1
|
Jangid AK, Noh KM, Kim S, Kim K. Engineered inulin-based hybrid biomaterials for augmented immunomodulatory responses. Carbohydr Polym 2024; 340:122311. [PMID: 38858027 DOI: 10.1016/j.carbpol.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024]
Abstract
Modified biopolymers that are based on prebiotics have been found to significantly contribute to immunomodulatory events. In recent years, there has been a growing use of modified biomaterials and polymer-functionalized nanomaterials in the treatment of various tumors by activating immune cells. However, the effectiveness of immune cells against tumors is hindered by several biological barriers, which highlights the importance of harnessing prebiotic-based biopolymers to enhance host defenses against cancer, thus advancing cancer prevention strategies. Inulin, in particular, plays a crucial role in activating immune cells and promoting the secretion of cytokines. Therefore, this mini-review aims to emphasize the importance of inulin in immunomodulatory responses, the development of inulin-based hybrid biopolymers, and the role of inulin in enhancing immunity and modifying cell surfaces. Furthermore, we discuss the various approaches of chemical modification for inulin and their potential use in cancer treatment, particularly in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung Mu Noh
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
2
|
Sardo C, Auriemma G, Mazzacano C, Conte C, Piccolo V, Ciaglia T, Denel-Bobrowska M, Olejniczak AB, Fiore D, Proto MC, Gazzerro P, Aquino RP. Inulin Amphiphilic Copolymer-Based Drug Delivery: Unraveling the Structural Features of Graft Constructs. Pharmaceutics 2024; 16:971. [PMID: 39204316 PMCID: PMC11359108 DOI: 10.3390/pharmaceutics16080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, the structural attributes of nanoparticles obtained by a renewable and non-immunogenic "inulinated" analog of the "pegylated" PLA (PEG-PLA) were examined, together with the potential of these novel nanocarriers in delivering poorly water-soluble drugs. Characterization of INU-PLA assemblies, encompassing critical aggregation concentration (CAC), NMR, DLS, LDE, and SEM analyses, was conducted to elucidate the core/shell architecture of the carriers and in vitro cyto- and hemo-compatibility were assayed. The entrapment and in vitro delivery of sorafenib tosylate (ST) were also studied. INU-PLA copolymers exhibit distinctive features: (1) Crew-cut aggregates are formed with coronas of 2-4 nm; (2) a threshold surface density of 1 INU/nm2 triggers a configuration change; (3) INU surface density influences PLA core dynamics, with hydrophilic segment stretching affecting PLA distribution towards the interface. INU-PLA2NPs demonstrated an outstanding loading of ST and excellent biological profile, with effective internalization and ST delivery to HepG2 cells, yielding a comparable IC50.
Collapse
Affiliation(s)
- Carla Sardo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Carmela Mazzacano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Claudia Conte
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.C.)
| | - Virgilio Piccolo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (C.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Marta Denel-Bobrowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (M.D.-B.); (A.B.O.)
| | - Agnieszka B. Olejniczak
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland; (M.D.-B.); (A.B.O.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (G.A.); (C.M.); (T.C.); (D.F.); (M.C.P.); (P.G.); (R.P.A.)
| |
Collapse
|
3
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
The Encapsulation of Citicoline within Solid Lipid Nanoparticles Enhances Its Capability to Counteract the 6-Hydroxydopamine-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. Pharmaceutics 2022; 14:pharmaceutics14091827. [PMID: 36145575 PMCID: PMC9506317 DOI: 10.3390/pharmaceutics14091827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Backgrond: Considering the positive effects of citicoline (CIT) in the management of some neurodegenerative diseases, the aim of this work was to develop CIT-Loaded Solid Lipid Nanoparticles (CIT-SLNs) for enhancing the therapeutic use of CIT in parkinsonian syndrome; (2) Methods: CIT-SLNs were prepared by the melt homogenization method using the self-emulsifying lipid Gelucire® 50/13 as lipid matrix. Solid-state features on CIT-SLNs were obtained with FT-IR, thermal analysis (DSC) and X-ray powder diffraction (XRPD) studies. (3) Results: CIT-SLNs showed a mean diameter of 201 nm, −2.20 mV as zeta potential and a high percentage of entrapped CIT. DSC and XRPD analyses evidenced a greater amorphous state of CIT in CIT-SLNs. On confocal microscopy, fluorescent SLNs replacing unlabeled CIT-SLNs released the dye selectively in the cytoplasm. Biological evaluation showed that pre-treatment of SH-SY5Y dopaminergic cells with CIT-SLNs (50 µM) before the addition of 40 µM 6-hydroxydopamine (6-OHDA) to mimic Parkinson’s disease’s degenerative pathways counteracts the cytotoxic effects induced by the neurotoxin, increasing cell viability with the consistent maintenance of both nuclear and cell morphology. In contrast, pre-treatment with CIT 50 and 60 µM or plain SLNs for 2 h followed by 6-OHDA (40 µM) did not significantly influence cell viability. (4) Conclusions: These data suggest an enhanced protection exerted by CIT-SLNs with respect to free CIT and prompt further investigation of possible molecular mechanisms that underlie this difference.
