1
|
Zhang P, Hu J, Liu X, Li Y, Pang S, Liu S. Antiadhesion Biomaterials in Tendon Repair: Application Status and Future Prospect. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38534262 DOI: 10.1089/ten.teb.2023.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The healing process after tendon injury is often accompanied by the formation of peritendinous adhesion, contributing to limb dysfunction and exerting detrimental effects on the individuals, as well as the development of society and economy. With the continuous development of material science, as well as the augmented understanding of tendon healing and the mechanism of peritendinous adhesion formation, materials used for the fabrication of barrier membranes against peritendinous adhesion emerge endlessly. In this article, based on the analysis of the mechanism of adhesion formation, we first review the commonly used natural and synthetic materials, along with their corresponding fabrication strategies, in order to furnish valuable insights for the future optimization and development of antiperitendinous adhesion barrier membranes. This article also discusses the interaction between antiadhesion materials and cells for ameliorating peritendinous adhesion.
Collapse
Affiliation(s)
- Peilin Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Xiaonan Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhao Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sa Pang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Cherri M, Romero JF, Steiner L, Dimde M, Koeppe H, Paulus B, Mohammadifar E, Haag R. Power of the Disulfide Bond: An Ideal Random Copolymerization of Biodegradable Redox-Responsive Hyperbranched Polyglycerols. Biomacromolecules 2024; 25:119-133. [PMID: 38112688 DOI: 10.1021/acs.biomac.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The development of copolymerization techniques that can randomly incorporate biodegradable moieties into the hyperbranched polyglycerol backbone is an option to prevent its bioaccumulation in vivo. In this study, redox-responsive and biocompatible hyperbranched polyglycerol copolymers of glycidol and 1,4,5-oxadithiepan-2-one were synthesized with an adjustable molecular weight and a defined disulfide bond content through anionic and coordination-insertion ring-opening polymerization. A truly random incorporation of the monomers was achieved under both copolymerization mechanisms. The copolymers were further characterized in terms of their aggregation behavior in solution, degradability, in vitro cell viability, and blood compatibility for potential future biomedical applications. Transmission electron microscopy revealed that the copolymer assembled into nanoparticles with a size range of 20 nm. The copolymers underwent degradation when incubated with two different reducing agents, resulting in smaller fragments of the polymer with thiol end groups. The copolymers demonstrated good biocompatibility, making them suitable for further investigation in biomedical applications.
Collapse
Affiliation(s)
- Mariam Cherri
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - J Fernanda Romero
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Luca Steiner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Mathias Dimde
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy, Freie Universität Berlin, Berlin 14195, Germany
| | - Hanna Koeppe
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Beate Paulus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
3
|
Kumar Awasthi A, Bhagat SD, Banerjee A, Srivastava A. Design of Cationic Lipids with Acetal Linkers: Conformational Preferences, Hydrolytic Stability, and High Drug-Loading Abilities. Chembiochem 2023; 24:e202300449. [PMID: 37458943 DOI: 10.1002/cbic.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Lipids are key constituents of numerous biomedical drug delivery technologies. Here, we present the design, synthesis and biophysical characterizations of a library of cationic lipids containing an acetal residue in their linker region. These cationic acetal lipids (CALs) were conveniently prepared through a trans-acetalization protocol from commercially available precursors. NMR studies highlighted the conformational rigidity at the acetal residue and the high hydrolytic stability of these CALs. Fluorescence anisotropy studies revealed that the CAL with a pyridinium headgroup (CAL1) formed highly cohesive vesicular aggregates in water. These structural and self-assembly features of the CAL1 allowed up to 196 % w/w loading of curcumin (Cur) as a representative hydrophobic drug. A reconstitutable formulation of Cur was obtained as a result, which could deliver the drug inside mammalian cells with very high efficiency. The hemocompatibility and cytocompatibility of CAL1 was significantly enhanced by creating a coating of polydopamine (PDA) onto its vesicular assemblies to produce hybrid lipid-polymer nanocapsules. This work demonstrates rapid access to the useful synthetic lipid formulations with high potential in drug and gene delivery applications.
