1
|
Kudláčová J, Kužílková D, Bárta F, Brdičková N, Vávrová A, Kostka L, Hovorka O, Kalina T, Etrych T. Hybrid Macromolecular Constructs as a Platform for Spectral Nanoprobes for Advanced Cellular Barcoding in Flow Cytometry. Macromol Biosci 2024; 24:e2300306. [PMID: 37691533 DOI: 10.1002/mabi.202300306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Herein, an advanced bioconjugation technique to synthesize hybrid polymer-antibody nanoprobes tailored for fluorescent cell barcoding in flow cytometry-based immunophenotyping of leukocytes is applied. A novel approach of attachment combining two fluorescent dyes on the copolymer precursor and its conjugation to antibody is employed to synthesize barcoded nanoprobes of antibody polymer dyes allowing up to six nanoprobes to be resolved in two-dimensional cytometry analysis. The major advantage of these nanoprobes is the construct design in which the selected antibody is labeled with an advanced copolymer bearing two types of fluorophores in different molar ratios. The cells after antibody recognition and binding to the target antigen have a characteristic double fluorescence signal for each nanoprobe providing a unique position on the dot plot, thus allowing antibody-based barcoding of cellular samples in flow cytometry assays. This technique is valuable for cellular assays that require low intersample variability and is demonstrated by the live cell barcoding of clinical samples with B cell abnormalities. In total, the samples from six various donors were successfully barcoded using only two detection channels. This barcoding of clinical samples enables sample preparation and measurement in a single tube.
Collapse
Affiliation(s)
- Júlia Kudláčová
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Daniela Kužílková
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - František Bárta
- R&D division, I.T.A.-Intertact s.r.o, Černokostelecká 143, Prague, 108 00, Czech Republic
| | - Naděžda Brdičková
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Adéla Vávrová
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Libor Kostka
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| | - Ondřej Hovorka
- R&D division, I.T.A.-Intertact s.r.o, Černokostelecká 143, Prague, 108 00, Czech Republic
| | - Tomáš Kalina
- CLIP (Childhood Leukemia Investigation Prague), Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, Prague, 150 06, Czech Republic
| | - Tomáš Etrych
- Department of Biomedical Polymers, Institute of Macromolecular Chemistry CAS, Heyrovského nám. 2, Prague, 162 00, Czech Republic
| |
Collapse
|
2
|
Chen Y, Wang G, Wang P, Liu J, Shi H, Zhao J, Zeng X, Luo Y. Metal‐Chelatable Porphyrinic Frameworks for Single‐Cell Multiplexing with Mass Cytometry. Angew Chem Int Ed Engl 2022; 61:e202208640. [DOI: 10.1002/anie.202208640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University College of Chemical & Biological Engineering 38 Zheda Road Hangzhou Zhejiang 310027 P. R. China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Zijingang Campus of Zhejiang University, Sandun Town, Xihu District Hangzhou Zhejiang 310003 P. R. China
| | - Ping Wang
- Zhejiang PuLuoTing Health Technology Co. Ltd. 3rd floor, Building 5, NO. 2622 Yuhangtang Road, Yuhang District Hangzhou, Zhejiang P. R. China
| | - Juan Liu
- Zhejiang PuLuoTing Health Technology Co. Ltd. 3rd floor, Building 5, NO. 2622 Yuhangtang Road, Yuhang District Hangzhou, Zhejiang P. R. China
| | - Hongyu Shi
- Zhejiang PuLuoTing Health Technology Co. Ltd. 3rd floor, Building 5, NO. 2622 Yuhangtang Road, Yuhang District Hangzhou, Zhejiang P. R. China
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University College of Chemical & Biological Engineering 38 Zheda Road Hangzhou Zhejiang 310027 P. R. China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases National Clinical Research Center for Infectious Diseases Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases The First Affiliated Hospital College of Medicine Zhejiang University Zijingang Campus of Zhejiang University, Sandun Town, Xihu District Hangzhou Zhejiang 310003 P. R. China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University College of Chemical & Biological Engineering 38 Zheda Road Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