Collapse
|
5
|
Yadav S, Singh R, Kumar P. Bioresponsive inulin‐azobenzene nanostructures for targeted drug delivery to colon. J Appl Polym Sci 2022. [DOI: 10.1002/app.52950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Santosh Yadav
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
| | - Reena Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory CSIR‐Institute of Genomics and Integrative Biology Delhi India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
6
|
Sardo C, Mencherini T, Tommasino C, Esposito T, Russo P, Del Gaudio P, Aquino RP. Inulin-g-poly-D,L-lactide, a sustainable amphiphilic copolymer for nano-therapeutics. Drug Deliv Transl Res 2022; 12:1974-1990. [PMID: 35194764 PMCID: PMC9242920 DOI: 10.1007/s13346-022-01135-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
Abstract
Cancer therapies started to take a big advantage from new nanomedicines on the market. Since then, research tried to better understand how to maximize efficacy while maintaining a high safety profile. Polyethylene glycol (PEG), the gold standard for nanomedicines coating design, is a winning choice to ensure a long circulation and colloidal stability, while in some cases, patients could develop PEG-directed immunoglobulins after the first administration. This lead to a phenomenon called accelerated blood clearance (ABC effect), and it is correlated with clinical failure because of the premature removal of the nanosystem from the circulation by immune mechanism. Therefore, alternatives to PEG need to be found. Here, looking at the backbone structural analogy, the hydrophilicity, flexibility, and its GRAS status, the natural polysaccharide inulin (INU) was investigated as PEG alternative. In particular, the first family of Inulin-g-poly-D,L-lactide amphiphilic copolymers (INU-PLAs) was synthesized. The new materials were fully characterized from the physicochemical point of view (solubility, 1D and 2D NMR, FT-IR, UV–Vis, GPC, DSC) and showed interesting hybrid properties compared to precursors. Moreover, their ability in forming stable colloids and to serve as a carrier for doxorubicin were investigated and compared with the already well-known and well-characterized PEGylated counterpart, polyethylene glycol-b-poly-D,L-lactide (PEG-PLA). This preliminary investigation showed INU-PLA to be able to assemble in nanostructures less than 200 nm in size and capable of loading doxorubicin with an encapsulation efficiency in the same order of magnitude of PEG-PLA analogues.
Collapse
Affiliation(s)
- Carla Sardo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Carmela Tommasino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Paola Russo
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
| |
Collapse
|
7
|
Afinjuomo F, Abdella S, Youssef SH, Song Y, Garg S. Inulin and Its Application in Drug Delivery. Pharmaceuticals (Basel) 2021; 14:ph14090855. [PMID: 34577554 PMCID: PMC8468356 DOI: 10.3390/ph14090855] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Inulin’s unique and flexible structure, stabilization/protective effects, and organ targeting ability make it an excellent drug delivery carrier compared to other biodegradable polysaccharides. The three hydroxyl groups attached to each fructose unit serve as an anchor for chemical modification. This, in turn, helps in increasing bioavailability, improving cellular uptake, and achieving targeted, sustained, and controlled release of drugs and biomolecules. This review focuses on the various types of inulin drug delivery systems such as hydrogel, conjugates, nanoparticles, microparticles, micelles, liposomes, complexes, prodrugs, and solid dispersion. The preparation and applications of the different inulin drug delivery systems are further discussed. This work highlights the fact that modification of inulin allows the use of this polymer as multifunctional scaffolds for different drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Garg
- Correspondence: ; Tel.: +61-88-302-1575; Fax: +61-88-302-2389
| |
Collapse
|
8
|
Trapani A, De Giglio E, Cometa S, Bonifacio MA, Dazzi L, Di Gioia S, Hossain MN, Pellitteri R, Antimisiaris SG, Conese M. Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. Eur J Pharm Biopharm 2021; 167:189-200. [PMID: 34333085 DOI: 10.1016/j.ejpb.2021.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 01/07/2023]
Abstract
Both dopamine (DA) loaded Solid Lipid Nanoparticles (SLN) and liposomes (Lip), designed for intranasal administration of the neurotransmitter as an innovative Parkinson disease treatment, were already characterized in vitro in some extent by us (Trapani et al., 2018a and Cometa et al., 2020, respectively). Herein, to gain insight into the structure of SLN, X-ray Photoelectron Spectroscopy Analysis was carried out and DA-SLN (SLN 1) were found to exhibit high amounts of the neurotransmitter on the surface, whereas the external side of Glycol Chitosan (GCS) containing SLN (SLN 2) possessed only few amounts. However, SLN 2 were characterized by the highest encapsulation DA efficiency (i.e., 81%). Furthermore, in view of intranasal administration, mucoadhesion tests in vitro were also conducted for SLN and Lip formulations, evidencing high muchoadesive effect exerted by SLN 2. Concerning ex-vivo studies, SLN and Lip were found to be safe for Olfactory Ensheathing Cells and fluorescent SLN 2 were taken up in a dose-dependent manner reaching the 100% of positive cells, while Lip 2 (chitosan-glutathione-coated) were internalised by 70% OECs with six-times more lipid concentration. Hence, SLN 2 formulation containing DA and GCS may constitute interesting formulations for further studies and promising dosage form for non-invasive nose-to-brain neurotransmitter delivery.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.
