1
|
Yuan Z, Fang B, He Q, Wei H, Jian H, Zhang L. Molecular Dynamics Study of the Structure and Mechanical Properties of Spider Silk Proteins. Biomacromolecules 2025; 26:601-608. [PMID: 39748448 DOI: 10.1021/acs.biomac.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Spider silk is renowned for its exceptional toughness, with the strongest dragline silk composed of two proteins, MaSp1 and MaSp2, featuring central repetitive sequences and nonrepetitive terminal domains. Although these sequences to spider silk's strength and toughness, the specific roles of MaSp1 and MaSp2 at the atomic level remain unclear. Using AlphaFold3 models and molecular dynamics (MD) simulations, we constructed models of MaSp1 and MaSp2 and validated their stability. Steered molecular dynamics (SMD) simulations showed that MaSp2 resists lateral stretching, whereas MaSp1 exhibited better extensibility. During longitudinal stretching, MaSp1 formed cavities, whereas MaSp2 stretched uniformly. Hydrogen bonds involving GLN and SER in MaSp1 were strong, whereas those involving Tyr307 were prone to breakage, potentially weakening toughness. These results indicate that MaSp1 enhances extensibility, whereas MaSp2 imparts greater toughness. This study offers key molecular insights into spider silk's strength, informing the design of artificial fibers.
Collapse
Affiliation(s)
- Zhaoting Yuan
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bohuan Fang
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qixin He
- State Key of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Wei
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haiming Jian
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
2
|
Wang Q, McArdle P, Wang SL, Wilmington RL, Xing Z, Greenwood A, Cotten ML, Qazilbash MM, Schniepp HC. Protein secondary structure in spider silk nanofibrils. Nat Commun 2022; 13:4329. [PMID: 35902573 PMCID: PMC9334623 DOI: 10.1038/s41467-022-31883-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Nanofibrils play a pivotal role in spider silk and are responsible for many of the impressive properties of this unique natural material. However, little is known about the internal structure of these protein fibrils. We carry out polarized Raman and polarized Fourier-transform infrared spectroscopies on native spider silk nanofibrils and determine the concentrations of six distinct protein secondary structures, including β-sheets, and two types of helical structures, for which we also determine orientation distributions. Our advancements in peak assignments are in full agreement with the published silk vibrational spectroscopy literature. We further corroborate our findings with X-ray diffraction and magic-angle spinning nuclear magnetic resonance experiments. Based on the latter and on polypeptide Raman spectra, we assess the role of key amino acids in different secondary structures. For the recluse spider we develop a highly detailed structural model, featuring seven levels of structural hierarchy. The approaches we develop are directly applicable to other proteinaceous materials. Secondary fibril structure is a key component of the mechanical properties of protein materials like silk, yet, limited information is known about the internal structure of these protein fibrils. Here, the authors report on the use of polarised Raman and FTIR spectroscopy to study silk materials and identify six distinct secondary structures.
Collapse
Affiliation(s)
- Qijue Wang
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Patrick McArdle
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Stephanie L Wang
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Ryan L Wilmington
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Zhen Xing
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Alexander Greenwood
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Myriam L Cotten
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - M Mumtaz Qazilbash
- Department of Physics, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA
| | - Hannes C Schniepp
- Department of Applied Science, William & Mary, P.O. Box 8795, Williamsburg, VA, 23187-8795, USA.