3
|
Chen Y, Wang G, Wang P, Liu J, Shi H, Zhao J, Zeng X, Luo Y. Metal‐Chelatable Porphyrinic Frameworks for Single‐Cell Multiplexing with Mass Cytometry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuan Chen
- Zhejiang University State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering CHINA
| | - Guocan Wang
- Zhejiang University State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine CHINA
| | - Ping Wang
- Zhejiang PuLuoTing Health Technology Co. Ltd None CHINA
| | - Juan Liu
- Zhejiang PuLuoTing Health Technology Co. Ltd None CHINA
| | - Hongyu Shi
- Zhejiang PuLuoTing Health Technology Co. Ltd None CHINA
| | - Junjie Zhao
- Zhejiang University College of Chemical and Biological Engineering 38 Zheda Rd 310027 Hangzhou CHINA
| | - Xun Zeng
- Zhejiang University State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine CHINA
| | - Yingwu Luo
- Zhejiang University State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering CHINA
| |
Collapse
|
4
|
Delgado-Gonzalez A, Laz-Ruiz JA, Cano-Cortes MV, Huang YW, Gonzalez VD, Diaz-Mochon JJ, Fantl WJ, Sanchez-Martin RM. Hybrid Fluorescent Mass-Tag Nanotrackers as Universal Reagents for Long-Term Live-Cell Barcoding. Anal Chem 2022; 94:10626-10635. [PMID: 35866879 PMCID: PMC9352147 DOI: 10.1021/acs.analchem.2c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Barcoding and pooling cells for processing as a composite
sample
are critical to minimize technical variability in multiplex technologies.
Fluorescent cell barcoding has been established as a standard method
for multiplexing in flow cytometry analysis. In parallel, mass-tag
barcoding is routinely used to label cells for mass cytometry. Barcode
reagents currently used label intracellular proteins in fixed and
permeabilized cells and, therefore, are not suitable for studies with
live cells in long-term culture prior to analysis. In this study,
we report the development of fluorescent palladium-based hybrid-tag
nanotrackers to barcode live cells for flow and mass cytometry dual-modal
readout. We describe the preparation, physicochemical characterization,
efficiency of cell internalization, and durability of these nanotrackers
in live cells cultured over time. In addition, we demonstrate their
compatibility with standardized cytometry reagents and protocols.
Finally, we validated these nanotrackers for drug response assays
during a long-term coculture experiment with two barcoded cell lines.
This method represents a new and widely applicable advance for fluorescent
and mass-tag barcoding that is independent of protein expression levels
and can be used to label cells before long-term drug studies.
Collapse
Affiliation(s)
- Antonio Delgado-Gonzalez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain.,Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jose Antonio Laz-Ruiz
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - M Victoria Cano-Cortes
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Veronica D Gonzalez
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Juan Jose Diaz-Mochon
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| | - Wendy J Fantl
- Department of Urology, Stanford University School of Medicine, Stanford, California 94305, United States.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, United States.,Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Rosario M Sanchez-Martin
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Gov-ernment, PTS Granada, Avda. Ilustración 114, 18016 Granada, Spain.,Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry applied to Biomedi-cine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain.,Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Grana-da, 18012 Granada, Spain
| |
Collapse
|
5
|
Zhang Y, Liu P, Majonis D, Winnik MA. Polymeric dipicolylamine based mass tags for mass cytometry. Chem Sci 2022; 13:3233-3243. [PMID: 35414868 PMCID: PMC8926288 DOI: 10.1039/d2sc00595f] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
