1
|
Chibrikov V, Pieczywek PM, Cybulska J, Zdunek A. The effect of hemicelluloses on biosynthesis, structure and mechanical performance of bacterial cellulose-hemicellulose hydrogels. Sci Rep 2024; 14:21671. [PMID: 39289462 PMCID: PMC11408599 DOI: 10.1038/s41598-024-72513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
The primary plant cell wall (PCW) is a specialized structure composed predominantly of cellulose, hemicelluloses and pectin. While the role of cellulose and hemicelluloses in the formation of the PCW scaffold is undeniable, the mechanisms of how hemicelluloses determine the mechanical properties of PCW remain debatable. Thus, we produced bacterial cellulose-hemicellulose hydrogels as PCW analogues, incorporated with hemicelluloses. Next, we treated samples with hemicellulose degrading enzymes, and explored its structural and mechanical properties. As suggested, difference of hemicelluloses in structure and chemical composition resulted in a variety of the properties studied. By analyzing all the direct and indirect evidences we have found that glucomannan, xyloglucan and arabinoxylan increased the width of cellulose fibers both by hemicellulose surface deposition and fiber entrapment. Arabinoxylan increased stresses and moduli of the hydrogel by its reinforcing effect, while for xylan, increase in mechanical properties was determined by establishment of stiff cellulose-cellulose junctions. In contrast, increasing content of xyloglucan decreased stresses and moduli of hydrogel by its weak interactions with cellulose, while glucomannan altered cellulose network formation via surface deposition, decreasing its strength. The current results provide evidence for structure-dependent mechanisms of cellulose-hemicellulose interactions, suggesting the specific structural role of the latter.
Collapse
Affiliation(s)
- Vadym Chibrikov
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4 Str., 20-290, Lublin, Poland
| | - Piotr Mariusz Pieczywek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4 Str., 20-290, Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4 Str., 20-290, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4 Str., 20-290, Lublin, Poland.
| |
Collapse
|
2
|
Hou S, Xia Z, Pan J, Wang N, Gao H, Ren J, Xia X. Bacterial Cellulose Applied in Wound Dressing Materials: Production and Functional Modification - A Review. Macromol Biosci 2024; 24:e2300333. [PMID: 37750477 DOI: 10.1002/mabi.202300333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 09/27/2023]
Abstract
In recent years, the development of new type wound dressings has gradually attracted more attention. Bacterial cellulose (BC) is a natural polymer material with various unique properties, such as ultrafine 3D nanonetwork structure, high water retention capacity, and biocompatibility. These properties allow BC to be used independently or in combination with different components (such as biopolymers and nanoparticles) to achieve diverse effects. This means that BC has great potential as a wound dressing. However, systematic summaries for the production and commercial application of BC-based wound dressings are still lacking. Therefore, this review provides a detailed introduction to the production fermentation process of BC, including various production strains and their biosynthetic mechanisms. Subsequently, with regard to the functional deficiencies of bacterial cellulose as a wound dressing, recent research progress in this area is enumerated. Finally, prospects are discussed for the low-cost production and high-value-added product development of BC-based wound dressings.
Collapse
Affiliation(s)
- Shuaiwen Hou
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hanchao Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingli Ren
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
3
|
Liu H, Hu Y, Wu X, Hu R, Liu Y. Optimization of Surface-Engineered Micropatterns on Bacterial Cellulose for Guided Scar-Free Skin Wound Healing. Biomolecules 2023; 13:biom13050793. [PMID: 37238663 DOI: 10.3390/biom13050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial cellulose (BC) has been widely used in tissue engineering due to its unique spatial structure and suitable biological properties. In this study, a small biologically active Arginine-Glycine-Aspartic acid-Serine (RGDS) tetrapeptide was incorporated on the porous BC surface followed by a low-energy CO2 laser etching operation. As a result, different micropatterns were established on the BC surface with RGDS only anchored on the raised platform surface of the micropatterned BC (MPBC). Material characterization showed that all micropatterned structures exhibited platforms with a width of ~150 μm and grooves with a width of ~100 μm and a depth of ~300 μm, which displayed distinct hydrophilic and hydrophobic properties. The resulting RGDS-MPBC could hold the material integrity, as well as the microstructure morphology under a humid environment. In-vitro and in-vivo assays on cell migration, collagen deposition, and histological analysis revealed that micropatterns led to significant impacts on wound healing progress compared to the BC without surface-engineered micropatterns. Specifically, the basket-woven micropattern etched on the BC surface exhibited the optimal wound healing outcome with the presence of fewer macrophages and the least scar formation. This study further addresses the potential of adopting surface micropatterning strategies to promote skin wounds towards scar-free outcomes.
Collapse
Affiliation(s)
- Haiyan Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yang Hu
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Rong Hu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| | - Yingyu Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
| |
Collapse
|
4
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
5
|
Recent advances of chitosan-based polymers in biomedical applications and environmental protection. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9167648 DOI: 10.1007/s10965-022-03121-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiological properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vaccine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand application of chitosan-based polymers in many fields of science.
Collapse
|
6
|
Fucina G, Cesca K, Berti FV, Biavatti MW, Porto LM. Melanoma growth in non-chemically modified translucid bacterial nanocellulose hollow and compartimentalized spheres. Biochim Biophys Acta Gen Subj 2022; 1866:130183. [PMID: 35661803 DOI: 10.1016/j.bbagen.2022.130183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Bacterial nanocellulose (BNC) has been used as cell support in numerous tissue engineering studies. Its use can be explained based on the fact its structure allows the creation of a required microenvironment for an ideal material, which supports 3D cell culture. Its structure and interconnected pores lead to animal cells adhesion and proliferation, also allowing oxygen and nutrients transportation. METHODS We developed a new methodology to produce spherical platforms synthesized by Komagataebacter hansenii (ATCC 23769) under dynamic culture conditions in minimal medium. The chemical composition and physical properties of the platforms were evaluated. Then, human melanoma cells (SK-MEL-28) were encapsulated into the platforms and evaluated by metabolic activity, morphology and their ability on adhering to the Hollow Translucid BNC Spheres (BNC-TS-H) and Compartmentalized Translucid BNC Spheres (BNC-TS-C) up to 3 days. RESULTS BNC-TS-H and BNC-TS-C platforms were produced as translucid spheroid platforms with distinct microenvironment under dynamic fermentation. The chemical and physical characterizations confirmed the platforms composition as BNC. The produced internal microenvironments in spherical platforms are relevant to determine tumor cell fate. In the first 12 h of culture, cells were could adhere to nanocellulose microfibers assuming their typical tumorous phenotype in 72 h of culture. CONCLUSION The dynamic fermentation in minimal medium produced distinct microstructured platforms of BNC-TS-H and BNC-TS-C. The platforms microstructure resulted in microenvironments that enabled distinct cell-cell and cell-matrix interactions. This behavior suggests several applications on tissue engineering. GENERAL SIGNIFICANCE The method produced translucid BNC sphere platforms with distinct microenvironments for 3D cell culture.