| |
Collapse
|
3
|
Htut KZ, Alicea-Serrano AM, Singla S, Agnarsson I, Garb JE, Kuntner M, Gregorič M, Haney RA, Marhabaie M, Blackledge TA, Dhinojwala A. Correlation between protein secondary structure and mechanical performance for the ultra-tough dragline silk of Darwin's bark spider. J R Soc Interface 2021; 18:20210320. [PMID: 34129788 PMCID: PMC8205537 DOI: 10.1098/rsif.2021.0320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/24/2021] [Indexed: 11/12/2022] Open
Abstract
The spider major ampullate (MA) silk exhibits high tensile strength and extensibility and is typically a blend of MaSp1 and MaSp2 proteins with the latter comprising glycine-proline-glycine-glycine-X repeating motifs that promote extensibility and supercontraction. The MA silk from Darwin's bark spider (Caerostris darwini) is estimated to be two to three times tougher than the MA silk from other spider species. Previous research suggests that a unique MaSp4 protein incorporates proline into a novel glycine-proline-glycine-proline motif and may explain C. darwini MA silk's extraordinary toughness. However, no direct correlation has been made between the silk's molecular structure and its mechanical properties for C. darwini. Here, we correlate the relative protein secondary structure composition of MA silk from C. darwini and four other spider species with mechanical properties before and after supercontraction to understand the effect of the additional MaSp4 protein. Our results demonstrate that C. darwini MA silk possesses a unique protein composition with a lower ratio of helices (31%) and β-sheets (20%) than other species. Before supercontraction, toughness, modulus and tensile strength correlate with percentages of β-sheets, unordered or random coiled regions and β-turns. However, after supercontraction, only modulus and strain at break correlate with percentages of β-sheets and β-turns. Our study highlights that additional information including crystal size and crystal and chain orientation is necessary to build a complete structure-property correlation model.
Collapse
Affiliation(s)
- K Zin Htut
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Angela M. Alicea-Serrano
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Saranshu Singla
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Ingi Agnarsson
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Jessica E. Garb
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Matjaž Kuntner
- Jovan Hadži Institute of Biology ZRC SAZU, Novi trg 2, 1000 Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matjaž Gregorič
- Jovan Hadži Institute of Biology ZRC SAZU, Novi trg 2, 1000 Ljubljana, Slovenia
| | - Robert A. Haney
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Mohammad Marhabaie
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
4
|
Dynamic networks observed in the nucleosome core particles couple the histone globular domains with DNA. Commun Biol 2020; 3:639. [PMID: 33128005 PMCID: PMC7599221 DOI: 10.1038/s42003-020-01369-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
The dynamics of eukaryotic nucleosomes are essential in gene activity and well regulated by various factors. Here, we elucidated the internal dynamics at multiple timescales for the human histones hH3 and hH4 in the Widom 601 nucleosome core particles (NCP), suggesting that four dynamic networks are formed by the residues exhibiting larger-scale μs-ms motions that extend from the NCP core to the histone tails and DNA. Furthermore, despite possessing highly conserved structural features, histones in the telomeric NCP exhibit enhanced μs-ms dynamics in the globular sites residing at the identified dynamic networks and in a neighboring region. In addition, higher mobility was observed for the N-terminal tails of hH3 and hH4 in the telomeric NCP. The results demonstrate the existence of dynamic networks in nucleosomes, through which the center of the core regions could interactively communicate with histone tails and DNA to potentially propagate epigenetic changes. Shi et al. use solid-state nuclear magnetic resonance spectroscopy to reveal the internal dynamics of human histones hH3 and hH4 in the Widom 601 and the telomeric nucleosome core particles. This work has implications for the propagation of epigenetic changes via the center of the nucleosome core communicating with histone tails and DNA.
Collapse
|
5
|
Asakura T, Okonogi M, Naito A. Toward Understanding the Silk Fiber Structure: 13C Solid-State NMR Studies of the Packing Structures of Alanine Oligomers before and after Trifluoroacetic Acid Treatment. J Phys Chem B 2019; 123:6716-6727. [PMID: 31304756 DOI: 10.1021/acs.jpcb.9b04565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyalanine (poly-A) sequences with tightly packed antiparallel β sheet (AP-β) structures are frequently observed in silk fibers and serve as a key contributor to the exceptionally high-fiber tensile strength. In general, the poly-A sequence embedded in the amorphous glycine-rich regions has different lengths depending on the fiber type from spiders or wild silkworms. In this paper, the packing structures of AP-β alanine oligomers with different lengths were studied using 13C solid-state NMR as a model of the poly-A sequences. These included alanine oligomers with and without the protection groups (i.e., 9-fluorenylmethoxycarbonyl and polyethylene glycol groups at the N- and C-terminals, respectively). The fractions of the packing structures as well as the conformations were determined by deconvolution analyses of the methyl NMR peaks. Trifluoroacetic acid was used to promote the staggered packing structures, and the line shapes changed significantly for oligomers without the protected groups but only slightly for oligomers with the protected groups. Through NMR analysis of the 3-13C singly labeled alanine heptamer and refined crystal structure of the staggered packing units, a possible mechanism of the staggered packing formation is proposed for the AP-β alanine heptamer.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Michi Okonogi
