1
|
Hong C, He Y, Bowen PA, Belcher AM, Olsen BD, Hammond PT. Engineering a Two-Component Hemostat for the Treatment of Internal Bleeding through Wound-Targeted Crosslinking. Adv Healthc Mater 2023; 12:e2202756. [PMID: 37017403 PMCID: PMC10964210 DOI: 10.1002/adhm.202202756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/01/2023] [Indexed: 04/06/2023]
Abstract
Primary hemostasis (platelet plug formation) and secondary hemostasis (fibrin clot formation) are intertwined processes that occur upon vascular injury. Researchers have sought to target wounds by leveraging cues specific to these processes, such as using peptides that bind activated platelets or fibrin. While these materials have shown success in various injury models, they are commonly designed for the purpose of treating solely primary or secondary hemostasis. In this work, a two-component system consisting of a targeting component (azide/GRGDS PEG-PLGA nanoparticles) and a crosslinking component (multifunctional DBCO) is developed to treat internal bleeding. The system leverages increased injury accumulation to achieve crosslinking above a critical concentration, addressing both primary and secondary hemostasis by amplifying platelet recruitment and mitigating plasminolysis for greater clot stability. Nanoparticle aggregation is measured to validate concentration-dependent crosslinking, while a 1:3 azide/GRGDS ratio is found to increase platelet recruitment, decrease clot degradation in hemodiluted environments, and decrease complement activation. Finally, this approach significantly increases survival relative to the particle-only control in a liver resection model. In light of prior successes with the particle-only system, these results emphasize the potential of this technology in aiding hemostasis and the importance of a holistic approach in engineering new treatments for hemorrhage.
Collapse
Affiliation(s)
- Celestine Hong
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Institute for Soldier NanotechnologiesMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Yanpu He
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Porter A. Bowen
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Angela M. Belcher
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Bradley D. Olsen
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Institute for Soldier NanotechnologiesMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Paula T. Hammond
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Institute for Soldier NanotechnologiesMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
2
|
Chen Z, Han L, Meng G, Li H, Shan C, Du G, Li M. Intravenous Hemostats: Foundation, Targeting, and Controlled-Release. Bioconjug Chem 2022; 33:2269-2289. [PMID: 36404605 DOI: 10.1021/acs.bioconjchem.2c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uncontrollable blood loss is the greatest cause of mortality in prehospital patients and the main source of disability and death in hospital care. Compared with external hemostats, intravenous hemostats are more appropriate for preventing and treating uncontrolled bleeding in vivo and large bleeding on the body surface. This Review initially establishes intravenous hemostats' response basis, including the coagulation mechanism, fibrinolytic pathway, and protein corona. Second, the study of advancement of intravenous hemostat targeting was expanded from two perspectives, cellular hemostatic agents and synthetic hemostatic agents. Meanwhile, after discussing the progress of controlled-release intravenous hemostats with platelets as the stimuli, this Review offers insight into the possibility of controlled-release intravenous hemostats with microenvironment as the stimuli, combining the studies of controlled-release targeted thrombolysis.
Collapse
Affiliation(s)
- Zihao Chen
- Department of Special Operations Medicine, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Lei Han
- Department of Special Operations Medicine, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Guo Meng
- Department of Special Operations Medicine, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Huaiyong Li
- Department of Special Operations Medicine, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Chao Shan
- Department of Special Operations Medicine, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ge Du
- Department Of Geriatric Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing 100144, China
| | - Minggao Li
- Department of Special Operations Medicine, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| |
Collapse
|
3
|
Maisha N, Kulkarni C, Pandala N, Zilberberg R, Schaub L, Neidert L, Glaser J, Cannon J, Janeja V, Lavik EB. PEGylated Polyester Nanoparticles Trigger Adverse Events in a Large Animal Model of Trauma and in Naı̈ve Animals: Understanding Cytokine and Cellular Correlations with These Events. ACS NANO 2022; 16:10566-10580. [PMID: 35822898 DOI: 10.1021/acsnano.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.
Collapse
Affiliation(s)
| | | | | | | | - Leasha Schaub
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Leslie Neidert
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jacob Glaser
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jeremy Cannon
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
4
|
Wu Y, Liu Y, Wang T, Jiang Q, Xu F, Liu Z. Living Cell for Drug Delivery. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Hong C, Alser O, Gebran A, He Y, Joo W, Kokoroskos N, Velmahos G, Olsen BD, Hammond PT. Modulating Nanoparticle Size to Understand Factors Affecting Hemostatic Efficacy and Maximize Survival in a Lethal Inferior Vena Cava Injury Model. ACS NANO 2022; 16:2494-2510. [PMID: 35090344 PMCID: PMC9989960 DOI: 10.1021/acsnano.1c09108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intravenous nanoparticle hemostats offer a potentially attractive approach to promote hemostasis, in particular for inaccessible wounds such as noncompressible torso hemorrhage (NCTH). In this work, particle size was tuned over a range of <100-500 nm, and its effect on nanoparticle-platelet interactions was systematically assessed using in vitro and in vivo experiments. Smaller particles bound a larger percentage of platelets per mass of particle delivered, while larger particles resulted in higher particle accumulation on a surface of platelets and collagen. Intermediate particles led to the greatest platelet content in platelet-nanoparticle aggregates, indicating that they may be able to recruit more platelets to the wound. In biodistribution studies, smaller and intermediate nanoparticles exhibited longer circulation lifetimes, while larger nanoparticles resulted in higher pulmonary accumulation. The particles were then challenged in a 2 h lethal inferior vena cava (IVC) puncture model, where intermediate nanoparticles significantly increased both survival and injury-specific targeting relative to saline and unfunctionalized particle controls. An increase in survival in the second hour was likewise observed in the smaller nanoparticles relative to saline controls, though no significant increase in survival was observed in the larger nanoparticle size. In conjunction with prior in vitro and in vivo experiments, these results suggest that platelet content in aggregates and extended nanoparticle circulation lifetimes are instrumental to enhancing hemostasis. Ultimately, this study elucidates the role of particle size in platelet-particle interactions, which can be a useful tool for engineering the performance of particulate hemostats and improving the design of these materials.