| | - Elvira De Giglio
- Chemistry Department, University of Bari "Aldo Moro", via Orabona, 4, Bari 70125, Italy
| | | | | | - Laura Dazzi
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, Monserrato (Cagliari), Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation (IRIB-CNR), Catania 95126, Italy
| | - Sophia G Antimisiaris
- Laboratory of Pharm. Technology, Dept. of Pharmacy, School of Health Sciences, University of Patras, Rio 26504, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, Rio 26504, Greece
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
9
|
Chadha S, Kumar A, Srivastava SA, Behl T, Ranjan R. Inulin as a Delivery Vehicle for Targeting Colon-Specific Cancer. Curr Drug Deliv 2021; 17:651-674. [PMID: 32459607 DOI: 10.2174/1567201817666200527133719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides, as well as biopolymers, are now days widely developed for targeting colon cancer using various drug delivery systems. Currently, healing conformations are being explored that can efficiently play a multipurpose role. Owing to the capability of extravagance colonic diseases with the least adverse effects, biopolymers for site specific colon delivery have developed an increased curiosity over the past decades. Inulin (INU) was explored for its probable application as an entrapment material concerning its degradation by enzymes in the colonic microflora and its drug release behavior in a sustained and controlled manner. INU is a polysaccharide and it consists of 2 to 1 linkage having an extensive array of beneficial uses such as a carrier for delivery of therapeutic agents as an indicative/investigative utensil or as a dietary fiber with added well-being aids. In the main, limited research, as well as information, is available on the delivery of therapeutic agents using inulin specifically for colon cancer because of its capability to subsist in the stomach's acidic medium. This exceptional steadiness and robustness properties are exploited in numerous patterns to target drugs securely for the management of colonic cancer, where they effectively act and kills colonic tumor cells easily. In this review article, recent efforts and inulin-based nano-technological approaches for colon cancer targeting are presented and discussed.
Collapse
Affiliation(s)
- Swati Chadha
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arun Kumar
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Tapan Behl
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishu Ranjan
- Department of Pharmaceutics, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
10
|
Helal HM, Samy WM, Kamoun EA, El-Fakharany EM, Abdelmonsif DA, Aly RG, Mortada SM, Sallam MA. Potential Privilege of Maltodextrin-α-Tocopherol Nano-Micelles in Seizing Tacrolimus Renal Toxicity, Managing Rheumatoid Arthritis and Accelerating Bone Regeneration. Int J Nanomedicine 2021; 16:4781-4803. [PMID: 34290503 PMCID: PMC8286967 DOI: 10.2147/ijn.s317409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Tacrolimus (TAC) is a powerful immunosuppressive agent whose therapeutic applicability is confined owing to its systemic side effects. Objective Herein, we harnessed a natural polymer based bioconjugate composed of maltodextrin and α-tocopherol (MD-α-TOC) to encapsulate TAC as an attempt to overcome its biological limitations while enhancing its therapeutic anti-rheumatic efficacy. Methods The designed TAC loaded maltodextrin-α-tocopherol nano-micelles (TAC@MD-α-TOC) were assessed for their physical properties, safety, toxicological behavior, their ability to combat arthritis and assist bone/cartilage formation. Results In vitro cell viability assay revealed enhanced safety profile of optimized TAC@MD-α-TOC with 1.6- to 2-fold increase in Vero cells viability compared with free TAC. Subacute toxicity study demonstrated a diminished nephro- and hepato-toxicity accompanied with optimized TAC@MD-α-TOC. TAC@MD-α-TOC also showed significantly enhanced anti-arthritic activity compared with free TAC, as reflected by improved clinical scores and decreased IL-6 and TNF-α levels in serum and synovial fluids. Unique bone formation criteria were proved with TAC@MD-α-TOC by elevated serum and synovial fluid levels of osteocalcin and osteopontin mRNA and proteins expression. Chondrogenic differentiation abilities of TAC@MD-α-TOC were proved by increased serum and synovial fluid levels of SOX9 mRNA and protein expression. Conclusion Overall, our designed bioconjugate micelles offered an excellent approach for improved TAC safety profile with enhanced anti-arthritic activity and unique bone formation characteristics.
Collapse
Affiliation(s)
- Hala M Helal
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Wael M Samy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt.,Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El- Sherouk City, Cairo, 11837, Egypt
| | - Esmail M El-Fakharany
- Proteins Research Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
11
|
Polymeric nanomicelles based on inulin D α-tocopherol succinate for the treatment of diabetic retinopathy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Usman M, Zhang C, Patil PJ, Mehmood A, Li X, Bilal M, Haider J, Ahmad S. Potential applications of hydrophobically modified inulin as an active ingredient in functional foods and drugs - A review. Carbohydr Polym 2021; 252:117176. [PMID: 33183623 PMCID: PMC7536552 DOI: 10.1016/j.carbpol.2020.117176] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Inulin is a substance found in a wide variety of fruits, vegetables, and herbs. Inulin was modified by physical and chemical means to improve functionality. HMI has been used in the stability of emulsions and suspensions. SCFAs inulin esters have transformed the gut microbiota and improved the bioavailability of SCFAs. HMI based bioconjugates, hydrogel, and nanomicelles were used as a controlled release of drugs and vaccines.