Collapse
Affiliation(s)
- Giovana Fucina
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil.
| | - Karina Cesca
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Fernanda Vieira Berti
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| | - Luismar Marques Porto
- Department of Chemical and Food Engineering (EQA), Federal University of Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
7
|
Singhania RR, Patel AK, Tseng YS, Kumar V, Chen CW, Haldar D, Saini JK, Dong CD. Developments in bioprocess for bacterial cellulose production. BIORESOURCE TECHNOLOGY 2022; 344:126343. [PMID: 34780908 DOI: 10.1016/j.biortech.2021.126343] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Bacterial cellulose (BC) represents a novel bio-origin nonomaterial with its unique properties having diverse applications. Increased market demand and low yield are the major reason for its higher cost. Bacteria belonging to Komagataeibacter sp are the most exploited ones for BC production. Development of a cost-effective bioprocess for higher BC production is desirable. Though static fermentation modes have been majorly employed for BC production using tray fermenters, agitated mode has also been employed successfully with air-lift fermenters as well as stirred tank reactors. Bioprocess advances in recent years has led BC production to an upper level; however, challenges of aeration requirement and labor cost towards the higher end is associated with static cultivation at large scale. We have discussed the bioprocess development for BC production in recent years along with the challenges associated and the path forward.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yi-Sheng Tseng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Vinod Kumar
- Fermentation Technology Division, Indian Institute of Integrative Medicine, Post Bag No. 3, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendragarh 123031, Haryana, India
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
8
|
Shavyrkina NA, Skiba EA, Kazantseva AE, Gladysheva EK, Budaeva VV, Bychin NV, Gismatulina YA, Kashcheyeva EI, Mironova GF, Korchagina AA, Pavlov IN, Sakovich GV. Static Culture Combined with Aeration in Biosynthesis of Bacterial Cellulose. Polymers (Basel) 2021; 13:4241. [PMID: 34883747 PMCID: PMC8659626 DOI: 10.3390/polym13234241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
One of the ways to enhance the yield of bacterial cellulose (BC) is by using dynamic aeration and different-type bioreactors because the microbial producers are strict aerobes. But in this case, the BC quality tends to worsen. Here we have combined static culture with aeration in the biosynthesis of BC by symbiotic Medusomyces gisevii Sa-12 for the first time. A new aeration method by feeding the air onto the growth medium surface is proposed herein. The culture was performed in a Binder-400 climate chamber. The study found that the air feed at a rate of 6.3 L/min allows a 25% increase in the BC yield. Moreover, this aeration mode resulted in BC samples of stable quality. The thermogravimetric and X-ray structural characteristics were retained: the crystallinity index in reflection and transmission geometries were 89% and 92%, respectively, and the allomorph Iα content was 94%. Slight decreases in the degree of polymerization (by 12.0% compared to the control-no aeration) and elastic modulus (by 12.6%) are not critical. Thus, the simple aeration by feeding the air onto the culture medium surface has turned out to be an excellent alternative to dynamic aeration. Usually, when the cultivation conditions, including the aeration ones, are changed, characteristics of the resultant BC are altered either, due to the sensitivity of individual microbial strains. In our case, the stable parameters of BC samples under variable aeration conditions are explained by the concomitant factors: the new efficient aeration method and the highly adaptive microbial producer-symbiotic Medusomyces gisevii Sa-12.
Collapse
Affiliation(s)
- Nadezhda A. Shavyrkina
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Russia
| | - Ekaterina A. Skiba
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Russia
| | - Anastasia E. Kazantseva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Evgenia K. Gladysheva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Vera V. Budaeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Nikolay V. Bychin
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Yulia A. Gismatulina
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Ekaterina I. Kashcheyeva
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Galina F. Mironova
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Anna A. Korchagina
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| | - Igor N. Pavlov
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
- Biysk Technological Institute, Polzunov Altai State Technical University, 659305 Biysk, Russia
| | - Gennady V. Sakovich
- Bioconversion Laboratory, Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), 659322 Biysk, Russia; (N.A.S.); (E.A.S.); (A.E.K.); (E.K.G.); (N.V.B.); (Y.A.G.); (E.I.K.); (G.F.M.); (A.A.K.); (I.N.P.); (G.V.S.)
| |
Collapse
|
9
|
R R, Philip E, Thomas D, Madhavan A, Sindhu R, Binod P, Varjani S, Awasthi MK, Pandey A. Bacterial nanocellulose: engineering, production, and applications. Bioengineered 2021; 12:11463-11483. [PMID: 34818969 PMCID: PMC8810168 DOI: 10.1080/21655979.2021.2009753] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/28/2022] Open
Abstract
Bacterial nanocellulose (BNC) has been emerging as a biomaterial of considerable significance in a number of industrial sectors because of its remarkable physico-chemical and biological characteristics. High capital expenses, manufacturing costs, and a paucity of some well-scalable methods, all of which lead to low BNC output in commercial scale, are major barriers that must be addressed. Advances in production methods, including bioreactor technologies, static intermittent, and semi-continuous fed batch technologies, and innovative outlay substrates, may be able to overcome the challenges to BNC production at the industrial scale. The novelty of this review is that it highlights genetic modification possibilities in BNC production to overcome existing impediments and open up viable routes for large-scale production, suitable for real-world applications. This review focuses on various production routes of BNC, its properties, and applications, especially the major advancement in food, personal care, biomedical and electronic industries.