Collapse
Affiliation(s)
- Celestine Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Osaid Alser
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Anthony Gebran
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Yanpu He
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wontae Joo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nikolaos Kokoroskos
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - George Velmahos
- Division of Trauma, Emergency Surgery and Surgical Critical Care, Department of Surgery, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
A review of treatments for non-compressible torso hemorrhage (NCTH) and internal bleeding. Biomaterials 2022; 283:121432. [DOI: 10.1016/j.biomaterials.2022.121432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
7
|
|
8
|
Maisha N, Rubenstein M, Bieberich CJ, Lavik E. Getting to the Core of It All: Nanocapsules to Mitigate Infusion Reactions Can Promote Hemostasis and Be a Platform for Intravenous Therapies. NANO LETTERS 2021; 21:9069-9076. [PMID: 34714087 DOI: 10.1021/acs.nanolett.1c02746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the significant challenges to translation of intravenously administered nanomaterials has been complement-mediated infusion reactions which can be lethal. Slow infusions can reduce infusion reactions, but slow infusions are not always possible in applications like controlling bleeding following trauma. Thus, avoiding complement activation and infusion responses is essential to manage bleeding. We identified nanocapsules based on polyurethane as candidates that did not activate C5a and explored their PEGylation and functionalization with the GRGDS peptide to create a new class of hemostatic nanomaterials. Using the clinically relevant rotational thromboelastography (ROTEM), we determined that nanocapsules promote faster clotting than controls and maintain the maximum clot firmness, which is critical for reducing bleeding. Excitingly, these polyurethane-based nanocapsules did not activate complement or the major pro-inflammatory cytokines. This work provides critical evidence for the role of modulating the core material in developing safer nanomedicines for intravenous applications.
Collapse
Affiliation(s)
- Nuzhat Maisha
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Michael Rubenstein
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Charles J Bieberich
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Erin Lavik
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
9
|
Cau MF, Strilchuk AW, Kastrup CJ. Nanomedicines for hemorrhage control. J Thromb Haemost 2021; 19:887-891. [PMID: 33694243 DOI: 10.1111/jth.15211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Amy W Strilchuk
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Maisha N, Coombs T, Lavik E. Development of a Sensitive Assay to Screen Nanoparticles in vitro for Complement Activation. ACS Biomater Sci Eng 2020; 6:4903-4915. [PMID: 33313396 DOI: 10.1021/acsbiomaterials.0c00722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomedicines are often recognized by the innate immune system as a threat, leading to unwanted clearance due to complement activation. This adverse reaction not only alters the bioavailability of the therapeutic but can also cause cardiopulmonary complications and death in a portion of the population. There is a need for tools for assessing complement response in the early stage of development of nanomedicines. Currently, quantifying complement-mediated response in vitro is limited due to differences between in vitro and in vivo responses for the same precursors, differences in the complement systems in different species, and lack of highly sensitive tools for quantifying the changes. Hence, we have worked on developing complement assay conditions and sample preparation techniques that can be highly sensitive in assessing the complement-mediated response in vitro mimicking the in vivo activity. We are screening the impact of incubation time, nanoparticle dosage, anticoagulants, and species of the donor in both blood and blood components. We have validated the optimal assay conditions by replicating the impact of zeta potential seen in vivo on complement activation in vitro. As observed in our previous in vivo studies, where nanoparticles with neutral zeta-potential were able to suppress complement response, the change in the complement biomarker was least for the neutral nanoparticles as well through our developed guidelines. These assay conditions provide a vital tool for assessing the safety of intravenously administered nanomedicines.
Collapse
Affiliation(s)
- Nuzhat Maisha
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Tobias Coombs
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Erin Lavik
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| |
Collapse
|
11
|
Klein MK, Kassam HA, Lee RH, Bergmeier W, Peters EB, Gillis DC, Dandurand BR, Rouan JR, Karver MR, Struble MD, Clemons TD, Palmer LC, Gavitt B, Pritts TA, Tsihlis ND, Stupp SI, Kibbe MR. Development of Optimized Tissue-Factor-Targeted Peptide Amphiphile Nanofibers to Slow Noncompressible Torso Hemorrhage. ACS NANO 2020; 14:6649-6662. [PMID: 32469498 PMCID: PMC7587470 DOI: 10.1021/acsnano.9b09243] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Noncompressible torso hemorrhage accounts for a significant portion of preventable trauma deaths. We report here on the development of injectable, targeted supramolecular nanotherapeutics based on peptide amphiphile (PA) molecules that are designed to target tissue factor (TF) and, therefore, selectively localize to sites of injury to slow hemorrhage. Eight TF-targeting sequences were identified, synthesized into PA molecules, coassembled with nontargeted backbone PA at various weight percentages, and characterized via circular dichroism spectroscopy, transmission electron microscopy, and X-ray scattering. Following intravenous injection in a rat liver hemorrhage model, two of these PA nanofiber coassemblies exhibited the most specific localization to the site of injury compared to controls (p < 0.05), as quantified using immunofluorescence imaging of injured liver and uninjured organs. To determine if the nanofibers were targeting TF in vivo, a mouse saphenous vein laser injury model was performed and showed that TF-targeted nanofibers colocalized with fibrin, demonstrating increased levels of nanofiber at TF-rich sites. Thromboelastograms obtained using samples of heparinized rat whole blood containing TF demonstrated that no clots were formed in the absence of TF-targeted nanofibers. Lastly, both PA nanofiber coassemblies decreased blood loss in comparison to sham and backbone nanofiber controls by 35-59% (p < 0.05). These data demonstrate an optimal TF-targeted nanofiber that localizes selectively to sites of injury and TF exposure, and, interestingly, reduces blood loss. This research represents a promising initial phase in the development of a TF-targeted injectable therapeutic to reduce preventable deaths from hemorrhage.