Over the past few years, hydrophobically modified inulin (HMI) has gained considerable attention due to its multitudinous features. The targeted release of drugs remains a subject of research interest. Moreover, it is important to explore the properties of short-chain fatty acids (SCFAs) inulin esters because they are less studied. Additionally, HMI has been used to stabilize various dispersion formulations, which have been observed to be safe because inulin is generally recognized as safe (GRAS). However, the results regarding HMI-based dispersion products are dispersed throughout the literature. This comprehensive review is discussed the possible limitations regarding SCFAs inulin esters, real food dispersion formulations, and HMI drugs. The results revealed that SCFAs inulin esters can regulate the human gut microbiota and increase the biological half-life of SCFAs in the human body. This comprehensive review discusses the versatility of HMI as a promising excipient for the production of hydrophobic drugs.
Collapse
Affiliation(s)
- Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Prasanna Jagannath Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Muhammad Bilal
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Shabbir Ahmad
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan.
| |
Collapse
|
13
|
Wei Y, Cai Z, Wu M, Guo Y, Wang P, Li R, Ma A, Zhang H. Core-shell pea protein-carboxymethylated corn fiber gum composite nanoparticles as delivery vehicles for curcumin. Carbohydr Polym 2020; 240:116273. [DOI: 10.1016/j.carbpol.2020.116273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
|
14
|
Anti-angiogenic activity of uncoated- and N,O-carboxymethyl-chitosan surface modified-Gelucire® 50/13 based solid lipid nanoparticles for oral delivery of curcumin. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101494] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Kielbik A, Wawryka P, Przystupski D, Rossowska J, Szewczyk A, Saczko J, Kulbacka J, Chwiłkowska A. Effects of Photosensitization of Curcumin in Human Glioblastoma Multiforme Cells. In Vivo 2020; 33:1857-1864. [PMID: 31662513 DOI: 10.21873/invivo.11679] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIM There is no satisfactory treatment of glioblastoma multiforme, a highly invasive brain tumor. The aim of this study was to analyze the cytotoxic effects of curcumin (CUR) alone and as a photosensitizer on glioblastoma cells. MATERIALS AND METHODS The SNB-19 cells where incubated for 2 and 24 h with 5-200 mM of CUR. The cells were radiated with blue light (6 J/cm2) and compared to non-irradiated ones. The effects of treatment were assessed by measuring mitochondrial activity with the MTT method and apoptosis progression by flow cytometry. To investigate CUR uptake, fluorescence imaging of cells was performed. RESULTS Photosensitization of CUR decreased the EC50 6.3 times when the incubation time was 2 h and over 90% of cells underwent apoptosis. The study of the uptake of CUR showed that during the 2 h, CUR was placed in the entire cytoplasm, and over time, its amount decreased and localized in the subcellular compartments. CONCLUSION CUR is a promising medicament that can be used as a photosensitizer in photodynamic therapy for glioma treatment.
Collapse
Affiliation(s)
| | - Piotr Wawryka
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Joanna Rossowska
- Institute of Immunology and Experimental Therapy Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland.,Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
16
|
Tripodo G, Mandracchia D. Inulin as a multifaceted (active) substance and its chemical functionalization: From plant extraction to applications in pharmacy, cosmetics and food. Eur J Pharm Biopharm 2019; 141:21-36. [PMID: 31102649 DOI: 10.1016/j.ejpb.2019.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
This review is aimed at critically discussing a collection of research papers on Inulin (INU) in different scientific fields. The first part of this work gives an overview on the main characteristics of native INU, including production, applications in food or cosmetics industries, its benefits on human health as well as its main nutraceutical properties. A particular focus is dedicated to the extraction techniques and to the specific effects of INU on intestinal microbiota. Other than in food industry, the number of INU applications increases dramatically in the pharmaceutical field especially due to its simple chemical functionalization. Thus, aim of this review is also to give practical examples of chemical functionalization performed on INU also by including critical comments based on the direct experience of the Authors. With this aim, a full paragraph is dedicated to practical chemical experiences useful to reduce the efforts when establishing new experimental conditions. Moreover, the pharmaceutical technology is also taken in special consideration by underlining the aspects leading at the preparation of formulations based on INU. At the end of the review, a critical paragraph is intended to feed the scientists' curiosity on this versatile polysaccharide.
Collapse
Affiliation(s)
- Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Delia Mandracchia
- Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
17
|
Crivelli B, Bari E, Perteghella S, Catenacci L, Sorrenti M, Mocchi M, Faragò S, Tripodo G, Prina-Mello A, Torre ML. Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis. Eur J Pharm Biopharm 2019; 137:37-45. [DOI: 10.1016/j.ejpb.2019.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/22/2018] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
|
18
|
Gupta N, Jangid AK, Pooja D, Kulhari H. Inulin: A novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int J Biol Macromol 2019; 132:852-863. [PMID: 30926495 DOI: 10.1016/j.ijbiomac.2019.03.188] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
Inulin (INU) is a flexible, fructan type polysaccharide carbohydrate, mainly obtained from the root of chicory. It is a water-soluble dietary fibre and has been recently approved by the Food and Drug Administration for improving the nutritional values of food products. INU is not digested or fermented in the initial portion of the human digestive system and directly reaches on the distal portion of the colon. Owing to this superior property, INU is specially applied to develop specific carrier systems for localized delivery of drugs related to colon diseases. Several studies proved that the fermented bi-products of INU help the growth and stimulating activity of colon bacteria e.g. Bifidobacterium and Lactobacilli. INU also has several inherent therapeutic effects like reduction of tumor risks, help in calcium ion absorption, anti-inflammatory, antioxidant properties etc. Apart from these, INU has been used for different pharmaceutical applications as a drug carrier, stabilizing agent, cryoprotectant, and an alternative to fats and sugars. Here, we review the applications of INU in different areas of biomedical science, look back into the nutritional effects of INU and outline various routes of administration of INU-based formulations.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Deep Pooja
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India.