Mass cytometry is an emerging powerful bioanalytical technique for high-dimensional single-cell analysis. In this technique, cells are stained with metal-isotope-tagged antibodies and are analyzed by an inductively coupled plasma time-of-flight mass spectrometer. While there are more than 100 stable isotopes available in the m/z 75 to 209 detection range of the instrument, only about 50 parameters can be measured per cell because current reagents are metal-chelating polymers with pendant aminocarboxylate chelators that only bind hard metal ions such as the rare earths and Bi3+. Here we describe the synthesis and characterization of a new type of metal-chelating polymer with pendant dipicolylamine chelators suited to binding intermediate to soft metals such as rhenium and platinum. We introduce two different conjugation strategies, a thiol–maleimide reaction that works well for rhenium, and a DBCO-azide click reaction designed to avoid potential complications of Pt and other heavy metals interacting with thiol groups. We show that these polymers can serve as new elemental mass tags for mass cytometry. Antibody-polymer conjugates of CD20 and CD8a prepared by both coupling reactions were employed in conjunction with commercial metal-conjugated antibodies for multi-parameter single-cell immunoassays. A new type of metal-chelating polymer with pendant dipicolylamine chelators that bind rhenium and platinum has been developed for mass cytometry applications.![]()
Collapse
Affiliation(s)
- Yefeng Zhang
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
| | - Peng Liu
- Fluidigm Canada Inc. 1380 Rodick Road, Suite 400 Markham ON L3R 4G5 Canada
| | - Daniel Majonis
- Fluidigm Canada Inc. 1380 Rodick Road, Suite 400 Markham ON L3R 4G5 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto ON M5S 3E5 Canada
| |
Collapse
|
6
|
Tulli LG, Miranda D, Lee CC, Sullivan Y, Grotzfeld R, Hollingworth G, Kneuer R, Karpov AS. Modular synthesis and modification of novel bifunctional dendrons. Org Biomol Chem 2019; 17:2906-2912. [DOI: 10.1039/c8ob02988a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The modular synthesis of two generations of highly branched bifunctional dendrons is reported. The first generation dendron–antibody conjugate is shown to selectively detect CD4+ T cells in the PBMC culture.
Collapse
Affiliation(s)
| | - Daniela Miranda
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| | | | - Yang Sullivan
- Novartis Institutes for BioMedical Research
- Cambridge
- USA
| | - Robert Grotzfeld
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| | | | - Rainer Kneuer
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| | - Alexei S. Karpov
- Novartis Institutes for BioMedical Research
- 4002 Basel
- Switzerland
| |
Collapse
|
7
|
Chou CH, Lin PC. Glycan-Directed Grafting-from Polymerization of Immunoglobulin G: Site-Selectively Modified IgG-Polymer Conjugates with Preserved Biological Activity. Biomacromolecules 2018; 19:3086-3095. [PMID: 29890078 DOI: 10.1021/acs.biomac.8b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antibody and related antibody drugs for the treatment of malignancies have led to progress in targeted cancer therapy. Preparation of diverse antibody conjugates is critical for preclinical and clinical applications. However, precise control in tagging molecules at specific locations on antibodies is essential to preserve their native function. In this study, a synthetic boronic acid (BA)-tosyl initiator was used to trigger a glycan-directed modification of IgGs, and the obtained IgG macroinitiators allowed a growth of the poly N-isopropylacrylamide (PNIPAAm) chains specifically at Fc-domains. Therefore, the PNIPAAm chains are located away from the critical antigen-binding domains (Fab), which could reasonably prevent the loss of biological activity after the attachment of polymer chains. According to the proposed strategy, a site-selectively modified anticoncanavalin A (Con A) antibody-PNIPAAm conjugate showed 6-times higher efficiency in the binding of targeted Con A antigen to a randomly conjugated anti-Con A antibody-PNIPAAm conjugate. In this study, we developed the first chemical strategy for the site-specific preparation of IgG-polymer conjugates with conserved biological activity as well as intact glycan structures.