Collapse
Affiliation(s)
- Mia K. Klein
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Hussein Aziz Kassam
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert H. Lee
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Erica B. Peters
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David C. Gillis
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brooke R. Dandurand
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jessica R. Rouan
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Mark R. Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Mark D. Struble
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Tristan D. Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- School of Molecular Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Liam C. Palmer
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Brian Gavitt
- United States Air Force School of Aerospace Medicine, Wright-Patterson AFB, OH, 45433, USA
| | - Timothy A. Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Nick D. Tsihlis
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Melina R. Kibbe
- Department of Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
Klein MK, Tsihlis ND, Pritts TA, Kibbe MR. Emerging Therapies for Prehospital Control of Hemorrhage. J Surg Res 2020; 248:182-190. [PMID: 31711614 DOI: 10.1016/j.jss.2019.09.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aim of this review was to describe emerging therapies that could serve as a prehospital intervention to slow or stop noncompressible torso hemorrhage in the civilian and military settings. Hemorrhage accounts for 90% of potentially survivable military deaths and 30%-40% of trauma deaths. There is a great need to develop novel therapies to slow or stop noncompressible torso hemorrhage at the scene of the injury. METHODS A comprehensive literature search was performed using PubMed (1966 to present) for therapies not approved by the Food and Drug Administration for noncompressible torso hemorrhage in the prehospital setting. Therapies were divided into compressive versus intravascular injectable therapies. Ease of administration, skill required to use the therapy, safety profile, stability, shelf-life, mortality benefit, and efficacy were reviewed. RESULTS Multiple potential therapies for noncompressible torso hemorrhage are currently under active investigation. These include (1) tamponade therapies, such as gas insufflation and polyurethane foam injection; (2) freeze-dried blood products and alternatives such as lyophilized platelets; (3) nanoscale injectable therapies such as polyethylene glycol nanospheres, polyethylenimine nanoparticles, SynthoPlate, and tissue factor-targeted nanofibers; and (4) other injectable therapies such as polySTAT and adenosine, lidocaine, and magnesium. Although each of these therapies shows great promise at slowing or stopping hemorrhage in animal models of noncompressible hemorrhage, further research is needed to ensure safety and efficacy in humans. CONCLUSIONS Multiple novel therapies are currently under active investigation to slow or stop noncompressible torso hemorrhage in the prehospital setting and show promising results.
Collapse
Affiliation(s)
- Mia K Klein
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
13
|
Wang X, Liu Q, Sui J, Ramakrishna S, Yu M, Zhou Y, Jiang X, Long Y. Recent Advances in Hemostasis at the Nanoscale. Adv Healthc Mater 2019; 8:e1900823. [PMID: 31697456 DOI: 10.1002/adhm.201900823] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/17/2019] [Indexed: 01/13/2023]
Abstract
Rapid and effective hemostatic materials have received wide attention not only in the battlefield but also in hospitals and clinics. Traditional hemostasis relies on materials with little designability which has many limitations. Nanohemostasis has been proposed since the use of peptides in hemostasis. Nanomaterials exhibit excellent adhesion, versatility, and designability compared to traditional materials, laying a good foundation for future hemostatic materials. This review first summarizes current hemostatic methods and materials, and then introduces several cutting-edge designs and applications of nanohemostatic materials such as polypeptide assembly, electrospinning of cyanoacrylate, and nanochitosan. Particularly, their advantages and working mechanisms are introduced. Finally, the challenges and prospects of nanohemostasis are discussed.
Collapse
Affiliation(s)
- Xiao‐Xiong Wang
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Qi Liu
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Jin‐Xia Sui
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| | - Seeram Ramakrishna
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
- Center for Nanofibers & NanotechnologyNational University of Singapore Singapore 119077 Singapore
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
- Department of Mechanical EngineeringColumbia University New York NY 10027 USA
| | - Yu Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesQingdao University Qingdao 266071 China
| | - Xing‐Yu Jiang
- Laboratory for Biological Effects of Nanomaterials & NanosafetyNational Center for Nanoscience & Technology Beijing 100190 China
| | - Yun‐Ze Long
- Collaborative Innovation Center for Nanomaterials & DevicesCollege of PhysicsQingdao University Qingdao 266071 China
| |
Collapse
|
14
|
Brown AC, Lavik E, Stabenfeldt SE. Biomimetic Strategies To Treat Traumatic Brain Injury by Leveraging Fibrinogen. Bioconjug Chem 2019; 30:1951-1956. [PMID: 31246419 DOI: 10.1021/acs.bioconjchem.9b00360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There were over 27 million new cases of traumatic brain injuries (TBIs) in 2016 across the globe. TBIs are often part of complicated trauma scenarios and may not be diagnosed initially because the primary clinical focus is on stabilizing the patient. Interventions used to stabilize trauma patients may inadvertently impact the outcomes of TBIs. Recently, there has been a strong interest in the trauma community toward administrating fibrinogen-containing solutions intravenously to help stabilize trauma patients. While this interventional shift may benefit general trauma scenarios, fibrinogen is associated with potentially deleterious effects for TBIs. Here, we deconstruct what components of fibrinogen may be beneficial as well as potentially harmful following TBI and extrapolate this to biomimetic approaches to treat bleeding and trauma that may also lead to better outcomes following TBI.
Collapse
Affiliation(s)
- Ashley C Brown
- Joint Department of Biomedical Engineering , North Carolina State University and The University of North Carolina at Chapel Hill , Raleigh , North Carolina 27695 , United States.,Comparative Medicine Institute , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Erin Lavik
- Chemical, Biochemical, and Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
15
|
Gkikas M, Peponis T, Mesar T, Hong C, Avery RK, Roussakis E, Yoo HJ, Parakh A, Patino M, Sahani DV, Watkins MT, Oklu R, Evans CL, Albadawi H, Velmahos G, Olsen BD. Systemically Administered Hemostatic Nanoparticles for Identification and Treatment of Internal Bleeding. ACS Biomater Sci Eng 2019; 5:2563-2576. [PMID: 33405762 DOI: 10.1021/acsbiomaterials.9b00054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Internal bleeding is an injury that can be difficult to localize and effectively treat without invasive surgeries. Injectable polymeric nanoparticles have been developed that can reduce clotting times and blood loss, but they have yet to incorporate sufficient diagnostic capabilities to assist in identifying bleeding sources. Herein, polymeric nanoparticles were developed to simultaneously treat internal bleeding while incorporating tracers for visualization of the nanoparticles by standard clinical imaging modalities. Addition of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiD; a fluorescent dye), biotin functionality, and gold nanoparticles to hemostatic polymeric nanoparticles resulted in nanoparticles amenable to imaging with near-infrared (NIR) imaging, immunohistochemistry, and X-ray computed tomography (CT), respectively. Following a lethal liver resection injury, visualization of accumulated nanoparticles by multiple imaging methods was achieved in rodents, with the highest accumulation observed at the liver injury site, resulting in improved survival rates. Tracer addition to therapeutic nanoparticles allows for an expansion of their applicability, during stabilization by first responders to diagnosis and identification of unknown internal bleeding sites by clinicians using standard clinical imaging modalities.