| |
Collapse
|
19
|
Tripodo G, Perteghella S, Grisoli P, Trapani A, Torre ML, Mandracchia D. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. Eur J Pharm Biopharm 2019; 136:250-258. [DOI: 10.1016/j.ejpb.2019.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
|
20
|
Mandracchia D, Trapani A, Perteghella S, Di Franco C, Torre ML, Calleri E, Tripodo G. A Micellar-Hydrogel Nanogrid from a UV Crosslinked Inulin Derivative for the Simultaneous Delivery of Hydrophobic and Hydrophilic Drugs. Pharmaceutics 2018; 10:E97. [PMID: 30029476 PMCID: PMC6161022 DOI: 10.3390/pharmaceutics10030097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022] Open
Abstract
Hydrogels are among the most common materials used in drug delivery, as polymeric micelles are too. They, preferentially, load hydrophilic and hydrophobic drugs, respectively. In this paper, we thought to combine the favorable behaviors of both hydrogels and polymeric micelles with the specific aim of delivering hydrophilic and hydrophobic drugs for dual delivery in combination therapy, in particular for colon drug delivery. Thus, we developed a hydrogel by UV crosslinking of a methacrylated (MA) amphiphilic derivative from inulin (INU) (as known INU is specifically degraded into the colon) and vitamin E (VITE), called INVITEMA. The methacrylated micelles were physicochemically characterized and subjected to UV irradiation to form what we called the "nanogrids". The INVITEMA nanogrids were characterized by DSC, SEM, TEM, water uptake and beclomethasone dipropionate (BDP) release. In particular, the release of the hydrophobic drug was specifically assessed to verify that it can spread along the hydrophilic portions and, therefore, effectively released. These systems can open new pharmaceutical applications for known hydrogels or micelle systems, considering that in literature only few examples are present.
Collapse
Affiliation(s)
- Delia Mandracchia
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Cinzia Di Franco
- Consiglio Nazionale delle Ricerche-Istituto di Fotonica e Nanotecnologie (CNR-IFN) Bari, Via Amendola 173, 70125 Bari, Italy.
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Giuseppe Tripodo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
21
|
Sun B, Tian Y, Chen L, Jin Z. Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Mandracchia D, Trapani A, Perteghella S, Sorrenti M, Catenacci L, Torre ML, Trapani G, Tripodo G. pH-sensitive inulin-based nanomicelles for intestinal site-specific and controlled release of celecoxib. Carbohydr Polym 2018; 181:570-578. [DOI: 10.1016/j.carbpol.2017.11.110] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/14/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022]
|
23
|
Amirmahani N, Mahmoodi NO, Mohammadi Galangash M, Ghavidast A. Advances in nanomicelles for sustained drug delivery. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Xu HL, Fan ZL, ZhuGe DL, Shen BX, Jin BH, Xiao J, Lu CT, Zhao YZ. Therapeutic supermolecular micelles of vitamin E succinate-grafted ε-polylysine as potential carriers for curcumin: Enhancing tumour penetration and improving therapeutic effect on glioma. Colloids Surf B Biointerfaces 2017; 158:295-307. [DOI: 10.1016/j.colsurfb.2017.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/06/2017] [Accepted: 07/05/2017] [Indexed: 01/17/2023]
|
25
|
Milcovich G, Antunes FE, Farra R, Grassi G, Grassi M, Asaro F. Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages. Int J Biol Macromol 2017; 102:796-804. [DOI: 10.1016/j.ijbiomac.2017.04.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 10/19/2022]
|
26
|
Karim R, Palazzo C, Laloy J, Delvigne AS, Vanslambrouck S, Jerome C, Lepeltier E, Orange F, Dogne JM, Evrard B, Passirani C, Piel G. Development and evaluation of injectable nanosized drug delivery systems for apigenin. Int J Pharm 2017; 532:757-768. [PMID: 28456651 DOI: 10.1016/j.ijpharm.2017.04.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to develop different injectable nanosized drug delivery systems (NDDSs) i.e. liposome, lipid nanocapsule (LNC) and polymeric nanocapsule (PNC) encapsulating apigenin (AG) and compare their characteristics to identify the nanovector(s) that can deliver the largest quantity of AG while being biocompatible. Two liposomes with different surface characteristics (cationic and anionic), a LNC and a PNC were prepared. A novel tocopherol modified poly(ethylene glycol)-b-polyphosphate block-copolymer was used for the first time for the PNC preparation. The NDDSs were compared by their physicochemical characteristics, AG release, storage stability, stability in serum, complement consumption and toxicity against a human macrovascular endothelial cell line (EAhy926). The diameter and surface charge of the NDDSs were comparable with previously reported injectable nanocarriers. The NDDSs showed good encapsulation efficiency and drug loading. Moreover, the NDDSs were stable during storage and in fetal bovine serum for extended periods, showed low complement consumption and were non-toxic to EAhy926 cells up to high concentrations. Therefore, they can be considered as potential injectable nanocarriers of AG. Due to less pronounced burst effect and extended release characteristics, the nanocapsules could be favorable approaches for achieving prolonged pharmacological activity of AG using injectable NDDS.