Collapse
Affiliation(s)
- Chih-Hung Chou
- Department of Chemistry , National Sun Yat-sen University 70, Lienhai Road , Kaohsiung 80424 , Taiwan
| | - Po-Chiao Lin
- Department of Chemistry , National Sun Yat-sen University 70, Lienhai Road , Kaohsiung 80424 , Taiwan
| |
Collapse
|
8
|
Allo B, Lou X, Bouzekri A, Ornatsky O. Clickable and High-Sensitivity Metal-Containing Tags for Mass Cytometry. Bioconjug Chem 2018; 29:2028-2038. [PMID: 29733585 DOI: 10.1021/acs.bioconjchem.8b00239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mass cytometry is a highly multiplexed single-cell analysis platform that uses metal-tagged reagents to identify multiple cellular biomarkers. The current metal-tagged reagent preparation employs thiol-maleimide chemistry to covalently couple maleimide-functionalized metal-chelating polymers (MCPs) with antibodies (Abs), a process that requires partial reduction of the Ab to form reactive thiol groups. However, some classes of Abs (for example, IgM) as well as biomolecules lacking cysteine residues have been challenging to label using this method. This inherent limitation led us to develop a new conjugation strategy for labeling a wide range of biomolecules and affinity reagents. In this report, we present a metal tagging approach using a new class of azide- or transcyclooctene-terminated MCPs with copper(I)-free strain-promoted alkyne-azide cycloaddition or tetrazine-alkene click chemistry reactions, in which biomolecules with -NH2 functional groups are selectively activated with a dibenzocyclooctyne or tetrazine moiety, respectively. This approach enabled us to generate highly sensitive and specific metal-tagged IgGs, IgMs, small peptides, and lectins for applications in immunophenotyping and glycobiology. We also created dual-tagged reagents for simultaneous detection of markers by immunofluorescence, mass cytometry, and imaging mass cytometry using a two-step conjugation process. The Helios mass cytometer was used to test the functionality of reagents on suspension human leukemia cell lines and primary cells. The dual-tagged Abs, metal-tagged lectins, and phalloidin staining reagent were used to visualize target proteins and glycans on adherent cell lines and frozen/FFPE tissue sections using the Hyperion Imaging System. In some instances, reagents produced by click conjugation showed superior sensitivity and specificity compared to those of reagents produced by thiol-maleimide chemistry. In general, the click chemistry-based conjugation with new MCPs could be instrumental in developing a wide range of highly sensitive metal-containing reagents for proteomics and glycomics applications.
Collapse
Affiliation(s)
- Bedilu Allo
- Fluidigm Canada Inc. , Markham , Ontario L3R 4G5 , Canada
| | - Xudong Lou
- Fluidigm Canada Inc. , Markham , Ontario L3R 4G5 , Canada
| | | | - Olga Ornatsky
- Fluidigm Canada Inc. , Markham , Ontario L3R 4G5 , Canada
| |
Collapse
|
9
|
Duret D, Haftek-Terreau Z, Carretier M, Berki T, Ladavière C, Monier K, Bouvet P, Marvel J, Leverrier Y, Charreyre MT, Favier A. Labeling of native proteins with fluorescent RAFT polymer probes: application to the detection of a cell surface protein using flow cytometry. Polym Chem 2018. [DOI: 10.1039/c7py02064c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorescent RAFT polymer probes with an activated ester reactive end-group can be advantageously used to label native proteins.
Collapse
Affiliation(s)
- D. Duret
- Univ Lyon
- Université Lyon 1
- INSA de Lyon
- CNRS
- Laboratoire Ingénierie des Matériaux Polymères
| | | | - M. Carretier
- Univ Lyon
- Université Lyon 1
- INSA de Lyon
- CNRS
- Laboratoire Ingénierie des Matériaux Polymères
| | - T. Berki
- Univ Lyon
- Université Lyon 1
- INSA de Lyon
- CNRS
- Laboratoire Ingénierie des Matériaux Polymères
| | - C. Ladavière
- Univ Lyon
- Université Lyon 1
- INSA de Lyon
- CNRS
- Laboratoire Ingénierie des Matériaux Polymères
| | - K. Monier
- Univ Lyon
- ENS de Lyon
- CNRS
- Laboratoire Joliot-Curie
- USR3010
| | - P. Bouvet
- Univ Lyon
- ENS de Lyon
- CNRS
- Laboratoire Joliot-Curie
- USR3010
| | - J. Marvel
- Univ Lyon
- INSERM
- ENS de Lyon
- CNRS
- Université Lyon 1
| | | | - M.-T. Charreyre