Collapse
Affiliation(s)
- Anand Kumar Awasthi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri Bhopal Bypass Road, Bhopal, 462066, India
| | - Somnath D Bhagat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri Bhopal Bypass Road, Bhopal, 462066, India
| | - Aditi Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri Bhopal Bypass Road, Bhopal, 462066, India
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhauri Bhopal Bypass Road, Bhopal, 462066, India
| |
Collapse
|
4
|
Kaupbayeva B, Murata H, Rule GS, Matyjaszewski K, Russell AJ. Rational Control of Protein-Protein Interactions with Protein-ATRP-Generated Protease-Sensitive Polymer Cages. Biomacromolecules 2022; 23:3831-3846. [PMID: 35984406 DOI: 10.1021/acs.biomac.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-protease interactions lie at the heart of the biological cascades that provide rapid molecular responses to living systems. Blood clotting cascades, apoptosis signaling networks, bacterial infection, and virus trafficking have all evolved to be activated and sustained by protease-protease interactions. Biomimetic strategies designed to target drugs to specific locations have generated proprotein drugs that can be activated by proteolytic cleavage to release native protein. We have previously demonstrated that the modification of enzymes with a custom-designed comb-shaped polymer nanoarmor can shield the enzyme surface and eliminate almost all protein-protein interactions. We now describe the synthesis and characterization of protease-sensitive comb-shaped nanoarmor cages using poly(ethylene glycol) [Sundy, J. S. Arthritis Rheum. 2008, 58(9), 2882-2891]methacrylate macromonomers where the PEG tines of the comb are connected to the backbone of the growing polymer chain by peptide linkers. Protease-induced cleavage of the tines of the comb releases a polymer-modified protein that can once again participate in protein-protein interactions. Atom transfer radical polymerization (ATRP) was used to copolymerize the macromonomer and carboxybetaine methacrylate from initiator-labeled chymotrypsin and trypsin enzymes, yielding proprotease conjugates that retained activity toward small peptide substrates but prevented activity against proteins. Native proteases triggered the release of the PEG side chains from the polymer backbone within 20 min, thereby increasing the activity of the conjugate toward larger protein substrates by 100%. Biomimetic cascade initiation of nanoarmored protease-sensitive protein-polymer conjugates may open the door to a new class of responsive targeted therapies.
Collapse
Affiliation(s)
- Bibifatima Kaupbayeva
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,National Laboratory Astana, Nazarbayev University, Nur-Sultan City 010000, Kazakhstan
| | - Hironobu Murata
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J Russell
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States.,Center for Polymer-Based Protein Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States.,Amgen, 1 Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
5
|
Zhu C, Burkey AA, Adams CP, Uruchurtu Patino D, Lynd NA. Concurrent Ring-Opening/Ring-Closing Polymerization of Glycidyl Acetate to Acid-Degradable Poly(ether- co-orthoester) Materials Using a Mono(μ-alkoxo)bis(alkylaluminum) Initiator. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Li J, Wang H, Xu J, Wu S, Han M, Li J, Wang Q, Ge Z. Mimic Lipoproteins Responsive to Intratumoral pH and Allosteric Enzyme for Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:404-416. [PMID: 34962752 DOI: 10.1021/acsami.1c21810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discoid-reconstituted high-density lipoprotein (d-rHDL) is advantageous for tumor-targeted drug delivery due to its small size, long circulation, and efficient internalization into cancer cells. Nevertheless, an allosteric reaction catalyzed by serum lecithin-cholesterol acyltransferase (LCAT) may cause drug leakage from d-rHDL and reduce its targeting efficiency. Conversely, similar "structural weakening" catalyzed by acyl-coenzyme A-cholesterol acyltransferase (ACAT) inside tumor cells can stimulate precise intracellular drug release. Therefore, we synthesized and characterized a pH-sensitive n-butyraldehyde bi-cholesterol (BCC) to substitute for cholesterol in the d-rHDL particle, and bovine serum albumin (BSA) was used as the targeting agent. This dual pH- and ACAT-sensitive d-rHDL (d-d-rHDL) was small with a disk-like appearance. Morphological transformation observation, in vitro release assays, and differences in internalization upon LCAT treatment confirmed that BCC effectively inhibited the remodeling behavior and enhanced the tumor-targeting efficiency. The accumulation of d-d-rHDL in HepG2 cells was significantly higher than that in LO2 cells, and accumulation was inhibited by free BSA. The pH sensitivity was verified, and d-d-rHDL achieved efficient drug release in vitro and inside tumor cells after exposure to acidic conditions and ACAT. Confocal laser scanning microscopy demonstrated that d-d-rHDL escaped from lysosomes and became distributed evenly throughout cells. Moreover, in vivo imaging assays in a tumor-bearing mouse model demonstrated tumor-targeting properties of d-d-rHDL, and paclitaxel-loaded d-d-rHDL showed strong anticancer activity in these mice. This dual-sensitive d-d-rHDL thus combines structural stability in plasma and an intracellular pH/ACAT-triggered drug release to facilitate inhibition of tumor growth.
Collapse
Affiliation(s)
- Jin Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jingbo Xu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Shengyue Wu
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Mengmeng Han
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Jianfei Li
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Qianqian Wang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| | - Zhiming Ge
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Zhang Q, Zhou Y, Chen Y, Zhao J. Ethoxylation of Phenols Catalyzed by
Metal‐Free
Lewis Pairs: Living/Controlled Polymerization in a
Slow‐Initiation
Mode
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qiang Zhang
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Yubo Zhou
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Ye Chen
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou Guangdong 510640 China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering South China University of Technology Guangzhou Guangdong 510640 China
- Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
8
|
Zhao X, Shan P, Liu H, Li D, Cai P, Li Z, Li Z. Poly(ethylene glycol)s With a Single Cinnamaldehyde Acetal Unit for Fabricating Acid-Degradable Hydrogel. Front Chem 2020; 8:839. [PMID: 33102441 PMCID: PMC7522333 DOI: 10.3389/fchem.2020.00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
A synthetic route to prepare a poly(ethylene glycol) with a single cinnamaldehyde acetal unit in the polymer chain, was successfully established using a newly synthesized cinnamaldehyde acetal diethylene glycol (CADEG) as initiator. This HO-PEG(ca)-OH is non-toxic and would be degraded into a cinnamaldehyde and two PEG diols in acid environment. A whole polyethylene glycol based hydrogel was easily fabricated by thiol-ene “click” reaction in alkalescence aqueous solution using acrylate-PEG(ca)-acrylate and 4-arm PEG-SH as raw materials at room temperature. The gel time was dependent on the pH of the solution and its alkalinity can promote gel. The hydrogel can be degradable in acidic conditions and the stronger the acidity, the faster the degradation. This HO-PEG(ca)-OH also can be used in synthesis of cinnamaldehyde containing PEG derivatives, block copolymers or other acid degradable materials.