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| | - Akira Naito
- Department of Biotechnology , Tokyo University of Agriculture and Technology , Koganei , Tokyo 184-8588 , Japan
| |
Collapse
|
6
|
Blamires SJ, Cerexhe G, White TE, Herberstein ME, Kasumovic MM. Spider silk colour covaries with thermal properties but not protein structure. J R Soc Interface 2019; 16:20190199. [PMID: 31362622 DOI: 10.1098/rsif.2019.0199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Understanding how and why animal secretions vary in property has important biomimetic implications as desirable properties might covary. Spider major ampullate (MA) silk, for instance, is a secretion earmarked for biomimetic applications, but many of its properties vary among and between species across environments. Here, we tested the hypothesis that MA silk colour, protein structure and thermal properties covary when protein uptake is manipulated in the spider Trichonephila plumipes. We collected silk from adult female spiders maintained on a protein-fed or protein-deprived diet. Based on spectrophotometric quantifications, we classified half the silks as 'bee visible' and the other half 'bee invisible'. Wide angle X-ray diffraction and differential scanning calorimetry were then used to assess the silk's protein structure and thermal properties, respectively. We found that although protein structures and thermal properties varied across our treatments only the thermal properties covaried with colour. This ultimately suggests that protein structure alone is not responsible for MA silk thermal properties, nor does it affect silk colours. We speculate that similar ecological factors act on silk colour and thermal properties, which should be uncovered to inform biomimetic programmes.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences E26, The University of New South Wales, Sydney 2052, Australia.,Department of Biological Science, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Georgia Cerexhe
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences E26, The University of New South Wales, Sydney 2052, Australia
| | - Thomas E White
- Department of Biological Science, Macquarie University, Sydney, New South Wales 2109, Australia.,School of Life and Environmental Sciences, Macleay (A12), Room 208, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marie E Herberstein
- Department of Biological Science, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael M Kasumovic
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences E26, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
7
|
Asakura T, Matsuda H, Aoki A, Kataoka N, Imai A. Conformational change of 13C-labeled 47-mer model peptides of Nephila clavipes dragline silk in poly(vinyl alcohol) film by stretching studied by 13C solid-state NMR and molecular dynamics simulation. Int J Biol Macromol 2019; 131:654-665. [PMID: 30902719 DOI: 10.1016/j.ijbiomac.2019.03.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
For determination of the conformation of irregular sequences in glycine-rich region of the Nephila clavipes spider dragline silk, the combination of 13C selectively labeled model peptides for the typical primary structure and their 13C solid-state NMR observations is very useful (T. Asakura et al. Macromolecules. 51 (2018) 3608-3619). However, spiders produce the fiber through the stretching process in nature and therefore, it is difficult to study conformational change by stretching as mimic using the model peptides because these are generally in the powder form. In this paper, 13C selectively labeled three model peptides, (Glu)4(Ala)6GlyGly12Ala13Gly14GlnGlyGlyTyrGlyGlyLeuGlySerGlnGly25Ala26Gly27ArgGly-GlyLeuGlyGlyGlnGly35Ala36Gly37(Ala)6(Glu)4 with three underlined 13C labeled blocks and their poly(vinyl alcohol) blend films were prepared and the conformational changes of these peptides were monitored by stretching of the films using 13C solid-state NMR. In addition, the molecular dynamics simulation was done to evaluate change in the conformation of the sequence by stretching theoretically. The fractions of β-sheet of Ala36 and Gly37 residues in glycine-rich region adjacent to the C-terminal (Ala)6 sequence increased significantly by stretching compared with those of other 13C labeled Ala and Gly residues.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Naomi Kataoka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akiko Imai
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Craig HC, Blamires SJ, Sani MA, Kasumovic MM, Rawal A, Hook JM. DNP NMR spectroscopy reveals new structures, residues and interactions in wild spider silks. Chem Commun (Camb) 2019; 55:4687-4690. [PMID: 30938741 DOI: 10.1039/c9cc01045a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNP solid state NMR spectroscopy allows non-targeted analysis of wild spider silk in unprecedented detail at natural abundance, revealing hitherto unreported features across several species. A >50-fold signal enhancement for each silk, enables the detection of novel H-bonding networks and arginine conformations, and the post-translational modified amino acid, hydroxyproline.