Collapse
Affiliation(s)
- Reshmy R
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Eapen Philip
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, China
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, India
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research, Lucknow, India
| |
Collapse
|
10
|
Diaz-Ramirez J, Urbina L, Eceiza A, Retegi A, Gabilondo N. Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. Int J Biol Macromol 2021; 191:1212-1220. [PMID: 34624377 DOI: 10.1016/j.ijbiomac.2021.09.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022]
Abstract
Soil contamination, sustainable management of water resources and controlled release of agrochemicals are the main challenges of modern agriculture. In this work, the synthesis of sphere-like bacterial cellulose (BC) using agitated culture conditions and Komagateibacter medellinensis bacterial strain ID13488 was optimized and characterized from grape pomace (GP). First, a comparative study was carried out between agitated and static cultures using different nitrogen sources and applying alternative GP treatments. Agitation of the cultures resulted in higher BC production yield compared to static culture conditions. Additionally, Water holding capacity (WHC) assays evidenced the superabsorbent nature of the BC biopolymer, being positively influenced by the spherical shape as it was observed an increase of 60% in contrast to the results obtained for the BC membranes under static culture conditions. Moreover, it was found that sphere-like BCs were capable of retaining urea up to 375% of their dry weight, rapidly releasing the fertilizer in the presence of water. According to our findings, sphere-like BCs represent suitable systems with great potential for actual agricultural hazards and grape pomace valorisation.
Collapse
Affiliation(s)
- Julen Diaz-Ramirez
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Leire Urbina
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Arantxa Eceiza
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Aloña Retegi
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| | - Nagore Gabilondo
- 'Materials+Technologies' Group, Engineering School of Gipuzkoa, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Pza. Europa 1, 20018, Donostia, San Sebastián, Spain.
| |
Collapse
|
11
|
Roig-Sanchez S, Torrecilla O, Floriach-Clark J, Parets S, Levkin PA, Roig A, Laromaine A. One-Step Biosynthesis of Soft Magnetic Bacterial Cellulose Spheres with Localized Nanoparticle Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55569-55576. [PMID: 34766498 PMCID: PMC8631704 DOI: 10.1021/acsami.1c17752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Actuated structures are becoming relevant in medical fields; however, they call for flexible/soft-base materials that comply with biological tissues and can be synthesized in simple fabrication steps. In this work, we extend the palette of techniques to afford soft, actuable spherical structures taking advantage of the biosynthesis process of bacterial cellulose. Bacterial cellulose spheres (BCS) with localized magnetic nanoparticles (NPs) have been biosynthesized using two different one-pot processes: in agitation and on hydrophobic surface-supported static culture, achieving core-shell or hollow spheres, respectively. Magnetic actuability is conferred by superparamagnetic iron oxide NPs (SPIONs), and their location within the structure was finely tuned with high precision. The size, structure, flexibility and magnetic response of the spheres have been characterized. In addition, the versatility of the methodology allows us to produce actuated spherical structures adding other NPs (Au and Pt) in specific locations, creating Janus structures. The combination of Pt NPs and SPIONs provides moving composite structures driven both by a magnetic field and a H2O2 oxidation reaction. Janus Pt/SPIONs increased by five times the directionality and movement of these structures in comparison to the controls.
Collapse
Affiliation(s)
- Soledad Roig-Sanchez
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Oriol Torrecilla
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Jordi Floriach-Clark
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Sebastià Parets
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Pavel A. Levkin
- Institute
of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Anna Roig
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Anna Laromaine
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
12
|
Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, Azlin MNM, Yuliasni R, Ibrahim R, Atikah MSN, Wang J, Chandrasekhar K, Islam MA, Sharma S, Punia S, Rajasekar A, Asyraf MRM, Ishak MR. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers (Basel) 2021; 13:3365. [PMID: 34641185 PMCID: PMC8512337 DOI: 10.3390/polym13193365] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Collapse
Affiliation(s)
- Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - M. R. M. Huzaifah
- Faculty of Agricultural Science and Forestry, Bintulu Campus, Universiti Putra Malaysia, Bintulu 97000, Sarawak, Malaysia
| | - Nani Harihastuti
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - M. M. Harussani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
| | - M. N. M. Azlin
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Textile Technology, School of Industrial Technology, Universiti Teknologi MARA, Universiti Teknologi Mara Negeri Sembilan, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Rustiana Yuliasni
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - R. Ibrahim
- Innovation & Commercialization Division, Forest Research Institute Malaysia, Kepong 52109, Selangor Darul Ehsan, Malaysia;
| | - M. S. N. Atikah
- Department of Chemical and Environmental Engineering Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Junying Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - K. Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea;
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144001, India;
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| | - M. R. Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| |
Collapse
|
13
|
Caro-Astorga J, Walker KT, Herrera N, Lee KY, Ellis T. Bacterial cellulose spheroids as building blocks for 3D and patterned living materials and for regeneration. Nat Commun 2021; 12:5027. [PMID: 34413311 PMCID: PMC8377073 DOI: 10.1038/s41467-021-25350-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Engineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose. Bacterial cellulose is a promising cheap-to-produce programmable engineered living material. Here the authors present a method for production of spheroids for use as engineerable building blocks able to sense and respond to chemical inputs.
Collapse
Affiliation(s)
- Joaquin Caro-Astorga
- Department of Bioengineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Kenneth T Walker
- Department of Bioengineering, Imperial College London, London, UK.,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Natalia Herrera
- Department of Aeronautics, Imperial College London, London, UK
| | - Koon-Yang Lee
- Department of Aeronautics, Imperial College London, London, UK
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London, UK. .,Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
14
|
Kim J, Shin S, Hyun J. Controlled production of soft magnetic hydrogel beads by biosynthesis of bacterial cellulose. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Poddar MK, Dikshit PK. Recent development in bacterial cellulose production and synthesis of cellulose based conductive polymer nanocomposites. NANO SELECT 2021. [DOI: 10.1002/nano.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maneesh Kumar Poddar
- Department of Chemical Engineering National Institute of Technology Karnataka Surathkal Karnataka India
| | - Pritam Kumar Dikshit
- Department of Life Sciences School of Basic Sciences and Research Sharda University Greater Noida Uttar Pradesh India
| |
Collapse
|
16
|
Cellulose Dissolution in Ionic Liquid under Mild Conditions: Effect of Hydrolysis and Temperature. FIBERS 2021. [DOI: 10.3390/fib9010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the effect of acid hydrolysis of cellulose on its dissolution under mild conditions in ionic liquid, 1-butyl-3-methylimidazolium acetate/N,N-dimethylacetamide (BMIMAc/DMAc). Acid hydrolysis of high molecular weight (MW) cotton cellulose (DP > 4000) was carried out to produce hydrolyzed cotton (HC) samples for dissolution. The HC samples were characterized using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), and the dissolution process was monitored using polarized light microscopy (PLM). It was found that the drastic decrease of the MW of cellulose did not result in improvement of its dissolution at room temperature. As compared to original cotton cellulose, the high amount of undissolved fibers in HC solutions led to unstable rheological behavior of HC solutions. Agglomeration and inhomogeneous dispersion of HC, and increased crystallinity, in this case, likely made the diffusion of BMIMAc/DMAc more difficult to the inside of the polymeric network of cellulose at ambient temperature, thereby hindering the dissolution. However, increasing the temperature from room temperature to 35 °C and 55 °C, led to a significant improvement in cellulose dissolution. This phenomenon implies that reducing the MW of cellulose might not be able to improve its dissolution under certain conditions. During the dissolution process, the physical properties of cellulose including fiber aggregation status, solvent diffusivity, and cellulose crystallinity may play a critical role compared to the MW, while the MW may not be an important factor. This finding may help further understand the mechanism of cellulose dissolution and seek better strategies to dissolve cellulose under mild conditions for industrial applications.