Collapse
Affiliation(s)
- Reatul Karim
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium; MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France.
| | - Claudio Palazzo
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| | - Julie Laloy
- Namur Nanosafety Centre, NARILIS, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Anne-Sophie Delvigne
- Namur Nanosafety Centre, NARILIS, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Stéphanie Vanslambrouck
- Center for Education and Research on Macromolecules (CERM), University of Liege, UR-CESAM, Liege, Belgium
| | - Christine Jerome
- Center for Education and Research on Macromolecules (CERM), University of Liege, UR-CESAM, Liege, Belgium
| | - Elise Lepeltier
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Francois Orange
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Nice, France
| | - Jean-Michel Dogne
- Namur Nanosafety Centre, NARILIS, Department of Pharmacy, University of Namur, Namur, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| | - Catherine Passirani
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, Angers, France
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liege, Liege, Belgium
| |
Collapse
|
27
|
Mandracchia D, Rosato A, Trapani A, Chlapanidas T, Montagner IM, Perteghella S, Di Franco C, Torre ML, Trapani G, Tripodo G. Design, synthesis and evaluation of biotin decorated inulin-based polymeric micelles as long-circulating nanocarriers for targeted drug delivery. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1245-1254. [DOI: 10.1016/j.nano.2017.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/07/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022]
|
28
|
Perteghella S, Crivelli B, Catenacci L, Sorrenti M, Bruni G, Necchi V, Vigani B, Sorlini M, Torre ML, Chlapanidas T. Stem cell-extracellular vesicles as drug delivery systems: New frontiers for silk/curcumin nanoparticles. Int J Pharm 2017; 520:86-97. [PMID: 28163224 DOI: 10.1016/j.ijpharm.2017.02.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 01/30/2023]
Abstract
The aim of this work was to develop a novel carrier-in-carrier system based on stem cell-extracellular vesicles loaded of silk/curcumin nanoparticles by endogenous technique. Silk nanoparticles were produced by desolvation method and curcumin has been selected as drug model because of its limited water solubility and poor bioavailability. Nanoparticles were stable, with spherical geometry, 100nm in average diameter and the drug content reached about 30%. Cellular uptake studies, performed on mesenchymal stem cells (MSCs), showed the accumulation of nanoparticles in the cytosol around the nuclear membrane, without cytotoxic effects. Finally, MSCs were able to release extracellular vesicles entrapping silk/curcumin nanoparticles. This combined biological-technological approach represents a novel class of nanosystems, combining beneficial effects of both regenerative cell therapies and pharmaceutical nanomedicine, avoiding the use of viable replicating stem cells.
Collapse
Affiliation(s)
- Sara Perteghella
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Barbara Crivelli
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Laura Catenacci
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Milena Sorrenti
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Giovanna Bruni
- University of Pavia, Department of Chemistry, Viale Taramelli 16, 27100 Pavia, Italy.
| | - Vittorio Necchi
- University of Pavia, Department of Molecular Medicine, Via Forlanini 6, 27100 Pavia, Italy; University of Pavia, Centro Grandi Strumenti, Via Bassi 21, 27100 Pavia, Italy.
| | - Barbara Vigani
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Marzio Sorlini
- SUPSI, University of Applied Sciences and Arts of Southern Switzerland, Innovative Technologies Department, Via Pobiette 11, 6928 Manno, Switzerland.
| | - Maria Luisa Torre
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Theodora Chlapanidas
- University of Pavia, Department of Drug Sciences, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
29
|
A novel injectable formulation of 6-fluoro-l-DOPA imaging agent for diagnosis of neuroendocrine tumors and Parkinson's disease. Int J Pharm 2017; 519:304-313. [PMID: 28119123 DOI: 10.1016/j.ijpharm.2017.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/25/2022]
Abstract
Two [19F]F-l-DOPA (F-DOPA) new β-cyclodextrin (CD)-based dosage forms (FA and FB, respectively) have been studied and their physico-chemical and pharmacological features determined to overcome the administration site reactions showed by the currently used [18F]F-l-DOPA formulation (IASOdopa®) to perform PET-CT diagnosis in oncology (neuroendocrine tumors) and neurological (Parkinson's disease) field. Chemical stability of FA and FB was found to be longer than IASOdopa® by adding the thiol-antioxidant agent, L-Cysteine. 1H and 19F NMR investigations suggest the formation of an inclusion complex of F-DOPA with β-CD. In vitro experiments on the effects of FA and FB on mouse skeletal muscle fibers and on the human neuroblastoma SH-SY5Y and embryonal kidney tsA201 cell lines viability showed that FA was the most performant formulation compared to F-DOPA solutions. In vivo tolerability tests of FA on adult male rat showed no significant effects on body weight and no change in their dried organs weight. In addition, their metabolic and physiological parameters were not affected. In conclusion, [18F]F-l-DOPA, formulated as FA, constitutes a promising dosage form for PET-CT diagnosis of both neuroendocrine tumors and Parkinson's disease.