Collapse
Affiliation(s)
- Xinyue Zhao
- State Key Laboratory of Optometry & Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Pengfei Shan
- State Key Laboratory of Optometry & Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Haiwei Liu
- The Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daai Li
- State Key Laboratory of Optometry & Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Peihan Cai
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Zhihui Li
- State Key Laboratory of Optometry & Vision Science, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Wang J, Deng T, Liu Y, Chen K, Yang Z, Jiang ZX. Monodisperse and Polydisperse PEGylation of Peptides and Proteins: A Comparative Study. Biomacromolecules 2020; 21:3134-3139. [PMID: 32628833 DOI: 10.1021/acs.biomac.0c00517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although PEGylation is widely used in biomedicine with great success, it suffers from many drawbacks, such as polydispersity, nonbiodegradability, and loss of precursor potency. Recently, the search for polyethylene glycol (PEG) substitutes has attracted considerable attention. Some of the substitutes partially address the drawbacks of PEGs, but sacrifice the "stealth" effect of PEGs and bring in new issues. Herein, we developed monodisperse oligoethylene glycol (M-OEG) polyamides over 5000 Da as biodegradable and monodisperse PEGylation (M-PEGylation) agents, which provided M-PEGylated peptides and proteins with high monodispersity and a biodegradable PEG moiety. Compared to regular PEGylated proteins with a complex "stealth" cloud of PEG, the hydrogen bond interactions between the M-OEG polyamides and proteins provided the M-PEGylated protein with a biodegradable "stealth" cloak. The monodisperse and biodegradable M-PEGylation strategy as well as the peculiar protein-M-OEG polyamide interactions may shed light on many long-lasting issues during the development of PEGylated biologic drugs, such as monodispersity, biodegradability, and tunable conformation.
Collapse
Affiliation(s)
- Jie Wang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Tao Deng
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Yuntai Liu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Kexin Chen
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
10
|
|
11
|
Augustine D, Hadjichristidis N, Gnanou Y, Feng X. Hydrophilic Stars, Amphiphilic Star Block Copolymers, and Miktoarm Stars with Degradable Polycarbonate Cores. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dhanya Augustine
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
12
|
Chen Y, Liu S, Zhao J, Pahovnik D, Žagar E, Zhang G. Chemoselective Polymerization of Epoxides from Carboxylic Acids: Direct Access to Esterified Polyethers and Biodegradable Polyurethanes. ACS Macro Lett 2019; 8:1582-1587. [PMID: 35619392 DOI: 10.1021/acsmacrolett.9b00789] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carboxylic-acid-initiated ring-opening polymerization (ROP) of epoxides is a fast approach to esterified polyethers which are cleavable at the termini or centers. A major challenge lies in conventional ROP methods because of the lability of ester groups formed in the initiation step. Here, we describe chemoselective ROP of epoxides from aliphatic, aromatic, and methacrylic carboxylic acids using two-component metal-free catalysts. Transesterification is clearly absent so that well-defined α-(carboxylic ester)-ω-hydroxy polyethers are generated in one step from monocarboxylic acids. The livingness of the ROP is verified despite the slow initiation mode. The ester end group can be readily cleaved from the polyether hydrolytically. An α,ω-dihydroxy poly(propylene oxide) with two central ester groups is generated from a diacid initiator and transformed in situ by the same catalyst to polyurethane which shows distinct enzymatic degradability. This study provides convenient access to α,ω-heterobifunctional polyethers with cleavable, releasable, or modifiable end groups and to biodegradable polyether-based materials.
Collapse
Affiliation(s)
- Ye Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shan Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ema Žagar
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
13
|
Abstract
Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic CRISPR/Cas9 delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives. Liposomes are one of the most widely investigated carriers for CRISPR/Cas9 delivery. The surface properties of liposomal carriers, including the surface charge, PEGylation, and ligand modification can significantly affect the gene silencing efficiency. Three barriers of systemic siRNA delivery (long blood circulation, efficient tumor penetration, and efficient cellular uptake/endosomal escape) are analyzed on liposomal carriers with different surface charges, PEGylations, and ligand modifications. Cationic formulations dominate CRISPR/Cas9 delivery and neutral formulations also have good performance while anionic formulations are generally not proper for CRISPR/Cas9 delivery. The PEG dilemma (prolonged blood circulation vs. reduced cellular uptake/endosomal escape) and the side effect of repeated PEGylated formulation (accelerated blood clearance) were discussed. Effects of ligand modification on cationic and neutral formulations were analyzed. Finally, we summarized the achievements in liposomal CRISPR/Cas9 delivery, outlined existing problems, and provided some future perspectives.