Collapse
Affiliation(s)
- Manos Gkikas
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Thomas Peponis
- Department of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, United States
| | - Tomaz Mesar
- Department of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, United States
| | - Celestine Hong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reginald K Avery
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Emmanuel Roussakis
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Hyung-Jin Yoo
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
| | - Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
| | - Manuel Patino
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
| | - Dushyant V Sahani
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
| | - Michael T Watkins
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, Massachusetts 02144, United States
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - George Velmahos
- Department of Trauma, Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Adv Drug Deliv Rev 2019; 143:22-36. [PMID: 31158406 DOI: 10.1016/j.addr.2019.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022]
Abstract
Nanoparticles modified with ligands for specific targeting towards receptors expressed on the surface of target cells are discussed in literature towards improved delivery strategies. In such concepts the ligand density on the surface of the nanoparticles plays an important role. How many ligands per nanoparticle are best for the most efficient delivery? Importantly, this number may be different for in vitro and in vivo scenarios. In this review first viruses as "biological" nanoparticles are analyzed towards their ligand density, which is then compared to the ligand density of engineered nanoparticles. Then, experiments are reviewed in which in vitro and in vivo nanoparticle delivery has been analyzed in terms of ligand density. These results help to understand which ligand densities should be attempted for better targeting. Finally synthetic methods for controlling the ligand density of nanoparticles are described.
Collapse
|
17
|
Kim J, Nafiujjaman M, Nurunnabi M, Lim S, Lee YK, Park HK. Effects of polymer-coated boron nitrides with increased hemorheological compatibility on human erythrocytes and blood coagulation. Clin Hemorheol Microcirc 2019; 70:241-256. [PMID: 29710679 DOI: 10.3233/ch-170307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Boron nitride (BN) nanomaterials are promising in biomedical research owing to their large surface area, graphene-like structure, and chemical and thermal properties. However, the toxicological effects of BN on erythrocytes and blood coagulation remain uninvestigated. OBJECTIVE The aims of our study were to synthesize glycol chitosan (GC)- and hyaluronic acid (HA)-coated BNs, and to investigate the effects of these BNs on human cancer cells, erythrocytes, and whole blood. METHODS We prepared hemocompatible forms of BN coated with GC and HA, and evaluated them using cell uptake/viability tests, hemolysis analysis and FE-SEM, as well as through hemorheological evaluation methods such as RBC deformability and aggregation, and blood coagulation. RESULTS GC/BN and HA/BN were both ∼200 nm, were successfully taken into cells, and emitted blue fluorescence. Both BNs were less toxic than bare BN, even at higher concentrations. The aggregation index of human red blood cells (RBCs) after 2 h incubation with BN, GC/BN, and HA/BN was greatly influenced, whereas RBC deformability did not dramatically change. CONCLUSIONS We found that GC/BN affected the intrinsic coagulation pathway, whereas both GC/BN and HA/BN affected the extrinsic pathway. Therefore, HA/BN is less detrimental to RBCs and blood coagulation dynamics than bare BN and GC/BN.
Collapse
Affiliation(s)
- Jeongho Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Md Nafiujjaman
- Department of Green Bioengineering, Korea National University of Transportation, Chunbuk, Republic of Korea
| | - Md Nurunnabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Sinye Lim
- Department of Occupational & Environmental Medicine, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chunbuk, Republic of Korea.,Department of Chemical & Biological Engineering, Korea National University of Transportation, Chunbuk, Republic of Korea
| | - Hun-Kuk Park
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Lu Y, Hu Q, Jiang C, Gu Z. Platelet for drug delivery. Curr Opin Biotechnol 2018; 58:81-91. [PMID: 30529814 DOI: 10.1016/j.copbio.2018.11.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
Abstract
Platelets play a vital physiological role in hemostasis, inflammation and tissue regeneration, which are associated with wound healing as well as cancer development and metastasis. These years, a variety of platelet-mediated drug delivery approaches have been developed due to their unique properties, such as quick replenishment and site-specific activation/adhesion. In this Current Opinion, focuses are put on strategies leveraging the physiological functions of platelets for the design of drug delivery systems, including platelet engineering, platelet hitchhiking, membrane coating, synthetic platelet fabrication and platelet-triggered drug release for different applications.
Collapse
Affiliation(s)
- Yifei Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Quanyin Hu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States; California NanoSystems Institute, Jonsson Comprehensive Cancer Center, and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
19
|
Zhang P, Li S, Zhang S, Zhang X, Wan L, Yun Z, Ji S, Gong F, Huang M, Wang L, Zhu X, Tan Y, Wan Y. GRGDS-functionalized chitosan nanoparticles as a potential intravenous hemostat for traumatic hemorrhage control in an animal model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2531-2540. [PMID: 30193814 DOI: 10.1016/j.nano.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/15/2018] [Accepted: 08/08/2018] [Indexed: 01/25/2023]
Abstract
Hemostats, which are used for immediate intervention during internal hemorrhage in order to reduce resulting mortality and morbidity, are relatively rare. Here, we describe novel intravenous nanoparticles (CPG-NPs-2000) with chitosan succinate (CSS) as cores, polyethylene glycol (PEG-2000) as spacers and a glycine-arginine-glycine-aspartic acid-serine (GRGDS) peptide as targeted, active hemostatic motifs. CPG-NPs-2000 displayed significant hemostatic efficacy, compared to the saline control, CSS nanoparticles, and tranexamic acid in liver trauma rat models. Further studies have demonstrated that CPG-NPs-2000 are effectively cleared from organs and blood, within 2 and 48 h, respectively. In addition, administration of CPG-NPs-2000 does not affect clotting function under normal physiological conditions, indicating their potential safety in vivo. CPG-NPs-2000 exhibit excellent thermal stability, good solubility, and redistribution ability, in addition to being low cost. These characteristics indicate that CPG-NPs-2000 may have strong potential as effective intravenous hemostats for treating severe internal bleeding.