- Univ Lyon
- Université Lyon 1
- INSA de Lyon
- CNRS
- Laboratoire Ingénierie des Matériaux Polymères
| | - A. Favier
- Univ Lyon
- Université Lyon 1
- INSA de Lyon
- CNRS
- Laboratoire Ingénierie des Matériaux Polymères
| |
Collapse
|
10
|
Abstract
PURPOSE Recently we showed that a number of carboxylated near-infrared fluorescent (NIRF) cyanine dyes possess strong necrosis avid properties in vitro as well as in different mouse models of spontaneous and therapy-induced tumor necrosis, indicating their potential use for cancer diagnostic- and prognostic purposes. In the previous study, the detection of the cyanines was achieved by whole body optical imaging, a technique that, due to the limited penetration of near-infrared light, is not suitable for investigations deeper than 1 cm within the human body. Therefore, in order to facilitate clinical translation, the purpose of the present study was to generate a necrosis avid cyanine-based NIRF probe that could also be used for single photon emission computed tomography (SPECT). For this, the necrosis avid NIRF cyanine HQ4 was radiolabeled with 111indium, via the chelate diethylene triamine pentaacetic acid (DTPA). PROCEDURES The necrosis avid properties of the radiotracer [111In]DTPA-HQ4 were examined in vitro and in vivo in different breast tumor models in mice using SPECT and optical imaging. Moreover, biodistribution studies were performed to examine the pharmacokinetics of the probe in vivo. RESULTS Using optical imaging and radioactivity measurements, in vitro, we showed selective accumulation of [111In]DTPA-HQ4 in dead cells. Using SPECT and in biodistribution studies, the necrosis avidity of the radiotracer was confirmed in a 4T1 mouse breast cancer model of spontaneous tumor necrosis and in a MCF-7 human breast cancer model of chemotherapy-induced tumor necrosis. CONCLUSIONS The radiotracer [111In]DTPA-HQ4 possessed strong and selective necrosis avidity in vitro and in various mouse models of tumor necrosis in vivo, indicating its potential to be clinically applied for diagnostic purposes and to monitor anti-cancer treatment efficacy.
Collapse
|
11
|
Wu X, DeGottardi Q, Wu IC, Yu J, Wu L, Ye F, Kuo CT, Kwok WW, Chiu DT. Lanthanide-Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xu Wu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - Quinn DeGottardi
- Benaroya Research Institute at Virginia Mason; Seattle WA 98101 USA
- Department of Medicine; University of Washington; Seattle WA 98195 USA
| | - I-Che Wu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | | | - Li Wu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - Fangmao Ye
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - Chun-Ting Kuo
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason; Seattle WA 98101 USA
- Department of Medicine; University of Washington; Seattle WA 98195 USA
| | - Daniel T. Chiu
- Department of Chemistry; University of Washington; Seattle WA 98195 USA
| |
Collapse
|
12
|
Wu X, DeGottardi Q, Wu IC, Yu J, Wu L, Ye F, Kuo CT, Kwok WW, Chiu DT. Lanthanide-Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angew Chem Int Ed Engl 2017; 56:14908-14912. [PMID: 28941061 DOI: 10.1002/anie.201708463] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/06/2017] [Indexed: 11/09/2022]
Abstract
Simultaneous monitoring of biomarkers as well as single-cell analyses based on flow cytometry and mass cytometry are important for investigations of disease mechanisms, drug discovery, and signaling-network studies. Flow cytometry and mass cytometry are complementary to each other; however, probes that can satisfy all the requirements for these two advanced technologies are limited. In this study, we report a probe of lanthanide-coordinated semiconducting polymer dots (Pdots), which possess fluorescence and mass signals. We demonstrated the usage of this dual-functionality probe for both flow cytometry and mass cytometry in a mimetic cell mixture and human peripheral blood mononuclear cells as model systems. The probes not only offer high fluorescence signal for use in flow cytometry, but also show better performance in mass cytometry than the commercially available counterparts.