Collapse
|
17
|
Luz EPCG, das Chagas BS, de Almeida NT, de Fátima Borges M, Andrade FK, Muniz CR, Castro-Silva II, Teixeira EH, Popat K, de Freitas Rosa M, Vieira RS. Resorbable bacterial cellulose membranes with strontium release for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111175. [PMID: 32806235 DOI: 10.1016/j.msec.2020.111175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 02/06/2023]
Abstract
Hybrid materials, based on bacterial cellulose (BC) and hydroxyapatite (HA), have been investigated for guided bone regeneration (GBR). However, for some GBR, degradability in the physiological environment is an essential requirement. The present study aimed to explore the use of oxidized bacterial cellulose (OxBC) membranes, associated with strontium apatite, for GBR applications. BC membranes were produced by fermentation and purified, before oxidizing and mineralizing by immersing in strontium chloride solution and sodium bibasic phosphate for 5 cycles. The hybrid materials (BC/HA/Sr, BC/SrAp, OxBC/HA/Sr and OxBC/SrAp) were characterized for biodegradability and bioactivity and for their physicochemical and morphological properties. In vitro cytotoxicity and hemolytic properties of the materials were also investigated. In vivo biocompatibility was analyzed by performing histopathological evaluation at 1, 3 and 9 weeks in mices. Results showed that the samples presented different strontium release profiles and that oxidation enhances degradation under physiological conditions. All the hybrid materials were bioactive. Cell viability assay indicated that the materials are non-cytotoxic and in vivo studies showed low inflammatory response and increased connective tissue repair, as well as degradation in most of the materials, especially the oxidized membranes. This study confirms the potential use of bacterial cellulose-derived hybrid membranes for GBR.
Collapse
Affiliation(s)
| | - Bruna Santana das Chagas
- Embrapa Agroindústria Tropical - CNPAT, Rua Dra Sara Mesquita 2270, Pici, CE 60511-110 Fortaleza, Ceará, Brazil
| | - Natália Tavares de Almeida
- Embrapa Agroindústria Tropical - CNPAT, Rua Dra Sara Mesquita 2270, Pici, CE 60511-110 Fortaleza, Ceará, Brazil
| | - Maria de Fátima Borges
- Embrapa Agroindústria Tropical - CNPAT, Rua Dra Sara Mesquita 2270, Pici, CE 60511-110 Fortaleza, Ceará, Brazil.
| | - Fabia Karine Andrade
- Federal University of Ceará (UFC), Department of Chemical Engineering, Bloco 709, CE 60455-760 Fortaleza, Ceará, Brazil
| | - Celli Rodrigues Muniz
- Embrapa Agroindústria Tropical - CNPAT, Rua Dra Sara Mesquita 2270, Pici, CE 60511-110 Fortaleza, Ceará, Brazil.
| | - Igor Iuco Castro-Silva
- Federal University of Ceará (UFC/SOBRAL), Dentistry Department, CE 62010820 Sobral, Ceará, Brazil.
| | - Edson Holanda Teixeira
- Federal University of Ceará (UFC), Department of Pathology and Forensic Medicine, Faculty of Medicine, CE 60430-160 Fortaleza, Ceará, Brazil
| | - Ketul Popat
- Department of Mechanical Engineering/School of Biomedical Engineering/School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| | - Morsyleide de Freitas Rosa
- Embrapa Agroindústria Tropical - CNPAT, Rua Dra Sara Mesquita 2270, Pici, CE 60511-110 Fortaleza, Ceará, Brazil.
| | - Rodrigo Silveira Vieira
- Federal University of Ceará (UFC), Department of Chemical Engineering, Bloco 709, CE 60455-760 Fortaleza, Ceará, Brazil.
| |
Collapse
|
18
|
Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes (Basel) 2020. [DOI: 10.3390/pr8050624] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The unique pool of features found in intracellular and extracellular bacterial biopolymers attracts a lot of research, with bacterial cellulose (BC) being one of the most versatile and common. BC is an exopolysaccharide consisting solely of cellulose, and the variation in the production process can vary its shape or even its composition when compounding is applied in situ. Together with ex situ modification pathways, including specialised polymers, particles or exclusively functional groups, BC provides a robust platform that yields complex multifunctional compounds that go far beyond ultra-high purity, intrinsic hydrophilicity, mechanical strength and biocompatibility to introduce bioactive, (pH, thermal, electro) responsive, conductive and ‘smart’ properties. This review summarises the research outcomes in BC-medical applications, focusing mainly on data from the past decade (i.e., 2010–2020), with special emphasis on BC nanocomposites as materials and devices applicable in medicine. The high purity and unique structural/mechanical features, in addition to its capacity to closely adhere to irregular skin surfaces, skin tolerance, and demonstrated efficacy in wound healing, all stand as valuable attributes advantageous in topical drug delivery. Numerous studies prove BC compatibility with various human cells, with modifications even improving cell affinity and viability. Even BC represents a physical barrier that can reduce the penetration of bacteria into the tissue, but in its native form does not exhibit antimicrobial properties, therefore carious modifications have been made or specific compounds added to confer antimicrobial or anti-inflammatory properties. Progress in the use of BC-compounds as wound dressings, vascular grafts, and scaffolds for the treatment of cartilage, bone and osteochondral defects, the role as a basement membrane in blood-brain barrier models and many more are discussed to particular extent, emphasising the need for BC compounding to meet specific requirements.