Collapse
|
30
|
Ye F, Lei D, Wang S, Zhao G. Polymeric micelles of octenylsuccinated corn dextrin as vehicles to solubilize curcumin. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Mandracchia D, Tripodo G, Trapani A, Ruggieri S, Annese T, Chlapanidas T, Trapani G, Ribatti D. Inulin based micelles loaded with curcumin or celecoxib with effective anti-angiogenic activity. Eur J Pharm Sci 2016; 93:141-6. [DOI: 10.1016/j.ejps.2016.08.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/09/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
32
|
Zheng S, Gao X, Liu X, Yu T, Zheng T, Wang Y, You C. Biodegradable micelles enhance the antiglioma activity of curcumin in vitro and in vivo. Int J Nanomedicine 2016; 11:2721-36. [PMID: 27354801 PMCID: PMC4907711 DOI: 10.2147/ijn.s102450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Curcumin (Cur), a natural polyphenol of Curcuma longa, has been recently reported to possess antitumor activities. However, due to its poor aqueous solubility and low biological availability, the clinical application of Cur is quite limited. The encapsulation of hydrophobic drugs into nanoparticles is an effective way to improve their pharmaceutical activities. In this research, nanomicelles loaded with Cur were formulated by a self-assembly method with biodegradable monomethoxy poly(ethylene glycol)-poly(lactide) copolymers (MPEG-PLAs). After encapsulation, the cellular uptake was increased and Cur could be released from MPEG-PLA micelles in a sustained manner. The Cur-loaded MPEG-PLA micelles (Cur/MPEG-PLA micelles) exhibited an enhanced toxicity on C6 and U251 glioma cells and induced more apoptosis on C6 glioma cells compared with free Cur. Moreover, the therapy efficiency of Cur/MPEG-PLA micelles was evaluated at length on a nude mouse model bearing glioma. The Cur/MPEG-PLA micelles were more effective on suppressing tumor growth compared with free Cur, which indicated that Cur/MPEG-PLA micelles improved the antiglioma activity of Cur in vivo. The results of immunohistochemical and immunofluorescent analysis indicated that the induction of apoptosis, antiangiogenesis, and inhibition of cell proliferation may contribute to the improvement in antiglioma effects. Our data suggested that Cur/MPEG-PLA may have potential clinic applications in glioma therapy.
Collapse
Affiliation(s)
- Songping Zheng
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Xiang Gao
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Xiaoxiao Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Ting Yu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Tianying Zheng
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Yi Wang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| | - Chao You
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
33
|
Duan Y, Zhang B, Chu L, Tong HHY, Liu W, Zhai G. Evaluation in vitro and in vivo of curcumin-loaded mPEG-PLA/TPGS mixed micelles for oral administration. Colloids Surf B Biointerfaces 2016; 141:345-354. [DOI: 10.1016/j.colsurfb.2016.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/08/2015] [Accepted: 01/10/2016] [Indexed: 12/22/2022]
|
34
|
Li J, Shin GH, Lee IW, Chen X, Park HJ. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.024] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
35
|
Zhang L, Li G, Gao M, Liu X, Ji B, Hua R, Zhou Y, Yang Y. RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin. Colloids Surf B Biointerfaces 2016; 144:81-89. [PMID: 27070055 DOI: 10.1016/j.colsurfb.2016.03.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/16/2016] [Accepted: 03/26/2016] [Indexed: 10/22/2022]
Abstract
Recently, chemotherapy-based polymeric nanoparticles have been extensively investigated for solid tumor treatment. Tumor targeted nanoparticles demonstrated great potential for improved accumulation in the tumor tissue, superior anticancer activity and reduced side effects. Thus, inulin-ibuprofen polymer was synthesized by esterification between inulin and ibuprofen, and RGD targeted epirubicin (EPB) loaded nanoparticles were prepared by the self-assembly of inulin-ibuprofen polymer and in situ encapsulation of EPB. RGD conjugated EPB loaded nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The EPB release from the nanoparticles showed pH-dependent profile and accelerated by the decreased pH value, which would favor the effective drug delivery in vivo. Intracellular uptake analysis suggested that RGD conjugated nanoparticles could be easily internalized by the cancer cells. In vitro cytotoxicity revealed that RGD conjugated EPB loaded nanoparticles exhibited the better antitumor efficacy compared with non-conjugated nanoparticles. More importantly, RGD conjugated EPB loaded nanoparticles showed superior anticancer effects and reduced toxicity than free EPB and non-conjugated nanoparticles by in vivo antitumor activity, EPB biodistribution and histology analysis.