Collapse
|
14
|
Zabihi F, Koeppe H, Achazi K, Hedtrich S, Haag R. One-Pot Synthesis of Poly(glycerol-co-succinic acid) Nanogels for Dermal Delivery. Biomacromolecules 2019; 20:1867-1875. [DOI: 10.1021/acs.biomac.8b01741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Sarah Hedtrich
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, V6T1Z3 Vancouver, Canada
| | | |
Collapse
|
15
|
Moins S, Loyer P, Odent J, Coulembier O. Preparation of a mimetic and degradable poly(ethylene glycol) by a non-eutectic mixture of organocatalysts (NEMO) via a one-pot two-step process. RSC Adv 2019; 9:40013-40016. [PMID: 35541396 PMCID: PMC9076182 DOI: 10.1039/c9ra09781c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
A one-pot, two-step method for the preparation of degradable PEG is here presented. The full process addresses the requirements imposed by green chemistry and involves the use of a single and nontoxic non-eutectic mixture of organocatalysts. The strategy relies on the polycondensation of PEG800 after its functionalization by bio-derived 5-membered γ-butyrolactone. A one-pot, two-step method for the preparation of degradable PEG is here presented.![]()
Collapse
Affiliation(s)
- S. Moins
- Laboratory of Polymeric and Composite Materials
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMons)
- 7000 Mons
- Belgium
| | - P. Loyer
- Inserm
- INRA
- Univ Rennes
- Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR-A 1341
- F-35000 Rennes
| | - J. Odent
- Laboratory of Polymeric and Composite Materials
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMons)
- 7000 Mons
- Belgium
| | - O. Coulembier
- Laboratory of Polymeric and Composite Materials
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMons)
- 7000 Mons
- Belgium
| |
Collapse
|
16
|
Varghese JK, Hadjichristidis N, Gnanou Y, Feng X. Degradable poly(ethylene oxide) through metal-free copolymerization of ethylene oxide with l-lactide. Polym Chem 2019. [DOI: 10.1039/c9py00605b] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A simple and convenient method for the preparation of degradable poly(ethylene oxide) (PEO) is presented in this work.
Collapse
Affiliation(s)
- Jobi Kodiyan Varghese
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- KAUST Catalysis Center
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Thuwal 23955
- Kingdom of Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Kingdom of Saudi Arabia
| | - Xiaoshuang Feng
- Physical Sciences and Engineering Division
- King Abdullah University of Science and Technology (KAUST)
- Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Pelegri-O’Day EM, Matsumoto NM, Tamshen K, Raftery ED, Lau UY, Maynard HD. PEG Analogs Synthesized by Ring-Opening Metathesis Polymerization for Reversible Bioconjugation. Bioconjug Chem 2018; 29:3739-3745. [DOI: 10.1021/acs.bioconjchem.8b00635] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Emma M. Pelegri-O’Day
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Nicholas M. Matsumoto
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Kyle Tamshen
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Eric D. Raftery
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Uland Y. Lau
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
18
|
Liu S, Ono RJ, Yang C, Gao S, Ming Tan JY, Hedrick JL, Yang YY. Dual pH-Responsive Shell-Cleavable Polycarbonate Micellar Nanoparticles for in Vivo Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19355-19364. [PMID: 29757607 DOI: 10.1021/acsami.8b01954] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To exploit tumor and intracellular microenvironments, pH-responsive diblock copolymers of poly(ethylene glycol) and catechol-functionalized polycarbonate with acid-labile acetal bond as the linker are synthesized to prepare micellar nanoparticles that shed the shell at acidic tumor tissues and inside cancer cells, hence accelerating drug release at the target. The pH-dependent cleavage of the shell is demonstrated at pH 5.0 and 6.5 using 1H NMR. Bortezomib (BTZ, an anticancer drug containing a phenylboronic acid group) is conjugated to the polymers through formation of pH-responsive boronate ester bond between boronic acid and catechol in the polymers. Dual pH-responsive bortezomib-polymer conjugates (BTZ-PC) self-assemble into micellar nanoparticles of small size (<110 nm) with narrow size distribution and high drug loading capacity. Acidic pH accelerates BTZ release from BTZ-PC micelles and enhances intracelluar uptake of the micelles, hence increasing in vitro cytotoxicity against human breast cancer cells. More importantly, the BTZ-PC micelles achieve a stronger antitumor effect in a human breast cancer BT-474 xenograft mouse model than free BTZ and mitigate in vivo hepatotoxicity of BTZ. These dual pH-responsive shell-cleavable nanoparticles are a potentially promising carrier for BTZ delivery.