Collapse
|
19
|
The Nanofication and Functionalization of Bacterial Cellulose and Its Applications. NANOMATERIALS 2020; 10:nano10030406. [PMID: 32106515 PMCID: PMC7152840 DOI: 10.3390/nano10030406] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/24/2023]
Abstract
Since economic and environmental issues have become critical in the last several years, the amount of sustainable bio-based production has increased. In this article, microbial polysaccharides, including bacterial cellulose (BC), are analyzed as promising resources with the potential for applications in biofields and non-biofields. Many scientists have established various methods of BC production, nanofication, and functionalization. In particular, this review will address the essential advances in recent years focusing on nanofication methods and nanoficated BC applications as well as functionalization methods and functionalized BC applications.
Collapse
|
20
|
Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110740. [PMID: 32204048 DOI: 10.1016/j.msec.2020.110740] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/20/2019] [Accepted: 02/09/2020] [Indexed: 01/31/2023]
Abstract
Three-dimensional (3D) porous structures with controlled pore size and interconnected pores, good mechanical properties and biocompatibility are of great interest for tissue engineering. In this work we propose a new strategy to obtain highly porous 3D structures with improved properties using bacterial cellulose (BC) and eco-friendly additives and processes. Glucose, vanillin and citric acid were used as non-toxic and cheap cross-linkers and γ-aminopropyltriethoxysilane was used to partially replace the surface OH groups of cellulose with amino groups. The efficiency of grafting and cross-linking reactions was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphological investigation of BC sponges revealed a multi-hierarchical organization after functionalization and cross-linking. Micro-computed tomography analysis showed 80-90% open porosity in modified BC sponges. The thermal and mechanical properties of the sponges were influenced by the cross-linker type and concentration. The strength-to-weight ratio of BC sponges cross-linked with glucose and citric acid was 150% and 120% higher compared to that of unmodified BC sponge. In vitro assays revealed that the modified BC sponges are non-cytotoxic and do not trigger an inflammatory response in macrophages. This study provides a simple and green method to obtain highly porous cellulose sponges with hierarchical design, biocompatibility and good mechanical properties.
Collapse
|
21
|
Liu H, Hu Y, Zhu Y, Wu X, Zhou X, Pan H, Chen S, Tian P. A simultaneous grafting/vinyl polymerization process generates a polycationic surface for enhanced antibacterial activity of bacterial cellulose. Int J Biol Macromol 2020; 143:224-234. [DOI: 10.1016/j.ijbiomac.2019.12.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/30/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
|
22
|
Hoshi T, Suzuki M, Ishikawa M, Endo M, Aoyagi T. Encapsulation of Micro- and Milli-Sized Particles with a Hollow-Type Spherical Bacterial Cellulose Gel via Particle-Preloaded Droplet Cultivation. Int J Mol Sci 2019; 20:E4919. [PMID: 31590233 PMCID: PMC6801454 DOI: 10.3390/ijms20194919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
A hollow-type spherical bacterial cellulose (HSBC) gel prepared using conventional methods cannot load particles larger than the pore size of the cellulose nanofiber network of bacterial cellulose (BC) gelatinous membranes. In this study, we prepared a HSBC gel encapsulating target substances larger than the pore size of the BC gelatinous membranes using two encapsulating methods. The first method involved producing the BC gelatinous membrane on the surface of the core that was a spherical alginate gel with a diameter of 2 to 3 mm containing the target substances. With this method, the BC gelatinous membrane was biosynthesized using Gluconacetobacter xylinus at the interface between the cell suspension attached onto the alginate gel and the silicone oil. The second method involved producing the BC gel membrane on the interface between the silicone oil and cell suspension, as well as the spherical alginate gel with a diameter of about 1 mm containing target substances. After the BC gelatinous membrane was biosynthesized, an alginate gel was dissolved in a phosphate buffer to prepare an HSBC gel with the target substances. These encapsulated substances could neither pass through the BC gelatinous membrane of the HSBC gel nor leak from the interior space of the HSBC gel. These results suggest that the HSBC gel had a molecular sieving function. The HSBC gel walls prepared using these methods were observed to be uniform and would be useful for encapsulating bioactive molecules, such as immobilized enzymes in HSBC gel, which is expected to be used as a drug carrier.
Collapse
Affiliation(s)
- Toru Hoshi
- Department of Materials and Applied Chemistry, College of Science and Technology Nihon University, 1-8-14, Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Masashige Suzuki
- Department of Materials and Applied Chemistry, College of Science and Technology Nihon University, 1-8-14, Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Mayu Ishikawa
- Department of Materials and Applied Chemistry, College of Science and Technology Nihon University, 1-8-14, Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Masahito Endo
- Graduate School of Science and Technology, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| | - Takao Aoyagi
- Department of Materials and Applied Chemistry, College of Science and Technology Nihon University, 1-8-14, Kandasurugadai, Chiyoda-ku, Tokyo 101-8308, Japan.
| |
Collapse
|
23
|
Nóbrega V, Faria M, Quintana A, Kaufmann M, Ferreira A, Cordeiro N. From a Basic Microalga and an Acetic Acid Bacterium Cellulose Producer to a Living Symbiotic Biofilm. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2275. [PMID: 31311139 PMCID: PMC6678410 DOI: 10.3390/ma12142275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022]
Abstract
Bacterial cellulose (BC) has recently been the subject of a considerable amount of research, not only for its environmentally friendly biosynthesis, but also for its high potential in areas such as biomedicine or biomaterials. A symbiotic relationship between a photosynthetic microalga, Chlamydomonas debaryana, and a cellulose producer bacterium, Komagataeibacter saccharivorans, was established in order to obtain a viable and active biofilm. The effect of the growth media composition ratio on the produced living material was investigated, as well as the microalgae biomass quantity, temperature, and incubation time. The optimal temperature for higher symbiotic biofilm production was 30 °C with an incubation period of 14 days. The high microalgae presence, 0.75% w/v, and 60:40 HS:BG-11 medium (v/v) induced a biofilm microalgae incorporation rate of 85%. The obtained results report, for the first time, a successful symbiotic interaction developed in situ between an alkaline photosynthetic microalga and an acetic acid bacterium. These results are promising and open a new window to BC living biofilm applications in medical fields that have not yet been explored.