Collapse
Affiliation(s)
- Pingyi Zhang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Subo Li
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shikun Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Xue Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Luming Wan
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zhimin Yun
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Shouping Ji
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Feng Gong
- Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Manna Huang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Leilei Wang
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Xinhai Zhu
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China
| | - Yingxia Tan
- Institute of Health Service and Transfusion Medicine, Beijing, China.
| | - Yiqian Wan
- School of Chemical Engineering and Technology, Guangdong Engineering Technology Research Center for Platform Chemicals from Marine Biomass and Their Functionalization, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
20
|
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, Uppal N, Shoffstall A, Ustin J, Lavik E. Engineering Intravenously Administered Nanoparticles to Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of Trauma. Bioconjug Chem 2018; 29:2436-2447. [PMID: 29965731 DOI: 10.1021/acs.bioconjchem.8b00335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bleeding from traumatic injury is the leading cause of death for young people across the world, but interventions are lacking. While many agents have shown promise in small animal models, translating the work to large animal models has been exceptionally difficult in great part because of infusion-associated complement activation to nanomaterials that leads to cardiopulmonary complications. Unfortunately, this reaction is seen in at least 10% of the population. We developed intravenously infusible hemostatic nanoparticles that were effective in stopping bleeding and improving survival in rodent models of trauma. To translate this work, we developed a porcine liver injury model. Infusion of the first generation of hemostatic nanoparticles and controls 5 min after injury led to massive vasodilation and exsanguination even at extremely low doses. In naïve animals, the physiological changes were consistent with a complement-associated infusion reaction. By tailoring the zeta potential, we were able to engineer a second generation of hemostatic nanoparticles and controls that did not exhibit the complement response at low and moderate doses but did at the highest doses. These second-generation nanoparticles led to cessation of bleeding within 10 min of administration even though some signs of vasodilation were still seen. While the complement response is still a challenge, this work is extremely encouraging in that it demonstrates that when the infusion-associated complement response is managed, hemostatic nanoparticles are capable of rapidly stopping bleeding in a large animal model of trauma.
Collapse
Affiliation(s)
- Chimdiya Onwukwe
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Nuzhat Maisha
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Mark Holland
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| | - Matt Varley
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Rebecca Groynom
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - DaShawn Hickman
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Nishant Uppal
- Harvard Medical School , 25 Shattuck Street , Boston , Massachusetts 02115 , United States
| | - Andrew Shoffstall
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Jeffrey Ustin
- Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Erin Lavik
- University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore , Maryland 21050 , United States
| |
Collapse
|
21
|
Shabanova EM, Drozdov AS, Fakhardo AF, Dudanov IP, Kovalchuk MS, Vinogradov VV. Thrombin@Fe 3O 4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci Rep 2018; 8:233. [PMID: 29321571 PMCID: PMC5762673 DOI: 10.1038/s41598-017-18665-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Bleeding remains one of the main causes of premature mortality at present, with internal bleeding being the most dangerous case. In this paper, magnetic hemostatic nanoparticles are shown for the first time to assist in minimally invasive treatment of internal bleeding, implying the introduction directly into the circulatory system followed by localization in the bleeding zone due to the application of an external magnetic field. Nanoparticles were produced by entrapping human thrombin (THR) into a sol-gel derived magnetite matrix followed by grinding to sizes below 200 nm and subsequent colloidization. Prepared colloids show protrombotic activity and cause plasma coagulation in in vitro experiments. We also show here using a model blood vessel that the THR@ferria composite does not cause systematic thrombosis due to low activity, but being concentrated by an external magnetic field with simultaneous fibrinogen injection accelerates local hemostasis and stops the bleeding. For instance, a model vessel system with circulating blood at the puncture of the vessel wall and the application of a permanent magnetic field yielded a hemostasis time by a factor of 6.5 shorter than that observed for the control sample. Biocompatibility of composites was tested on HELF and HeLa cells and revealed no toxic effects.
Collapse
Affiliation(s)
- Emiliya M Shabanova
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Andrey S Drozdov
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation.
| | - Anna F Fakhardo
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
| | - Ivan P Dudanov
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation
- Mariinsky Hospital, Regional Cardiovascular Center, Liteyny Ave. 56, 191054, St. Petersburg, Russian Federation
| | - Marina S Kovalchuk
- Mariinsky Hospital, Regional Cardiovascular Center, Liteyny Ave. 56, 191054, St. Petersburg, Russian Federation
| | - Vladimir V Vinogradov
- ITMO University, Laboratory of Solution Chemistry of Advanced Materials and Technologies, Lomonosova St. 9, 191002, St. Petersburg, Russian Federation.
| |
Collapse
|
22
|
Gaston E, Fraser JF, Xu ZP, Ta HT. Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:507-519. [PMID: 29162534 DOI: 10.1016/j.nano.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022]
Abstract
Internal bleeding is defined as the loss of blood that occurs inside of a body cavity. After a traumatic injury, hemorrhage accounts for over 35% of pre-hospital deaths and 40% of deaths within the first 24 hours. Coagulopathy, a disorder in which the blood is not able to properly form clots, typically develops after traumatic injury and results in a higher rate of mortality. The current methods to treat internal bleeding and coagulopathy are inadequate due to the requirement of extensive medical equipment that is typically not available at the site of injury. To discover a potential route for future research, several current and novel treatment methods have been reviewed and analyzed. The aim of investigating different potential treatment options is to expand available knowledge, while also call attention to the importance of research in the field of treatment for internal bleeding and hemorrhage due to trauma.