Collapse
Affiliation(s)
- Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , 138669 , Singapore
| | - Robert J Ono
- IBM Almaden Research Center , 650 Harry Road , San Jose , California 95120 , United States
| | - Chuan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , 138669 , Singapore
| | - Shujun Gao
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , 138669 , Singapore
| | - Jordan Yong Ming Tan
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , 138669 , Singapore
| | - James L Hedrick
- IBM Almaden Research Center , 650 Harry Road , San Jose , California 95120 , United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology , 31 Biopolis Way, The Nanos , 138669 , Singapore
| |
Collapse
|
19
|
Braun AC, Gutmann M, Lühmann T, Meinel L. Bioorthogonal strategies for site-directed decoration of biomaterials with therapeutic proteins. J Control Release 2018; 273:68-85. [PMID: 29360478 DOI: 10.1016/j.jconrel.2018.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/04/2023]
Abstract
Emerging strategies targeting site-specific protein modifications allow for unprecedented selectivity, fast kinetics and mild reaction conditions with high yield. These advances open exciting novel possibilities for the effective bioorthogonal decoration of biomaterials with therapeutic proteins. Site-specificity is particularly important to the therapeutics' end and translated by targeting specific functional groups or introducing new functional groups into the therapeutic at predefined positions. Biomimetic strategies are designed for modification of therapeutics emulating enzymatic strategies found in Nature. These strategies are suitable for a diverse range of applications - not only for protein-polymer conjugation, particle decoration and surface immobilization, but also for the decoration of complex biomaterials and the synthesis of bioresponsive drug delivery systems. This article reviews latest chemical and enzymatic strategies for the biorthogonal decoration of biomaterials with therapeutic proteins and inter-positioned linker structures. Finally, the numerous reports at the interface of biomaterials, linkers, and therapeutic protein decoration are integrated into practical advice for design considerations intended to support the selection of productive ligation strategies.
Collapse
Affiliation(s)
- Alexandra C Braun
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany.
| |
Collapse
|
20
|
SiRNA-mediated in vivo gene knockdown by acid-degradable cationic nanohydrogel particles. J Control Release 2017; 248:10-23. [DOI: 10.1016/j.jconrel.2016.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023]
|
21
|
Mohammadifar E, Zabihi F, Tu Z, Hedtrich S, Nemati Kharat A, Adeli M, Haag R. One-pot and gram-scale synthesis of biodegradable polyglycerols under ambient conditions: nanocarriers for intradermal drug delivery. Polym Chem 2017. [DOI: 10.1039/c7py01470h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biodegradable and biocompatible hyperbranched polymers are synthesized and their potential for dermal drug delivery is investigated.
Collapse
Affiliation(s)
- Ehsan Mohammadifar
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Fatemeh Zabihi
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
- Institute of Pharmacy (Pharmacology and Toxicology)
| | - Zhaoxu Tu
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
| | - Sarah Hedtrich
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Ali Nemati Kharat
- School of Chemistry
- University College of Science
- University of Tehran
- Tehran
- Iran
| | - Mohsen Adeli
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
- Department of Chemistry
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- D-14195 Berlin
- Germany
| |
Collapse
|
22
|
Worm M, Leibig D, Dingels C, Frey H. Cleavable Polyethylene Glycol: 3,4-Epoxy-1-butene as a Comonomer to Establish Degradability at Physiologically Relevant pH. ACS Macro Lett 2016; 5:1357-1363. [PMID: 35651218 DOI: 10.1021/acsmacrolett.6b00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyethylene glycol (PEG) has been used for decades to improve the pharmacokinetic properties of protein drugs, and several PEG-protein conjugates are approved by the FDA. However, the nondegradability of PEG restricts its use to a limiting molecular weight to permit renal excretion. In this work, we introduce a simple strategy to overcome the nondegradability of PEG by incorporating multiple pH-sensitive vinyl ether moieties into the polyether backbone. Copolymerization of 3,4-epoxy-1-butene (EPB) with ethylene oxide via anionic ring-opening polymerization (AROP) provides access to allyl moieties that can be isomerized to pH-cleavable propenyl units (isoEPB). Well-defined P(EPB-co-EG) copolymers (Đ = 1.05-1.11) with EPB contents of ∼4 mol% were synthesized in a molecular weight range of 3000 to 10000 g mol-1. 1H NMR kinetic studies served to investigate acidic hydrolysis in a pH range of 4.4 to 5.4 and even allowed to distinguish between the hydrolysis rates of (E)- and (Z)-isoEPB units, demonstrating faster hydrolysis of the (Z)-isomer. SEC analysis of degradation products revealed moderate dispersities Đ of 1.6 to 1.8 and consistent average molecular weights Mn of ∼1000 g mol-1. The presence of a defined hydroxyl end group permits attachment to other functional molecules. The novel pH-degradable PEGs combine various desirable properties such as excellent long-term storage stability and cleavage in a physiologically relevant pH-range that render them promising candidates for biomedical application.