Collapse
Affiliation(s)
- Hamish C Craig
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, 2052, Australia.
| | | | | | | | | | | |
Collapse
|
9
|
McGill M, Holland GP, Kaplan DL. Experimental Methods for Characterizing the Secondary Structure and Thermal Properties of Silk Proteins. Macromol Rapid Commun 2019; 40:e1800390. [PMID: 30073740 PMCID: PMC6425979 DOI: 10.1002/marc.201800390] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/16/2018] [Indexed: 12/17/2022]
Abstract
Silk proteins are biopolymers produced by spinning organisms that have been studied extensively for applications in materials engineering, regenerative medicine, and devices due to their high tensile strength and extensibility. This remarkable combination of mechanical properties arises from their unique semi-crystalline secondary structure and block copolymer features. The secondary structure of silks is highly sensitive to processing, and can be manipulated to achieve a wide array of material profiles. Studying the secondary structure of silks is therefore critical to understanding the relationship between structure and function, the strength and stability of silk-based materials, and the natural fiber synthesis process employed by spinning organisms. However, silks present unique challenges to structural characterization due to high-molecular-weight protein chains, repetitive sequences, and heterogeneity in intra- and interchain domain sizes. Here, experimental techniques used to study the secondary structure of silks, the information attainable from these techniques, and the limitations associated with them are reviewed. Ultimately, the appropriate utilization of a suite of techniques discussed here will enable detailed characterization of silk-based materials, from studying fundamental processing-structure-function relationships to developing commercially useful quality control assessments.
Collapse
Affiliation(s)
- Meghan McGill
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Gregory P. Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
10
|
Asakura T, Matsuda H, Kataoka N, Imai A. Changes in the Local Structure of Nephila clavipes Dragline Silk Model Peptides upon Trifluoroacetic Acid, Low pH, Freeze-Drying, and Hydration Treatments Studied by 13C Solid-State NMR. Biomacromolecules 2018; 19:4396-4410. [DOI: 10.1021/acs.biomac.8b01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Naomi Kataoka
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akiko Imai
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
11
|
Asakura T, Tasei Y, Matsuda H, Naito A. Dynamics of Alanine Methyl Groups in Alanine Oligopeptides and Spider Dragline Silks with Different Packing Structures As Studied by 13C Solid-State NMR Relaxation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
12
|
Naito A, Tasei Y, Nishimura A, Asakura T. Unusual Dynamics of Alanine Residues in Polyalanine Regions with Staggered Packing Structure of Samia cynthia ricini Silk Fiber in Dry and Hydrated States Studied by 13C Solid-State NMR and Molecular Dynamics Simulation. J Phys Chem B 2018; 122:6511-6520. [DOI: 10.1021/acs.jpcb.8b03509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
13
|
Asakura T, Nishimura A, Tasei Y. Determination of Local Structure of 13C Selectively Labeled 47-mer Peptides as a Model for Gly-Rich Region of Nephila clavipes Dragline Silk Using a Combination of 13C Solid-State NMR and MD Simulation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
14
|
Asakura T, Tasei Y, Aoki A, Nishimura A. Mixture of Rectangular and Staggered Packing Arrangements of Polyalanine Region in Spider Dragline Silk in Dry and Hydrated States As Revealed by 13C NMR and X-ray Diffraction. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akihiro Aoki
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
15
|
Tasei Y, Nishimura A, Suzuki Y, Sato TK, Sugahara J, Asakura T. NMR Investigation about Heterogeneous Structure and Dynamics of Recombinant Spider Silk in the Dry and Hydrated States. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01862] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yugo Tasei
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Akio Nishimura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Yu Suzuki
- Tenure-Track
Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Takehiro K. Sato
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Junichi Sugahara
- Spiber Inc., 234-1 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Tetsuo Asakura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
16
|