Collapse
Affiliation(s)
- Elizabeth Gaston
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD, Australia; Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - John F Fraser
- Faculty of Medicine, Critical Care Research Group, Prince Charles Hospital and the University of Queensland, Brisbane, Brisbane, QLD, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD, Australia
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Lamm RJ, Lim EB, Weigandt KM, Pozzo LD, White NJ, Pun SH. Peptide valency plays an important role in the activity of a synthetic fibrin-crosslinking polymer. Biomaterials 2017; 132:96-104. [PMID: 28411452 PMCID: PMC5490449 DOI: 10.1016/j.biomaterials.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
Abstract
Therapeutic polymers have the potential to improve the standard of care for hemorrhage, or uncontrolled bleeding, as synthetic hemostats. PolySTAT, a fibrin-crosslinking peptide-polymer conjugate, has the capacity to rescue fibrin clot formation and improve survival in a model of acute traumatic bleeding. PolySTAT consists of a synthetic polymer backbone to which targeting fibrin-binding peptides are linked. For translation of PolySTAT, the optimal valency of peptides must be determined. Grafting of fibrin-binding peptides to the poly(hydroxyethyl methacrylate)-based backbone was controlled to produce peptide valencies ranging from 0 to 10 peptides per polymer. PolySTATs with valencies of ≈4 or greater resulted in increased clot firmness, kinetics, and decreased breakdown as measured by thromboelastometry. A valency of ≈4 increased clot firmness 57% and decreased clot breakdown 69% compared to phosphate-buffered saline. This trend was characterized by neutron scattering, which probed the structure of clots formed in the presence of PolySTAT. Finally, PolySTAT with valencies of 4 (100% survival; p = 0.013) and 8 (80% survival; p = 0.063) improved survival compared to an albumin control in a femoral artery injury model (20% survival). This work demonstrates tunability of hemostatic polymers and the ability of in vitro assays to predict in vivo efficacy.
Collapse
Affiliation(s)
- Robert J Lamm
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, WA 98195, USA
| | - Esther B Lim
- Department of Medicine, Division of Emergency Medicine, University of Washington, Seattle, WA 98195, USA
| | - Katie M Weigandt
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-8562, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Nathan J White
- Department of Medicine, Division of Emergency Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Rappold JF, Bochicchio GV. Surgical adjuncts to noncompressible torso hemorrhage as tools for patient blood management. Transfusion 2017; 56 Suppl 2:S203-7. [PMID: 27100757 DOI: 10.1111/trf.13585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/17/2016] [Indexed: 11/30/2022]
Abstract
Despite the tremendous advances and successes in the care of combat casualties over the past 15 years of war, noncompressible torso hemorrhage (NCTH) remains the most likely source of potentially preventable death (approx. 25%) on the battlefield. This is also likely true for civilian victims of blunt and penetrating trauma. Various devices and therapeutic interventions have been, and are being, developed in an attempt to reduce morbidity and mortality for patients with NCTH. Examples include the use of prehospital blood and blood products, tranexamic acid, specially designed tourniquets for junctional hemorrhage control, retrograde endovascular balloon occlusion of the aorta, intracavity foam, expandable hemostatic sponges, and intravascular nanoparticles to suspended animation. Although each of these modalities offer the potential to staunch uncontrolled hemorrhage until an injured patient is able to reach definitive surgical care, further research and advances must be made to further reduce trauma morbidity and mortality and to identify those technologies and modalities that are best suited to rapid movement to the front lines of combat casualty care as well as to emergency medical personnel dealing with civilian trauma victims. The surgical adjuncts for NCTH discussed may all be considered as potential tools for patient blood management programs. If effective they offer the possibility of reduce hemorrhage and blood product exposure and improved patient outcomes.
Collapse
Affiliation(s)
- Joseph F Rappold
- Department of Surgery, Division of Acute Care Surgery, Maine Medical Center/Tufts University School of Medicine, Portland, Maine
| | - Grant V Bochicchio
- Department of Surgery, Division of Acute and Critical Care Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
25
|
Cheng J, Feng S, Han S, Zhang X, Chen Y, Zhou X, Wang R, Li X, Hu H, Zhang J. Facile Assembly of Cost-Effective and Locally Applicable or Injectable Nanohemostats for Hemorrhage Control. ACS NANO 2016; 10:9957-9973. [PMID: 27736084 DOI: 10.1021/acsnano.6b04124] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Currently, there is still unmet demand for effective and safe hemostats to control abnormal bleeding in different conditions. With the aim to develop affordable, safe, effective, easily stored, and low-cost hemostats, we developed a series of positively charged nanoparticles by a facile one-pot assembly approach. In this strategy, nanoparticles were formed by cholic-acid-mediated self-assembly of polyethylenimine (PEI). Regardless of different structures of cholic acids and PEIs, well-defined nanoparticles could be successfully formed. The assembly process was dominated by multiple interactions between cholic acid and PEI, including electrostatic, hydrogen bonding, and hydrophobic forces. In vitro studies showed that assembled nanoparticles effectively induced aggregation and activation of platelets. Local application of aqueous solution containing nanoparticles assembled by different cholic acids and PEIs significantly reduced bleeding times in different rodent models including tail transection in mice as well as liver bleeding and femoral artery bleeding in rats or rabbits. Moreover, intravenous (i.v.) injection of this type of positively charged nanoparticles notably prevented bleeding in the femoral artery in rats by targeting the injured site via opsonization of nanoparticles with fibrinogen. By contrast, a control negatively charged nanoparticle showed no hemostatic activity after i.v. delivery. Also, preliminary evaluations in rats revealed a good safety profile after i.v. administration of assembled nanoparticles at a dose 4-fold higher than that used for hemostasis. These results demonstrated that cholic acid/PEI-assembled positive nanoparticles may function as cost-effective and locally applicable or injectable nanohemostats for hemorrhage control in the civilian setting and on the battlefield.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau, China
| | | | | | | |
Collapse
|
26
|
Szeto GL, Lavik EB. Materials design at the interface of nanoparticles and innate immunity. J Mater Chem B 2016; 4:1610-1618. [PMID: 27453783 DOI: 10.1039/c5tb01825k] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Engineered nanoparticle platforms have been developed intensely in recent years, yielding significantly broadened applications from interrogating novel biology to new therapies. Using these platforms requires improved understanding of design rules to improve our ability to control nanoparticle-immune system interactions.