Collapse
Affiliation(s)
- Xu Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Quinn DeGottardi
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - I-Che Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | | | - Li Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Fangmao Ye
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Chun-Ting Kuo
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, 98101, USA.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Daniel T Chiu
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
Liu Z, Li X, Xiao G, Chen B, He M, Hu B. Application of inductively coupled plasma mass spectrometry in the quantitative analysis of biomolecules with exogenous tags: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Baumgart S, Schulz AR, Peddinghaus A, Stanislawiak S, Gillert S, Hirseland H, Krauthäuser S, Dose C, Mei HE, Grützkau A. Dual-labelled antibodies for flow and mass cytometry: A new tool for cross-platform comparison and enrichment of target cells for mass cytometry. Eur J Immunol 2017; 47:1377-1385. [DOI: 10.1002/eji.201747031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/25/2017] [Accepted: 06/19/2017] [Indexed: 02/04/2023]
Affiliation(s)
- Sabine Baumgart
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| | - Axel R Schulz
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| | - Anette Peddinghaus
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| | - Silke Stanislawiak
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| | - Sarah Gillert
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| | - Heike Hirseland
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| | | | | | - Henrik E Mei
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| | - Andreas Grützkau
- German Rheumatism Research Center Berlin (DRFZ); Institute of Leibniz Association; Berlin Germany
| |
Collapse
|
15
|
Zhang L, Zhao W, Liu X, Wang G, Wang Y, Li D, Xie L, Gao Y, Deng H, Gao W. Site-selective in situ growth of fluorescent polymer-antibody conjugates with enhanced antigen detection by signal amplification. Biomaterials 2015; 64:2-9. [PMID: 26102329 DOI: 10.1016/j.biomaterials.2015.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
This paper reports a new and general in situ methodology to grow fluorescent polymer conjugates from the interchain disulfide bridging sites of a monoclonal antibody. Atom transfer radical polymerization (ATRP) initiators were attached to a monoclonal antibody at its interchain disulfide bridging sites by disulfide re-bridging to yield a macroinitiator. Subsequent in situ ATRP of PEG-like monomers with dye-functionalized monomers from the macroinitiator formed antibody-polymer-dye conjugates with site-selectivity and tunable dye-to-antibody ratios. Notably, these conjugates can amplify antigen detection signal by reducing label-density dependent fluorescence quenching and by increasing dye-to-antibody ratios. The method developed may be applicable to a variety of antibodies, dyes and drugs to create a number of antibody-polymer-dye/drug conjugates for advanced diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenguo Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinyu Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Guilin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yang Wang
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Dong Li
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Liangzhi Xie
- Sino Biological, Inc., 14 Zhonghe St. BDA, Beijing 100176, China
| | - Yan Gao
- Protein Chemistry Facility, School of Biological Sciences, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Protein Chemistry Facility, School of Biological Sciences, Tsinghua University, Beijing 100084, China
| | - Weiping Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Jiang J, Chen CY, Zhang N, Vairaprakash P, Lindsey JS. Polarity-tunable and wavelength-tunable bacteriochlorins bearing a single carboxylic acid or NHS ester. Use in a protein bioconjugation model system. NEW J CHEM 2015. [DOI: 10.1039/c4nj01340a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
10 new near-infrared absorbing bacteriochlorins (soluble in aqueous or membranous media) are equipped for protein bioconjugation.
Collapse
Affiliation(s)
- Jianbing Jiang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Chih-Yuan Chen
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Nuonuo Zhang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | |
Collapse
|
17
|
Molev G, Lu Y, Kim KS, Majdalani IC, Guerin G, Petrov S, Walker G, Manners I, Winnik MA. Organometallic–Polypeptide Diblock Copolymers: Synthesis by Diels–Alder Coupling and Crystallization-Driven Self-Assembly to Uniform Truncated Elliptical Lamellae. Macromolecules 2014. [DOI: 10.1021/ma402441y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gregory Molev
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Yijie Lu
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Kris Sanghyun Kim
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Ingrid Chab Majdalani
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Gerald Guerin
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Srebri Petrov
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Gilbert Walker
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| | - Ian Manners
- School
of Chemistry, University of Bristol, Bristol, United Kingdom BS8 1TS
| | - Mitchell A. Winnik
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto M5S 3H6, Ontario, Canada
| |
Collapse
|