Collapse
Affiliation(s)
- Vítor Nóbrega
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal
| | - Marisa Faria
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal
- Oceanic Observatory of Madeira (OOM), ARDITI, Madeira Tecnopolo, 9020-105 Funchal, Portugal
| | - Antera Quintana
- Banco Español de Algas, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain
| | - Manfred Kaufmann
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, 9000-107 Funchal, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Artur Ferreira
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nereida Cordeiro
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
24
|
Sharma C, Bhardwaj NK. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109963. [PMID: 31499992 DOI: 10.1016/j.msec.2019.109963] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 06/29/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022]
Abstract
Bacterial nanocellulose (BNC) has emerged as a natural biopolymer of significant importance in diverse technological areas due to its incredible physicochemical and biological characteristics. However, the high capital investments, production cost and lack of well-organized scale-up processes resulting in low BNC production are the major impediments need to be resolved. This review enfolds the three different and important portions of BNC. Firstly, advancement in production technologies of BNC like cell-free extract technology, static intermittent fed batch technology and novel cost-effective substrates that might surmount the barriers associated with BNC production at industrial level. Secondly, as BNC and its composites (with other polymers/nanoparticles) represents the utmost material of preference in current regenerative and diagnostic medicine, therefore recently reported biomedical applications of BNC and functionalized BNC in drug delivery, tissue engineering, antimicrobial wound healing and biosensing are widely been focused here. The third and the most important aspect of this review is an in-depth discussion of various pitfalls associated with BNC production. Recent trends in BNC research to overcome the existing snags that might pave a way for industrial scale production of BNC thereby facilitating its feasible application in various fields are highlighted.
Collapse
Affiliation(s)
- Chhavi Sharma
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar 135001, Haryana, India.
| | - Nishi K Bhardwaj
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar 135001, Haryana, India
| |
Collapse
|
25
|
The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. Int J Pharm 2019; 566:631-640. [DOI: 10.1016/j.ijpharm.2019.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
|
26
|
van Zyl EM, Coburn JM. Hierarchical structure of bacterial-derived cellulose and its impact on biomedical applications. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods - A review. Carbohydr Polym 2019; 219:63-76. [PMID: 31151547 DOI: 10.1016/j.carbpol.2019.05.008] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
Bacterial cellulose (BC) is an organic compound produced by certain types of bacteria. In natural habitats, the majority of bacteria synthesize extracellular polysaccharides, such as cellulose, which form protective envelopes around the cells. Many methods are currently being investigated to enhance cellulose growth. The various celluloses produced by different bacteria possess different morphologies, structures, properties, and applications. However, the literature lacks a comprehensive review of the different methods of BC production, which are critical to BC properties and their final applications. The aims of this review are to provide an overview of the production of BC from different culture methods, to analyze the characteristics of particular BC productions, to indicate existing problems associated with different methods, and to choose suitable culture approaches for BC applications in different fields. The main goals for future studies have also been discussed here.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China; Institute for NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Javad Tavakoli
- Institute for NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Youhong Tang
- Institute for NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.
| |
Collapse
|
28
|
Liu K, Catchmark JM. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions. Carbohydr Polym 2019; 219:12-20. [PMID: 31151508 DOI: 10.1016/j.carbpol.2019.04.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/04/2019] [Accepted: 04/20/2019] [Indexed: 12/11/2022]
Abstract
Including additives in the culture media during bacterial cellulose (BC) biosynthesis is a traditional method to produce BC-based nanocomposites. This study examines a novel fermentation process, which is to co-culture Gluconacetobacter hansenii (G. hansenii) with Escherichia coli (E. coli) under static conditions, to produce BC pellicles with enhanced mechanical properties. The mannose-rich exopolysaccharides (EPS) synthesized by E. coli were incorporated into the BC network and affected the aggregation of co-crystallized microfibrils without significantly changing the crystal sizes of BC. When co-culturing G. hansenii ATCC 23769 with E. coli ATCC 700728, which produced a low concentration of EPS at 3.3 ± 0.7 mg/L, the BC pellicles exhibited a Young's modulus of 4,874 ± 1144 MPa and a stress at break of 80.7 ± 21.1 MPa, which are 81.9% and 79.3% higher than those of pure BC, respectively. The growth dynamics of the two co-cultured strains suggested that the production of BC and EPS were enhanced through co-culturing fermentation.
Collapse
Affiliation(s)
- Ke Liu
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Jeffrey M Catchmark
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
29
|
Junka A, Bartoszewicz M, Dziadas M, Szymczyk P, Dydak K, Żywicka A, Owczarek A, Bil-Lula I, Czajkowska J, Fijałkowski K. Application of bacterial cellulose experimental dressings saturated with gentamycin for management of bone biofilm in vitro and ex vivo. J Biomed Mater Res B Appl Biomater 2019; 108:30-37. [PMID: 30883023 DOI: 10.1002/jbm.b.34362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/24/2019] [Accepted: 02/27/2019] [Indexed: 11/11/2022]
Abstract
Bacterial cellulose is one of the most promising polymers of recent years. Herein, we present a possibility of BC application as a carrier of gentamycin antibiotic for the treatment and prevention of bone infections. We have shown that BC saturated with gentamycin significantly reduces the level of biofilm-forming bone pathogens, namely Staphylococcus aureus and Pseudomonas aeruginosa, and displays very low cytotoxicity in vitro against osteoblast cell cultures. Another beneficial feature of our prototype dressing is prolonged release of gentamycin, which provides efficient protection from microbial contamination and subsequent infection. Moreover, it seems that bacterial cellulose (BC) alone without any antimicrobial added, may serve as a barrier by significantly hampering the ability of the pathogen to penetrate to the bone structure. Therefore, a gentamycin-saturated BC dressing may be considered as a possible alternative for gentamycin collagen sponge broadly used in clinical setting. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:30-37, 2020.