Naito A, Tasei Y, Nishimura A, Asakura T. Packing Arrangements and Intersheet Interaction of Alanine Oligopeptides As Revealed by Relaxation Parameters Obtained from High-Resolution 13C Solid-State NMR. J Phys Chem B 2017; 121:8946-8955. [DOI: 10.1021/acs.jpcb.7b07068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Akira Naito
- Department of Biotechnology, Tokyo University of Agriculture and Technology Koganei, Tokyo 184-8588 Japan
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology Koganei, Tokyo 184-8588 Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology Koganei, Tokyo 184-8588 Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology Koganei, Tokyo 184-8588 Japan
| |
Collapse
|
17
|
Asakura T, Endo M, Tasei Y, Ohkubo T, Hiraoki T. Hydration of Bombyx mori silk cocoon, silk sericin and silk fibroin and their interactions with water as studied by 13C NMR and 2H NMR relaxation. J Mater Chem B 2017; 5:1624-1632. [PMID: 32263934 DOI: 10.1039/c6tb03266d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mechanical properties of Bombyx mori silk fibers, such as elasticity and tensile strength, change remarkably upon hydration. However, changes in the local conformation and dynamics of individual amino acid residues and change in the dynamics of water molecules due to hydration are not currently well understood on the molecular level. In this work, the conformations and dynamics of the hydrated Bombyx mori silk fibers, including silk cocoon (SC), silk sericin (SS) and silk fibroin (SF), were determined after sustained immersion in water by using 13C refocused insensitive nuclei enhanced by polarization transfer (INEPT) NMR, 13C cross-polarization/magic angle spinning (CP/MAS) NMR and 13C dipolar decoupled-magic angle spinning (DD/MAS) NMR. The 13C INEPT NMR spectrum reflects their mobile domain, the 13C CP/MAS NMR spectrum their rigid domain, and the 13C DD/MAS NMR spectrum both domains. The mobile domain of the hydrated SC fiber originates mainly from the hydrated SS part and the rigid domain of the hydrated SC fiber from the hydrated SF part. Moreover, the dynamics of mobile water molecules interacting with the silk fiber was studied by 2H solution NMR relaxation measurements in the silk fiber-2H2O system. Using an inverse Laplace transform algorithm, we were able to identify distinct mobile components in the relaxation times for 2H2O. Our measurements provide new insight relating to the characteristics of the hydrated structure of SC, SS and SF fibers, and the water molecules that interact with them in water. The information is relevant in light of current interest in the design of novel silk-based biomaterials which are usually in contact with blood and other body fluids.
Collapse
Affiliation(s)
- Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | |
Collapse
|
18
|
Kametani S, Tasei Y, Nishimura A, Asakura T. Distinct solvent- and temperature-dependent packing arrangements of anti-parallel β-sheet polyalanines studied with solid-state 13C NMR and MD simulation. Phys Chem Chem Phys 2017; 19:20829-20838. [DOI: 10.1039/c7cp03693k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Change from rectangular arrangement to staggered arrangement of (Ala)6 by heat treatment.
Collapse
Affiliation(s)
- Shunsuke Kametani
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
- Mitsui Chemical Analysis & Consulting Service, Inc
| | - Yugo Tasei
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Akio Nishimura
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| | - Tetsuo Asakura
- Department of Biotechnology
- Tokyo University of Agriculture and Technology
- Koganei
- Japan
| |
Collapse
|
19
|
Dao ATN, Nakayama K, Shimokata J, Taniike T. Multilateral characterization of recombinant spider silk in thermal degradation. Polym Chem 2017. [DOI: 10.1039/c6py01954d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elucidating the complex mechanism of thermo-oxidative degradation of recombinant spider silk by systematic characterization and correlation coefficient approach.
Collapse
Affiliation(s)
- Anh T. N. Dao
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - K. Nakayama
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| | - J. Shimokata
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
- Spiber Inc
| | - T. Taniike
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Nomi
- Japan
| |
Collapse
|
20
|
Lindh EL, Terenzi C, Salmén L, Furó I. Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. Phys Chem Chem Phys 2017; 19:4360-4369. [DOI: 10.1039/c6cp08219j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The organization of water molecules adsorbed onto cellulose and the supramolecular hydrated structure of microfibril aggregates represents, still today, one of the open and complex questions in the physical chemistry of natural polymers.