Collapse
Affiliation(s)
- Luzhong Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China; Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Guicai Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Ming Gao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xin Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Bing Ji
- Medical College, Nantong University, Nantong 226001, China
| | - Ruheng Hua
- Medical College, Nantong University, Nantong 226001, China
| | - Youlang Zhou
- Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Yumin Yang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
36
|
|
37
|
Li S, Fang C, Zhang J, Liu B, Wei Z, Fan X, Sui Z, Tan Q. Catanionic lipid nanosystems improve pharmacokinetics and anti-lung cancer activity of curcumin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1567-79. [PMID: 26995093 DOI: 10.1016/j.nano.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/17/2022]
Abstract
Novel catanionic lipid nanosystems (CLNs) incorporating curcumin (CCM) were developed, and improvements in pharmacokinetics and enhanced anti-lung cancer activity were observed. CCM was present in a lipid matrix surrounded by cationic, anionic and zwitterionic surfactants, forming the core-shell nanosystems. Compared with free CCM, the CCM-CLNs had much higher oral and intravenous bioavailabilities due to enhanced absorption and reduced clearance. The CCM-CLNs exhibited greater cytotoxicity in Lewis lung cancer (LLC) cells, which might have been due to increased antiproliferative, proapoptotic and anti-invasive activities and induction of cell cycle arrest. The CCM-CLNs increased the antitumor efficacy of CCM and decreased the tumor growth rate in tumor-bearing mice. This is the first report of induction of apoptosis in LLC cells by CCM through the PI3K/Akt/FoxO1/Bim signaling pathway. Catanionic lipid nanocarriers show promise for the therapeutic delivery of insoluble anti-tumor drugs.
Collapse
Affiliation(s)
- Songlin Li
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chunshu Fang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Bilin Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Zhuanqin Wei
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqing Fan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zheng Sui
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
38
|
Yin S, Chang L, Li T, Wang G, Gu X, Li J. Construction of novel pH-sensitive hybrid micelles for enhanced extracellular stability and rapid intracellular drug release. RSC Adv 2016. [DOI: 10.1039/c6ra23050d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Novel pH-sensitive hybrid micelles with high entrapment efficiency were constructed to realize rapid intracellular drug release without premature release.
Collapse
Affiliation(s)
- Shaoping Yin
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Liang Chang
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Tie Li
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| | - Guangji Wang
- Center of Pharmacokinetics
- Key Laboratory of Drug Metabolism and Pharmacokinetics
- China Pharmaceutical University
- Nanjing
- China
| | - Xiaochen Gu
- College of Pharmacy
- University of Manitoba
- Winnipeg
- Canada R3E 0T5
| | - Juan Li
- Department of Pharmaceutics
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
39
|
Yu J, Zhou Y, Chen W, Ren J, Zhang L, Lu L, Luo G, Huang H. Preparation, Characterization and Evaluation of α-Tocopherol Succinate-Modified Dextran Micelles as Potential Drug Carriers. MATERIALS (BASEL, SWITZERLAND) 2015; 8:6685-6696. [PMID: 28793593 PMCID: PMC5455401 DOI: 10.3390/ma8105332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 02/07/2023]
Abstract
In the present study, α-tocopherol succinate (TOS) conjugated dextran (Dex-TOS) was synthesized and characterized by fourier transform infrared (FT-IR) spectroscopy, ¹H nuclear magnetic resonance (¹H NMR), dynamic light scattering (DLS) and fluorescence spectroscopy. Dex-TOS could form nanoscaled micelles in aqueous medium. The critical micelle concentration (CMC) is 0.0034 mg/mL. Doxorubicin (Dox) was selected as a model drug. Dox-loaded Dex-TOS (Dex-TOS/Dox) micelles were prepared by a dialysis method. The size of Dex-TOS/Dox micelles increased from 295 to 325 nm with the Dox-loading content increasing from 4.21% to 8.12%. The Dex-TOS/Dox micelles were almost spherical in shape, as determined by transmission electron microscopy (TEM). In vitro release demonstrated that Dox release from the micelles was in a sustained manner for up to 96 h. The cellular uptake of Dex-TOS/Dox micelles in human nasopharyngeal epidermoid carcinoma (KB) cells is an endocytic process determined by confocal laser scanning microscopy (CLSM). Moreover, Dex-TOS/Dox micelles exhibited comparable cytotoxicity in contrast with doxorubicin hydrochloride. These results suggested that Dex-TOS micelles could be a promising carrier for drug delivery.
Collapse
Affiliation(s)
- Jingmou Yu
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Yufeng Zhou
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
- School of Chemical and Biological Engneering, Yichun University, 576 Xuefu Road, Yichun 336000, China.
| | - Wencong Chen
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Jin Ren
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Lifang Zhang
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Lu Lu
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Gan Luo
- School of Pharmacy and Life Sciences, Jiujiang University, 320 Xunyang East Road, Jiujiang 332000, China.
| | - Hao Huang
- School of Chemical and Biological Engneering, Yichun University, 576 Xuefu Road, Yichun 336000, China.
| |
Collapse
|
40
|
Ahmad MZ, Alkahtani SA, Akhter S, Ahmad FJ, Ahmad J, Akhtar MS, Mohsin N, Abdel-Wahab BA. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J Drug Target 2015; 24:273-93. [DOI: 10.3109/1061186x.2015.1055570] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Saad Ahmed Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Sohail Akhter
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Farhan Jalees Ahmad
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Javed Ahmad
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Nehal Mohsin
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Basel A. Abdel-Wahab
- Deparment of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| |
Collapse
|