Collapse
Affiliation(s)
- Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Mariusz Dziadas
- Faculty of Chemistry, University of Wroclaw, 50-353, Wrocław, Poland
| | - Patrycja Szymczyk
- Centre for Advanced Manufacturing Technologies, Faculty of Mechanical Engineering, Wroclaw Technical University, 50-371, Wrocław, Poland
| | - Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Anna Żywicka
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311, Szczecin, Poland
| | - Artur Owczarek
- Department of Drug Form Technology, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Iwona Bil-Lula
- Department of Clinical Chemistry, Wroclaw Medical University, 50-556, Wrocław, Poland
| | - Joanna Czajkowska
- Laboratory of Microbiology, Wroclaw Research Centre EIT+, 54-066, Wrocław, Poland
| | - Karol Fijałkowski
- Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311, Szczecin, Poland
| |
Collapse
|
30
|
Hu Y, Acharya S, Abidi N. Cellulose porosity improves its dissolution by facilitating solvent diffusion. Int J Biol Macromol 2019; 123:1289-1296. [DOI: 10.1016/j.ijbiomac.2018.10.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
31
|
Hu Y, Liu H, Zhou X, Pan H, Wu X, Abidi N, Zhu Y, Wang J. Surface engineering of spongy bacterial cellulose via constructing crossed groove/column micropattern by low-energy CO 2 laser photolithography toward scar-free wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:333-343. [PMID: 30889707 DOI: 10.1016/j.msec.2019.01.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/13/2018] [Accepted: 01/25/2019] [Indexed: 11/16/2022]
Abstract
Bacterial cellulose (BC) is a bio-derived polymer, and it has been considered as an excellent candidate material for tissue engineering. In this study, a crossed groove/column micropattern was constructed on spongy, porous BC using low-energy CO2 laser photolithography. Applying the targeted immobilization of a tetrapeptide consisting of Arginine-Glycine-Aspartic acid-Serine (H-Arg-Gly-Asp-Ser-OH, RGDS) as a fibronectin onto the column platform surface, the resulting micropatterned BC (RGDS-MPBC) exhibited dual affinities to fibroblasts and collagen. Material characterization of RGDS-MPBC revealed that the micropattern was built by the column part with size of ~100 × 100 μm wide and ~100 μm deep, and the groove part with size of ~150 μm wide. Hydrating the MPBC did not result in the collapse of the integrity of the micropattern, suggesting its potential application in a highly hydrated wound environment. Cell culture assays revealed that the RGDS-MPBC exhibited an improved cytotoxicity to mouse fibroblasts L929, as compared to the pristine BC. Meanwhile, it was observed that the RGDS-MPBC was able to guide the ordered aggregation of human skin fibroblast (HSF) cells on the column platform surface, and no HSF cells were found in the groove channels. Over time, it was found that a dense network of collagen was gradually established across the groove channels. Furthermore, the in-vivo animal study preliminarily demonstrated the scar-free healing potential of the micropatterned BC materials. Therefore, this RGDS-MPBC material exhibited its advantages in guiding cell migration and collagen distribution, which could present a prospect in the establishment of "basket-woven" organization of collagen in normal skin tissue against the formation of dense, parallel aggregation of collagen fibers in scar tissue toward scar-free wound healing outcome.
Collapse
Affiliation(s)
- Yang Hu
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79403, USA.
| | - Haiyan Liu
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xin Zhou
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Haobo Pan
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xiuping Wu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79403, USA
| | - Yongjun Zhu
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jinhui Wang
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
32
|
Completely amorphous cellulose biosynthesized in agitated culture at low temperature. Int J Biol Macromol 2018; 117:967-973. [DOI: 10.1016/j.ijbiomac.2018.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/23/2022]
|
33
|
Laromaine A, Tronser T, Pini I, Parets S, Levkin PA, Roig A. Free-standing three-dimensional hollow bacterial cellulose structures with controlled geometry via patterned superhydrophobic-hydrophilic surfaces. SOFT MATTER 2018; 14:3955-3962. [PMID: 29736513 DOI: 10.1039/c8sm00112j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacteria can produce cellulose, one of the most abundant biopolymer on earth, and emerge as an interesting candidate to fabricate advanced materials. Cellulose produced by Komagataeibacter Xylinus, a bacterial strain, is a pure water insoluble biopolymer, without hemicellulose or lignin. Bacterial cellulose (BC) exhibits a nanofibrous porous network microstructure with high strength, low density and high biocompatibility and it has been proposed as cell scaffold and wound healing material. The formation of three dimensional (3D) cellulose self-standing structures is not simple. It either involves complex multi-step synthetic procedures or uses chemical methods to dissolve cellulose and remold it. Here we present an in situ single-step method to produce self-standing 3D-BC structures with controllable wall thickness, size and geometry in a reproducible manner. Parameters such as hydrophobicity of the surfaces, volume of the inoculum and time of culture define the resulting 3D-BC structures. Hollow spheres and convex domes can be easily obtained by changing the surface wettability. The potential of these structures as a 3D cell scaffold is exemplified supporting the growth of mouse embryonic stem cells within a hollow spherical BC structure, indicating its biocompatibility and future prospective.
Collapse
Affiliation(s)
- Anna Laromaine
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Catalunya, Spain.
| | | | | | | | | | | |
Collapse
|
34
|
Cai Q, Hu C, Yang N, Wang Q, Wang J, Pan H, Hu Y, Ruan C. Enhanced activity and stability of industrial lipases immobilized onto spherelike bacterial cellulose. Int J Biol Macromol 2018; 109:1174-1181. [DOI: 10.1016/j.ijbiomac.2017.11.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
|
35
|
Acharya S, Hu Y, Abidi N. Mild condition dissolution of high molecular weight cotton cellulose in 1-butyl-3-methylimidazolium acetate/N,N
-dimethylacetamide solvent system. J Appl Polym Sci 2017. [DOI: 10.1002/app.45928] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sanjit Acharya
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science; Texas Tech University; Lubbock Texas 79409
| | - Yang Hu
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science; Texas Tech University; Lubbock Texas 79409
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science; Texas Tech University; Lubbock Texas 79409
| |
Collapse
|
36
|
Wu HL, Bremner DH, Wang HJ, Wu JZ, Li HY, Wu JR, Niu SW, Zhu LM. Fabrication and investigation of a biocompatible microfilament with high mechanical performance based on regenerated bacterial cellulose and bacterial cellulose. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Mohamed MA, Abd Mutalib M, Mohd Hir ZA, M Zain MF, Mohamad AB, Jeffery Minggu L, Awang NA, W Salleh WN. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int J Biol Macromol 2017; 103:1232-1256. [PMID: 28587962 DOI: 10.1016/j.ijbiomac.2017.05.181] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy.