Collapse
Affiliation(s)
- Matthias Worm
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Daniel Leibig
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger
Weg 9, D-55128 Mainz, Germany
| | - Carsten Dingels
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
23
|
|
24
|
Steinbach T, Wurm FR. Degradable Polyphosphoester-Protein Conjugates: "PPEylation" of Proteins. Biomacromolecules 2016; 17:3338-3346. [PMID: 27618845 DOI: 10.1021/acs.biomac.6b01107] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pharmacokinetic properties determine the efficacy of protein therapeutics. The covalent attachment of poly(ethylene glycol) (PEG) extends the half-life of such biologicals to maintain a therapeutically effective concentration over a prolonged period of time and improves administration and compliance. A major obstacle of these polymer-protein conjugates is the chemical stability of the PEG preventing its metabolism and leading to side effects. Instead, we propose the PPEylation, that is, the conjugation of degradable poly(phosphoester)s (PPE) to proteins, in order to generate fully biodegradable polymer-protein conjugates. The structure of the PPEylated protein conjugates was verified with mass spectrometry and size exclusion chromatography. They were compared to structural analogues, except classical, PEGylated proteins, and exhibit comparable bioactivity, but avoiding any nondegradable polymer in the conjugate. We proved the degradation of the protective polymer shell surrounding the conjugate in aqueous environments at physiological conditions by online triple detection size exclusion chromatography and gel electrophoresis. We believe that this research will provide an attractive alternative for future drug design with implications for the clinical use of biologicals.
Collapse
Affiliation(s)
- Tobias Steinbach
- Graduate School Material Science in Mainz , Staudinger Weg 9, 55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
25
|
Liu D, Bielawski CW. Synthesis of Degradable Poly[(Ethylene Glycol)-co-(Glycolic Acid)] via the Post-Polymerization Oxyfunctionalization of Poly(Ethylene Glycol). Macromol Rapid Commun 2016; 37:1587-1592. [PMID: 27461401 DOI: 10.1002/marc.201600336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/02/2016] [Indexed: 01/28/2023]
Abstract
To enhance the limited degradability of poly(ethylene glycol) (PEG), a straightforward method of synthesizing poly[(ethylene glycol)-co-(glycolic acid)] (P(EG-co-GA)) via a ruthenium-catalyzed, post-polymerization oxyfunctionalization of various PEGs is developed. Using this method, a set of copolymers with GA compositions of up to 8 mol% are prepared with minimal reduction in molecular weight (<10%) when compared to their commercially available starting materials. The P(EG-co-GA) copolymers are shown to undergo hydrolysis under mild conditions.
Collapse
Affiliation(s)
- Di Liu
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Christopher W Bielawski
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea. .,Department of Chemistry and Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
26
|
Worm M, Kang B, Dingels C, Wurm FR, Frey H. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs. Macromol Rapid Commun 2016; 37:775-80. [PMID: 27000789 DOI: 10.1002/marc.201600080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."
Collapse
Affiliation(s)
- Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Biao Kang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Carsten Dingels
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
27
|
Müller SS, Fritz T, Gimnich M, Worm M, Helm M, Frey H. Biodegradable hyperbranched polyether-lipids with in-chain pH-sensitive linkages. Polym Chem 2016. [DOI: 10.1039/c6py01308b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyperbranched polyether-based lipids with cleavable acetal units were obtained via copolymerization of the epoxide inimer 1-(glycidyloxy)ethyl ethylene glycol ether (GEGE) and glycidol, using anionic ring-opening polymerization.
Collapse
Affiliation(s)
- S. S. Müller
- Institute of Organic Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
- Graduate School Materials Science in Mainz (MAINZ)
| | - T. Fritz
- Institute of Pharmacy and Biochemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - M. Gimnich
- Institute of Organic Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - M. Worm
- Institute of Organic Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - M. Helm
- Institute of Pharmacy and Biochemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - H. Frey
- Institute of Organic Chemistry
- Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
28
|
Herzberger J, Niederer K, Pohlit H, Seiwert J, Worm M, Wurm FR, Frey H. Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation. Chem Rev 2015; 116:2170-243. [PMID: 26713458 DOI: 10.1021/acs.chemrev.5b00441] [Citation(s) in RCA: 456] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.