Collapse
Affiliation(s)
- Gregory Lee Szeto
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD
| | - Erin B Lavik
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, MD
| |
Collapse
|
27
|
Morgan CE, Dombrowski AW, Rubert Pérez CM, Bahnson ESM, Tsihlis ND, Jiang W, Jiang Q, Vercammen JM, Prakash VS, Pritts TA, Stupp SI, Kibbe MR. Tissue-Factor Targeted Peptide Amphiphile Nanofibers as an Injectable Therapy To Control Hemorrhage. ACS NANO 2016; 10:899-909. [PMID: 26700464 DOI: 10.1021/acsnano.5b06025] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Noncompressible torso hemorrhage is a leading cause of mortality in civilian and battlefield trauma. We sought to develop an i.v.-injectable, tissue factor (TF)-targeted nanotherapy to stop hemorrhage. Tissue factor was chosen as a target because it is only exposed to the intravascular space upon vessel disruption. Peptide amphiphile (PA) monomers that self-assemble into nanofibers were chosen as the delivery vehicle. Three TF-binding sequences were identified (EGR, RLM, and RTL), covalently incorporated into the PA backbone, and shown to self-assemble into nanofibers by cryo-transmission electron microscopy. Both the RLM and RTL peptides bound recombinant TF in vitro. All three TF-targeted nanofibers bound to the site of punch biopsy-induced liver hemorrhage in vivo, but only RTL nanofibers reduced blood loss versus sham (53% reduction, p < 0.05). Increasing the targeting ligand density of RTL nanofibers yielded qualitatively better binding to the site of injury and greater reductions in blood loss in vivo (p < 0.05). In fact, 100% RTL nanofiber reduced overall blood loss by 60% versus sham (p < 0.05). Evaluation of the biocompatibility of the RTL nanofiber revealed that it did not induce RBC hemolysis, did not induce neutrophil or macrophage inflammation at the site of liver injury, and 70% remained intact in plasma after 30 min. In summary, these studies demonstrate successful binding of peptides to TF in vitro and successful homing of a TF-targeted PA nanofiber to the site of hemorrhage with an associated decrease in blood loss in vivo. Thus, this therapeutic may potentially treat noncompressible hemorrhage.
Collapse
Affiliation(s)
- Courtney E Morgan
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Amanda W Dombrowski
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Charles M Rubert Pérez
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Edward S M Bahnson
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Nick D Tsihlis
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Wulin Jiang
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Qun Jiang
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Janet M Vercammen
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Vivek S Prakash
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Timothy A Pritts
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| | - Melina R Kibbe
- Simpson Querrey Institute for BioNanotechnology, ‡Department of Surgery, Feinberg School of Medicine, and §Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois 60611, United States
- Department of Materials Science & Engineering, ▲Biomedical Engineering, and ∥Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
- Department of Surgery and #Institute for Military Medicine, University of Cincinnati , Cincinnati, Ohio 45220, United States
| |
Collapse
|
28
|
Lashof-Sullivan M, Holland M, Groynom R, Campbell D, Shoffstall A, Lavik E. Hemostatic Nanoparticles Improve Survival Following Blunt Trauma Even after 1 Week Incubation at 50 °C. ACS Biomater Sci Eng 2016; 2:385-392. [PMID: 27672679 DOI: 10.1021/acsbiomaterials.5b00493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
According to the CDC, the leading cause of death for both men and women between the ages of 5 and 44 is traumatic injury. Blood loss is the primary cause of death at acute time points post trauma. Early intervention is critical to save lives, and yet there are no treatments to stop internal bleeding that can be deployed in the field. In this work, we developed hemostatic nanoparticles that are stable at high temperatures (50 °C for 7 days) and are still effective at stopping bleeding and improving survival over the one hour time period in a rat liver injury model. These particles are exceptionally simple: PLA-based nanospheres functionalized with PEG terminated with variants of the RGD motif. This simple system can be stored at temperatures up to 50°C and maintain size, shape, and efficacy. The particles lead to a reduction in bleeding and increased acute survival with significance compared to both control particles and saline. Overall, these hemostatic nanoparticles offer an important step towards an immediate intervention in the field to stop bleeding and improve survival.
Collapse
Affiliation(s)
- Margaret Lashof-Sullivan
- Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106
| | - Mark Holland
- Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106
| | - Rebecca Groynom
- Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106
| | - Donald Campbell
- Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106
| | - Andrew Shoffstall
- Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH, 44106
| | - Erin Lavik
- Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250
| |
Collapse
|
29
|
Abstract
While there are currently many well-established topical hemostatic agents for field administration, there are still limited tools to staunch bleeding at less accessible injury sites. Current clinical methods to restore hemostasis after large volume blood loss include platelet and clotting factor transfusion, which have respective drawbacks of short shelf life and risk of viral transmission. Therefore, synthetic hemostatic agents that can be delivered intravenously and encourage stable clot formation after localizing to sites of vascular injury are particularly appealing. In the past three decades, platelet substitutes have been prepared using drug delivery vehicles such as liposomes and PLGA nanoparticles that have been modified to mimic platelet properties. Additionally, structural considerations such as particle size, shape, and flexibility have been addressed in a number of reports. Since platelets are the first responders after vascular injury, platelet substitutes represent an important class of intravenous hemostats under development. More recently, materials affecting fibrin formation have been introduced to induce faster or more stable blood clot formation through fibrin cross-linking. Fibrin represents a major structural component in the final blood clot, and a fibrin-based hemostatic mechanism acting downstream of initial platelet plug formation may be a safer alternative to platelets to avoid undesired thrombotic activity. This Review explores intravenous hemostats under development and strategies to optimize their clotting activity.