Collapse
Affiliation(s)
- Mohamad Azuwa Mohamed
- Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhazri Abd Mutalib
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Zul Adlan Mohd Hir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M F M Zain
- Sustainable Construction Materials and Building Systems(SUCOMBS) Research Group, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Abu Bakar Mohamad
- Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Lorna Jeffery Minggu
- Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Asikin Awang
- Advanced Membrane Technology Research Centre, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - W N W Salleh
- Advanced Membrane Technology Research Centre, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| |
Collapse
|
38
|
A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose. Carbohydr Polym 2016; 153:406-420. [PMID: 27561512 DOI: 10.1016/j.carbpol.2016.07.059] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/23/2016] [Accepted: 07/16/2016] [Indexed: 02/07/2023]
Abstract
Bacterial cellulose (BC) produced by some bacteria, among them Gluconacetobacter xylinum, which secrets an abundant 3D networks fibrils, represents an interesting emerging biocompatible nanomaterial. Since its discovery BC has shown tremendous potential in a wide range of biomedical applications, such as artificial skin, artificial blood vessels and microvessels, wound dressing, among others. BC can be easily manipulated to improve its properties and/or functionalities resulting in several BC based nanocomposites. As example BC/collagen, BC/gelatin, BC/Fibroin, BC/Chitosan, etc. Thus, the aim of this review is to discuss about the applicability in biomedicine by demonstrating a variety of forms of this biopolymer highlighting in detail some qualities of bacterial cellulose. Therefore, various biomedical applications ranging from implants and scaffolds, carriers for drug delivery, wound-dressing materials, etc. that were reported until date will be presented.
Collapse
|
39
|
Wang ZG, Xiang D, Wang XB, Li CF. Preparation of an inoculum of Gluconacetobacter xylinus without mutants in shaken culture. J Appl Microbiol 2016; 121:713-20. [PMID: 27249070 DOI: 10.1111/jam.13193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/25/2016] [Accepted: 05/29/2016] [Indexed: 11/28/2022]
Abstract
AIMS A high-quality inoculum of Gluconacetobacter xylinus is important to produce bacterial cellulose (BC), a versatile biomaterial. This work aims to develop a method of preparing an inoculum of this bacterium with high cell density and without mutants. METHODS AND RESULTS Inocula of G. xylinus ACCC 10220 without and with cellulase or carboxymethyl cellulose (CMC) were prepared in shaken culture. BC pellets and BC-negative mutants were present in the inoculum without additives but absent in the inoculum with additives. Based on BC weights statically produced in fresh BC-producing media initiated by different seed culture, the 24-h-shaken inoculum with 1·50% (w/v) CMC was the best because of high biomass and absence of mutants. The BC weights in fresh media inoculated by the 96-h-static inoculum and 24-h-shaken CMC inoculum at 7% (v/v) were 0·70 and 1·05 g l(-1) , respectively, implying significant difference (P < 0·01) in BC weights. However, structure properties of the two BC samples, including the crystallinity index, mass fraction of cellulose Iα , degree of polymerization (DP) and micromorphology were slightly different. CONCLUSIONS The 24-h-shaken CMC inoculum was the most suitable for a starter culture of BC. SIGNIFICANCE AND IMPACT OF THE STUDY A novel method of preparing G. xylinus inoculum in shaken culture was developed, featuring high biomass, absence of mutants and no BC entanglements. Cellulase or CMC added into the medium completely suppressed mutation of G. xylinus, and CMC facilitated to form colloidal BC with the low DP in shaken culture, indicating less BC stress to cells. These findings suggested the mutation could be induced by BC stress, and not by shear stress commonly accepted.
Collapse
Affiliation(s)
- Z-G Wang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - D Xiang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - X-B Wang
- College of Food Science and Technology, Hainan University, Haikou, China
| | - C-F Li
- College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
40
|
Hu Y, Zhu Y, Zhou X, Ruan C, Pan H, Catchmark JM. Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair. J Mater Chem B 2016; 4:1235-1246. [PMID: 32262979 DOI: 10.1039/c5tb02091c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioabsorbable bacterial cellulose composites were prepared separately by immersing bacterial cellulose (BC) in different simulated body fluids (SBF) followed by incorporating cellulase enzymes into BC. The biomineralization of BC in SBF has been intensively documented and generally involves a tedious preparation. This study revealed an improved approach to disperse hydroxyapatite (HA) nanopowder to a saturated concentration (1.0×) of SBF, which was able to enhance the total amount of calcium phosphates (CPs) bound to BC composites. Such a simplified approach could be used to replace oversaturated concentration (1.5×) of SBF to prepare BC/CPs composites and achieve equal or even better material properties. The incorporation of cellulosic enzymes into BC/CPs composites verified the bioabsorption of BC where composites were able to achieve an in vitro bulk biodegradation with a yield of 96% glucose released. Cell culture of mouse osteoblasts also demonstrated the good biocompatibility of the BC/CPs composites prepared by using the simplified approach. This enzyme-incorporating BC/CPs composites studied show promise as bioabsorbable carriers delivering CPs for bone defect repair.
Collapse
Affiliation(s)
- Yang Hu
- Center for Human Tissues and Organs Degeneration, and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | | | | | | | | | | |
Collapse
|
41
|
Das AAK, Bovill J, Ayesh M, Stoyanov SD, Paunov VN. Fabrication of living soft matter by symbiotic growth of unicellular microorganisms. J Mater Chem B 2016; 4:3685-3694. [DOI: 10.1039/c5tb02489g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have produced a living biomaterial by a symbiotic growth of the bacteria,Acetobacter aceti, and the microalgae,C. reinhardtii, which integratein situinto the produced bacterial cellulose gel.
Collapse
Affiliation(s)
| | | | - Maram Ayesh
- Department of Chemistry
- University of Hull
- Hull
- UK
| | - Simeon D. Stoyanov
- Laboratory of Physical Chemistry and Soft Matter
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
- Department of Mechanical Engineering
| | | |
Collapse
|
42
|
Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 2015; 99:2491-511. [PMID: 25666681 DOI: 10.1007/s00253-015-6426-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.
Collapse
Affiliation(s)
- J M Rajwade
- Centre for Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India,
| | | | | |
Collapse
|
43
|
Esa F, Tasirin SM, Rahman NA. Overview of Bacterial Cellulose Production and Application. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.aaspro.2014.11.017] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|