Collapse
Affiliation(s)
- Jana Herzberger
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| | - Kerstin Niederer
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Hannah Pohlit
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Department of Dermatology, University Medical Center , Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Jan Seiwert
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Matthias Worm
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Graduate Center , Staudingerweg 6, D-55128 Mainz, Germany.,Max Planck Institute for Polymer Research , Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz , Duesbergweg 10-14, D-55128 Mainz, Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
29
|
Pohlit H, Bellinghausen I, Schömer M, Heydenreich B, Saloga J, Frey H. Biodegradable pH-Sensitive Poly(ethylene glycol) Nanocarriers for Allergen Encapsulation and Controlled Release. Biomacromolecules 2015; 16:3103-11. [PMID: 26324124 DOI: 10.1021/acs.biomac.5b00458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last decades, the number of allergic patients has increased dramatically. Allergen-specific immunotherapy (SIT) is the only available cause-oriented therapy so far. SIT reduces the allergic symptoms, but also exhibits some disadvantages; that is, it is a long-lasting procedure and severe side effects like anaphylactic shock can occur. In this work, we introduce a method to encapsulate allergens into nanoparticles to avoid severe side effects during SIT. Degradable nanocarriers combine the advantage of providing a physical barrier between the encapsulated cargo and the biological environment as well as responding to certain local stimuli (like pH) to release their cargo. This work introduces a facile strategy for the synthesis of acid-labile poly(ethylene glycol) (PEG)-macromonomers that degrade at pH 5 (physiological pH inside the endolysosome) and can be used for nanocarrier synthesis. The difunctional, water-soluble PEG dimethacrylate (PEG-acetal-DMA) macromonomers with cleavable acetal units were analyzed with 1H NMR, SEC, and MALDI-ToF-MS. Both the allergen and the macromonomers were entrapped inside liposomes as templates, which were produced by dual centrifugation (DAC). Radical polymerization of the methacrylate units inside the liposomes generated allergen-loaded PEG nanocarriers. In vitro studies demonstrated that dendritic cells (DCs) internalize the protein-loaded, nontoxic PEG-nanocarriers. Furthermore, we demonstrate by cellular antigen stimulation tests that the nanocarriers effectively shield the allergen cargo from detection by immunoglobulins on the surface of basophilic leucocytes. Uptake of nanocarriers into DCs does not lead to cell maturation; however, the internalized allergen was capable to induce T cell immune responses.
Collapse
Affiliation(s)
- Hannah Pohlit
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany.,Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Martina Schömer
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bärbel Heydenreich
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
30
|
Abstract
Poly(ethylene glycol) (PEG)-protein therapeutics exhibit enhanced pharmacokinetics, but have drawbacks including decreased protein activities and polymer accumulation in the body. Therefore a major aim for second-generation polymer therapeutics is to introduce degradability into the backbone. Herein we describe the synthesis of poly(poly(ethylene glycol methyl ether methacrylate)) (pPEGMA) degradable polymers with protein-reactive end-groups via reversible addition-fragmentation chain transfer (RAFT) polymerization, and the subsequent covalent attachment to lysozyme through a reducible disulfide linkage. RAFT copolymerization of cyclic ketene acetal (CKA) monomer 5,6-benzo-2-methylene-1,3-dioxepane (BMDO) with PEGMA yielded two polymers with number-average molecular weight (Mn ) (GPC) of 10.9 and 20.9 kDa and molecular weight dispersities (Ð) of 1.34 and 1.71, respectively. Hydrolytic degradation of the polymers was analyzed by 1H-NMR and GPC under basic and acidic conditions. The reversible covalent attachment of these polymers to lysozyme, as well as the hydrolytic and reductive cleavage of the polymer from the protein, was analyzed by gel electrophoresis and mass spectrometry. Following reductive cleavage of the polymer, an increase in activity was observed for both conjugates, with the released protein having full activity. This represents a method to prepare PEGylated proteins, where the polymer is readily cleaved from the protein and the main chain of the polymer is degradable.
Collapse
Affiliation(s)
- Caitlin G. Decker
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive South, Los Angeles, California 90095-1569, United States
| |
Collapse
|
31
|
Engler AC, Ke X, Gao S, Chan JMW, Coady DJ, Ono RJ, Lubbers R, Nelson A, Yang YY, Hedrick JL. Hydrophilic Polycarbonates: Promising Degradable Alternatives to Poly(ethylene glycol)-Based Stealth Materials. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00156] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amanda C. Engler
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Xiyu Ke
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Shujun Gao
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - Julian M. W. Chan
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Daniel J. Coady
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Robert J. Ono
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Roy Lubbers
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
- Laboratory
for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Alshakim Nelson
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering
and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore
| | - James L. Hedrick
- IBM Almaden Research
Center, 650 Harry Road, San Jose, California 95120, United States
| |
Collapse
|
32
|
Gong Y, Leroux JC, Gauthier MA. Releasable Conjugation of Polymers to Proteins. Bioconjug Chem 2015; 26:1172-81. [DOI: 10.1021/bc500611k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuhui Gong
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Swiss
Federal Institute of Technology Zurich (ETHZ), Department of Chemistry
and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg
1−5/10, 8093 Zurich, Switzerland
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Centre, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
33
|
Son S, Shin E, Kim BS. Redox-Degradable Biocompatible Hyperbranched Polyglycerols: Synthesis, Copolymerization Kinetics, Degradation, and Biocompatibility. Macromolecules 2015. [DOI: 10.1021/ma502242v] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Suhyun Son
- Department of Chemistry and
Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Eeseul Shin
- Department of Chemistry and
Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Byeong-Su Kim
- Department of Chemistry and
Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| |
Collapse
|
34
|
Kawamura M, Kanazawa A, Kanaoka S, Aoshima S. Sequence-controlled degradable polymers by controlled cationic copolymerization of vinyl ethers and aldehydes: precise placement of cleavable units at predetermined positions. Polym Chem 2015. [DOI: 10.1039/c5py00493d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sequence-controlled degradable polymers with precisely placed breakable bonds in the main chain were synthesized by controlled alternating cationic copolymerization of vinyl ethers and aldehydes.