Collapse
Affiliation(s)
- Leslie W Chan
- †Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| | - Nathan J White
- ‡Department of Medicine, Division of Emergency Medicine, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H Pun
- †Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, 3720 15th Avenue NE, Box 355061, Seattle, Washington 98195, United States
| |
Collapse
|
30
|
Intravenously administered nanoparticles increase survival following blast trauma. Proc Natl Acad Sci U S A 2014; 111:10293-8. [PMID: 24982180 DOI: 10.1073/pnas.1406979111] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explosions account for 79% of combat-related injuries, leading to multiorgan hemorrhage and uncontrolled bleeding. Uncontrolled bleeding is the leading cause of death in battlefield traumas as well as in civilian life. We need to stop the bleeding quickly to save lives, but, shockingly, there are no treatments to stop internal bleeding. A therapy that halts bleeding in a site-specific manner and is safe, stable at room temperature, and easily administered is critical for the advancement of trauma care. To address this need, we have developed hemostatic nanoparticles that are administered intravenously. When tested in a model of blast trauma with multiorgan hemorrhaging, i.v. administration of the hemostatic nanoparticles led to a significant improvement in survival over the short term (1 h postblast). No complications from this treatment were apparent out to 3 wk. This work demonstrates that these particles have the potential to save lives and fundamentally change trauma care.
Collapse
|
31
|
Howard M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS NANO 2014; 8:4100-32. [PMID: 24787360 PMCID: PMC4046791 DOI: 10.1021/nn500136z] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/30/2014] [Indexed: 05/18/2023]
Abstract
Targeted nanomedicine holds promise to find clinical use in many medical areas. Endothelial cells that line the luminal surface of blood vessels represent a key target for treatment of inflammation, ischemia, thrombosis, stroke, and other neurological, cardiovascular, pulmonary, and oncological conditions. In other cases, the endothelium is a barrier for tissue penetration or a victim of adverse effects. Several endothelial surface markers including peptidases (e.g., ACE, APP, and APN) and adhesion molecules (e.g., ICAM-1 and PECAM) have been identified as key targets. Binding of nanocarriers to these molecules enables drug targeting and subsequent penetration into or across the endothelium, offering therapeutic effects that are unattainable by their nontargeted counterparts. We analyze diverse aspects of endothelial nanomedicine including (i) circulation and targeting of carriers with diverse geometries, (ii) multivalent interactions of carrier with endothelium, (iii) anchoring to multiple determinants, (iv) accessibility of binding sites and cellular response to their engagement, (v) role of cell phenotype and microenvironment in targeting, (vi) optimization of targeting by lowering carrier avidity, (vii) endocytosis of multivalent carriers via molecules not implicated in internalization of their ligands, and (viii) modulation of cellular uptake and trafficking by selection of specific epitopes on the target determinant, carrier geometry, and hydrodynamic factors. Refinement of these aspects and improving our understanding of vascular biology and pathology is likely to enable the clinical translation of vascular endothelial targeting of nanocarriers.
Collapse
Affiliation(s)
- Melissa Howard
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Blaine J. Zern
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Aaron C. Anselmo
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir V. Shuvaev
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Samir Mitragotri
- Department of Chemical Engineering, Center for Bioengineering, University of California, Santa Barbara, California 93106, United States
| | - Vladimir Muzykantov
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine & Therapeutics and Department of Pharmacology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
di Lena F. Hemostatic polymers: the concept, state of the art and perspectives. J Mater Chem B 2014; 2:3567-3577. [DOI: 10.1039/c3tb21739f] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This article presents a critical overview of the most significant developments in the use of polymers as hemostatic agents.
Collapse
Affiliation(s)
- Fabio di Lena
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- Laboratory for Biomaterials
- 9014 St. Gallen, Switzerland
| |
Collapse
|
33
|
Behrens AM, Sikorski MJ, Kofinas P. Hemostatic strategies for traumatic and surgical bleeding. J Biomed Mater Res A 2013; 102:4182-94. [PMID: 24307256 DOI: 10.1002/jbm.a.35052] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/18/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
Wide interest in new hemostatic approaches has stemmed from unmet needs in the hospital and on the battlefield. Many current commercial hemostatic agents fail to fulfill the design requirements of safety, efficacy, cost, and storage. Academic focus has led to the improvement of existing strategies as well as new developments. This review will identify and discuss the three major classes of hemostatic approaches: biologically derived materials, synthetically derived materials, and intravenously administered hemostatic agents. The general class is first discussed, then specific approaches discussed in detail, including the hemostatic mechanisms and the advancement of the method. As hemostatic strategies evolve and synthetic-biologic interactions are more fully understood, current clinical methodologies will be replaced.
Collapse
Affiliation(s)
- Adam M Behrens
- Fischell Department of Bioengineering, University of Maryland, 2330 Jeong H. Kim Engineering Building, College Park, Maryland, 20742
| | | | | |
Collapse
|
34
|
Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology 2013; 449:163-73. [PMID: 24418549 DOI: 10.1016/j.virol.2013.10.035] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/18/2013] [Accepted: 10/26/2013] [Indexed: 01/11/2023]
Abstract
Understanding the pharmacokinetics, blood compatibility, biodistribution and clearance properties of nanoparticles is of great importance to their translation to clinical application. In this paper we report the biodistribution and pharmacokinetic properties of tobacco mosaic virus (TMV) in the forms of 300×18nm(2) rods and 54nm-sized spheres. The availability of rods and spheres made of the same protein provides a unique scaffold to study the effect of nanoparticle shape on in vivo fate. For enhanced biocompatibility, we also considered a PEGylated formulation. Overall, the versions of nanoparticles exhibited comparable in vivo profiles; a few differences were noted: data indicate that rods circulate longer than spheres, illustrating the effect that shape plays on circulation. Also, PEGylation increased circulation times. We found that macrophages in the liver and spleen cleared the TMV rods and spheres from circulation. In the spleen, the viral nanoparticles trafficked through the marginal zone before eventually co-localizing in B-cell follicles. TMV rods and spheres were cleared from the liver and spleen within days with no apparent changes in histology, it was noted that spheres are more rapidly cleared from tissues compared to rods. Further, blood biocompatibility was supported, as none of the formulations induced clotting or hemolysis. This work lays the foundation for further application and tailoring of TMV for biomedical applications.
Collapse
|