Collapse
Affiliation(s)
- E. L. Lindh
- Division of Applied Physical Chemistry
- Department of Chemistry
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| | - C. Terenzi
- Division of Applied Physical Chemistry
- Department of Chemistry
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| | - L. Salmén
- Wallenberg Wood Science Center
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
- Innventia AB
| | - I. Furó
- Division of Applied Physical Chemistry
- Department of Chemistry
- KTH Royal Institute of Technology
- SE-10044 Stockholm
- Sweden
| |
Collapse
|
21
|
Blamires SJ, Kasumovic MM, Tso IM, Martens PJ, Hook JM, Rawal A. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks. Int J Mol Sci 2016; 17:ijms17081294. [PMID: 27517909 PMCID: PMC5000691 DOI: 10.3390/ijms17081294] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
The exceptional strength and extensibility of spider dragline silk have been thought to be facilitated by two spidroins, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2), under the assumption that protein secondary structures are coupled with the expressed spidroins. We tested this assumption for the dragline silk of three co-existing Australian spiders, Argiope keyserlingi, Latrodectus hasselti and Nephila plumipes. We found that silk amino acid compositions did not differ among spiders collected in May. We extended these analyses temporally and found the amino acid compositions of A. keyserlingi silks to differ when collected in May compared to November, while those of L. hasselti did not. To ascertain whether their secondary structures were decoupled from spidroin expression, we performed solid-state nuclear magnetic resonance spectroscopy (NMR) analysis on the silks of all spiders collected in May. We found the distribution of alanine toward β-sheet and 3,10helix/random coil conformations differed between species, as did their relative crystallinities, with A. keyserlingi having the greatest 3,10helix/random coil composition and N. plumipes the greatest crystallinity. The protein secondary structures correlated with the mechanical properties for each of the silks better than the amino acid compositions. Our findings suggested that a differential distribution of alanine during spinning could decouple secondary structures from spidroin expression ensuring that silks of desirable mechanical properties are consistently produced. Alternative explanations include the possibility that other spidroins were incorporated into some silks.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney 2052, Australia.
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney 2052, Australia.
| | - I-Min Tso
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan.
| | - Penny J Martens
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2052, Australia.
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia.
| | - Aditya Rawal
- NMR Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
22
|
Shi X, Rienstra CM. Site-Specific Internal Motions in GB1 Protein Microcrystals Revealed by 3D ²H-¹³C-¹³C Solid-State NMR Spectroscopy. J Am Chem Soc 2016; 138:4105-19. [PMID: 26849428 PMCID: PMC4819898 DOI: 10.1021/jacs.5b12974] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Indexed: 02/04/2023]
Abstract
(2)H quadrupolar line shapes deliver rich information about protein dynamics. A newly designed 3D (2)H-(13)C-(13)C solid-state NMR magic angle spinning (MAS) experiment is presented and demonstrated on the microcrystalline β1 immunoglobulin binding domain of protein G (GB1). The implementation of (2)H-(13)C adiabatic rotor-echo-short-pulse-irradiation cross-polarization (RESPIRATION CP) ensures the accuracy of the extracted line shapes and provides enhanced sensitivity relative to conventional CP methods. The 3D (2)H-(13)C-(13)C spectrum reveals (2)H line shapes for 140 resolved aliphatic deuterium sites. Motional-averaged (2)H quadrupolar parameters obtained from the line-shape fitting identify side-chain motions. Restricted side-chain dynamics are observed for a number of polar residues including K13, D22, E27, K31, D36, N37, D46, D47, K50, and E56, which we attribute to the effects of salt bridges and hydrogen bonds. In contrast, we observe significantly enhanced side-chain flexibility for Q2, K4, K10, E15, E19, N35, N40, and E42, due to solvent exposure and low packing density. T11, T16, and T17 side chains exhibit motions with larger amplitudes than other Thr residues due to solvent interactions. The side chains of L5, V54, and V29 are highly rigid because they are packed in the core of the protein. High correlations were demonstrated between GB1 side-chain dynamics and its biological function. Large-amplitude side-chain motions are observed for regions contacting and interacting with immunoglobulin G (IgG). In contrast, rigid side chains are primarily found for residues in the structural core of the protein that are absent from protein binding and interactions.
Collapse
Affiliation(s)
- Xiangyan Shi
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|