The aptamer specificity and the ability to distinguish their targets are shown through positive and negative controls. It is therefore possible to generate high resolution maps to spatially and temporally identify proteins at the molecular level on complex surfaces.
Collapse
|
20
|
Fahs A, Quilès F, Jamal D, Humbert F, Francius G. In Situ Analysis of Bacterial Extracellular Polymeric Substances from a Pseudomonas fluorescens Biofilm by Combined Vibrational and Single Molecule Force Spectroscopies. J Phys Chem B 2014; 118:6702-13. [DOI: 10.1021/jp5030872] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ahmad Fahs
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Fabienne Quilès
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Dima Jamal
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - François Humbert
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique
et Microbiologie pour l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|
21
|
Quilès F, Humbert F. On the production of glycogen by Pseudomonas fluorescens during biofilm development: an in situ study by attenuated total reflection-infrared with chemometrics. BIOFOULING 2014; 30:709-718. [PMID: 24835847 DOI: 10.1080/08927014.2014.915956] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to monitor Pseudomonas fluorescens biofilms in situ, non-destructively, in real time, and under fully hydrated conditions. Changes accompanying the metabolic evolution of the sessile bacterial cells from the nascent biofilm monolayer to the beginning of the multi-layered structure in the presence of nutrients were identified via the ATR-FTIR fingerprints of the young biofilm on the ATR crystal. The ATR-FTIR spectra were analysed by classical methods (time evolution of integrated intensities and profile evolution of specific bands), and also by a multivariate curve resolution, Bayesian positive source separation, to extract the pure component spectra and their change of concentration over time occurring during biofilm settlement. This work showed clearly the overproduction of glycogen by sessile P. fluorescens, which had not previously been described by other research groups.
Collapse
Affiliation(s)
- Fabienne Quilès
- a Université de Lorraine , Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, F-54500 , Vandoeuvre-lès-Nancy , France
| | | |
Collapse
|
22
|
Wang C, Yadavalli VK. Investigating biomolecular recognition at the cell surface using atomic force microscopy. Micron 2014; 60:5-17. [PMID: 24602267 DOI: 10.1016/j.micron.2014.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
23
|
Wang H, Ding S, Wang G, Xu X, Zhou G. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. Int J Food Microbiol 2013; 167:293-302. [DOI: 10.1016/j.ijfoodmicro.2013.10.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 11/27/2022]
|
24
|
Francius G, Henry R, Duval JFL, Bruneau E, Merlin J, Fahs A, Leblond-Bourget N. Thermo-regulated adhesion of the Streptococcus thermophilus Δrgg0182 strain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4847-4856. [PMID: 23530723 DOI: 10.1021/la4001895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The physicochemical determinants governing the temperature-dependent adhesion of Streptococcus thermophilus to abiotic surfaces are identified under physiological condition for cells either lacking or not the Rgg0182 transcriptional regulator involved in their thermal adaptation. For that purpose, the wild type LMG18311 strain and Δrgg0182 mutant were imaged using highly resolved atomic force microscopy (AFM) at various cell growth temperatures (42 to 55 °C). The corresponding hydrophobic/hydrophilic balance of the cells was quantitatively addressed via the measurement by chemical force microcopy of their adhesion to a reference hydrophobic surface. Analysis of force-separation distance curves further allowed us to discriminate cell surfaces according to the presence or absence of biopolymers. These results were interpreted in relation to the measured adhesion of the Δrgg0182 mutant onto the hydrophobic wall of microwells in the temperature range from 46 to 52 °C. It is evidenced that the viscoelastic Δrgg0182 cell envelop behaves as a thermo-responsive film whose hydrophobicity increases with increasing temperature, thereby favoring cell attachment to hydrophobic surfaces. Regardless cell growth temperature, wild-type cells do not attach to hydrophobic surfaces and the presence of the Rgg0182 transcriptional regulator is associated with the synthesis of hydrophilic cell surface biopolymers. Throughout, the impact of electrostatics on bioadhesion is ruled out upon examination of electrohydrodynamic cell properties at 50 °C.
Collapse
Affiliation(s)
- Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy F-54600, France.
| | | | | | | | | | | | | |
Collapse
|