Collapse
Affiliation(s)
- Marie Kawamura
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Shokyoku Kanaoka
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
35
|
Pelegri-O'Day EM, Lin EW, Maynard HD. Therapeutic protein-polymer conjugates: advancing beyond PEGylation. J Am Chem Soc 2014; 136:14323-32. [PMID: 25216406 DOI: 10.1021/ja504390x] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-polymer conjugates are widely used as therapeutics. All Food and Drug Administration (FDA)-approved protein conjugates are covalently linked to poly(ethylene glycol) (PEG). These PEGylated drugs have longer half-lives in the bloodstream, leading to less frequent dosing, which is a significant advantage for patients. However, there are some potential drawbacks to PEG that are driving the development of alternatives. Polymers that display enhanced pharmacokinetic properties along with additional advantages such as improved stability or degradability will be important to advance the field of protein therapeutics. This perspective presents a summary of protein-PEG conjugates for therapeutic use and alternative technologies in various stages of development as well as suggestions for future directions. Established methods of producing protein-PEG conjugates and new approaches utilizing controlled radical polymerization are also covered.
Collapse
Affiliation(s)
- Emma M Pelegri-O'Day
- Department of Chemistry and Biochemistry and California Nanosystems Institute, University of California, Los Angeles , 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
36
|
Liu N, Vignolle J, Vincent JM, Robert F, Landais Y, Cramail H, Taton D. One-Pot Synthesis and PEGylation of Hyperbranched Polyacetals with a Degree of Branching of 100%. Macromolecules 2014. [DOI: 10.1021/ma4026509] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Na Liu
- LCPO,
UMR 5629, University of Bordeaux, F-33600 Pessac, France
- LCPO,
UMR 5629, CNRS, F-33600 Pessac, France
| | - Joan Vignolle
- LCPO,
UMR 5629, University of Bordeaux, F-33600 Pessac, France
- LCPO,
UMR 5629, CNRS, F-33600 Pessac, France
| | - Jean-Marc Vincent
- ISM,
UMR 5255, University of Bordeaux, 33400 Talence, France
- ISM,
UMR 5255, CNRS, 33400 Talence, France
| | - Frédéric Robert
- ISM,
UMR 5255, University of Bordeaux, 33400 Talence, France
- ISM,
UMR 5255, CNRS, 33400 Talence, France
| | - Yannick Landais
- ISM,
UMR 5255, University of Bordeaux, 33400 Talence, France
- ISM,
UMR 5255, CNRS, 33400 Talence, France
| | - Henri Cramail
- LCPO,
UMR 5629, University of Bordeaux, F-33600 Pessac, France
- LCPO,
UMR 5629, CNRS, F-33600 Pessac, France
| | - Daniel Taton
- LCPO,
UMR 5629, University of Bordeaux, F-33600 Pessac, France
- LCPO,
UMR 5629, CNRS, F-33600 Pessac, France
| |
Collapse
|
37
|
Delplace V, Tardy A, Harrisson S, Mura S, Gigmes D, Guillaneuf Y, Nicolas J. Degradable and Comb-Like PEG-Based Copolymers by Nitroxide-Mediated Radical Ring-Opening Polymerization. Biomacromolecules 2013; 14:3769-79. [DOI: 10.1021/bm401157g] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vianney Delplace
- Institut
Galien Paris-Sud, UMR CNRS 8612, University Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Antoine Tardy
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR CNRS 7273, Avenue
Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Simon Harrisson
- Institut
Galien Paris-Sud, UMR CNRS 8612, University Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Simona Mura
- Institut
Galien Paris-Sud, UMR CNRS 8612, University Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Didier Gigmes
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR CNRS 7273, Avenue
Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Yohann Guillaneuf
- Aix-Marseille Université, Institut de Chimie Radicalaire, UMR CNRS 7273, Avenue
Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Julien Nicolas
- Institut
Galien Paris-Sud, UMR CNRS 8612, University Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| |
Collapse
|
38
|
Wurm FR, Klok HA. Be squared: expanding the horizon of squaric acid-mediated conjugations. Chem Soc Rev 2013; 42:8220-36. [PMID: 23873344 DOI: 10.1039/c3cs60153f] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Squaric acid diesters can be applied as reagents to couple two amino-functional compounds. Consecutive coupling of two amines allows the synthesis of asymmetric squaric acid bisamides with either low molecular weight compounds but also biomolecules or polymers. The key feature of the squaric acid diester mediated coupling is the reduced reactivity of the resulting ester-amide after the first amidation step of the diester. This allows the sequential amidation and generation of asymmetric squaramides with high selectivity and in high yields. This article gives an overview of the well-established squaric acid diester mediated coupling reactions for glycoconjugates and presents recent advances that aim to expand this very versatile reaction protocol to the modification of peptides and proteins.
Collapse
Affiliation(s)
- Frederik R Wurm
- Max Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
39
|
Dingels C, Frey H. From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with Predetermined Breaking Points. HIERARCHICAL MACROMOLECULAR STRUCTURES: 60 YEARS AFTER THE STAUDINGER NOBEL PRIZE II 2013. [DOI: 10.1007/12_2013_235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|