1
|
Dhiman R, Bazad N, Mukherjee R, Himanshu, Gunjan, Leal E, Ahmad S, Kaur K, Raj VS, Chang CM, Pandey RP. Enhanced drug delivery with nanocarriers: a comprehensive review of recent advances in breast cancer detection and treatment. DISCOVER NANO 2024; 19:143. [PMID: 39243326 PMCID: PMC11380656 DOI: 10.1186/s11671-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
Breast cancer (BC) remains a leading cause of morbidity and mortality among women worldwide, with triple-negative breast cancer (TNBC) posing significant treatment challenges due to its aggressive phenotype and resistance to conventional therapies. Recent advancements in nanocarrier technology offer promising solutions for enhancing drug delivery, improving bioavailability, and increasing drug accumulation at tumor sites through targeted approaches. This review delves into the latest innovations in BC detection and treatment, highlighting the role of nanocarriers like polymeric micelles, liposomes, and magnetic nanoparticles in overcoming the limitations of traditional therapies. Additionally, the manuscript discusses the integration of cutting-edge diagnostic tools, such as multiplex PCR-Nested Next-Generation Sequencing (mPCR-NGS) and blood-based biomarkers, which are revolutionizing early detection and molecular profiling of BC. The convergence of these technologies not only enhances therapeutic outcomes but also paves the way for personalized medicine in BC management. This comprehensive review underscores the potential of nanocarriers in transforming BC treatment and emphasizes the critical importance of early detection in improving patient prognosis.
Collapse
Affiliation(s)
- Ruby Dhiman
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Bazad
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Riya Mukherjee
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Himanshu
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Gunjan
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belem, Pará, Brazil
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail City, Kingdom of Saudi Arabia
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - V Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, India
| | - Chung-Ming Chang
- Department in Biotechnology Industry, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan City, Taiwan, ROC.
- Laboratory Animal Center, Chang Gung University, Taoyuan City, Taiwan, ROC.
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
2
|
Yan X, Chen Q. Polyamidoamine Dendrimers: Brain-Targeted Drug Delivery Systems in Glioma Therapy. Polymers (Basel) 2024; 16:2022. [PMID: 39065339 PMCID: PMC11280609 DOI: 10.3390/polym16142022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for glioma include surgical removal, chemotherapy and radiotherapy. Due to the obstruction of the biological barrier of brain tissue, it is difficult to achieve the desired therapeutic effects. To address the limitations imposed by the brain's natural barriers and enhance the treatment efficacy, researchers have effectively used brain-targeted drug delivery systems (DDSs) in glioma therapy. Polyamidoamine (PAMAM) dendrimers, as branched macromolecular architectures, represent promising candidates for studies in glioma therapy. This review focuses on PAMAM-based DDSs in the treatment of glioma, highlighting their physicochemical characteristics, structural properties as well as an overview of the toxicity and safety profiles.
Collapse
Affiliation(s)
- Xinyi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
3
|
Rahman M, Afzal O, Ullah SNM, Alshahrani MY, Alkhathami AG, Altamimi ASA, Almujri SS, Almalki WH, Shorog EM, Alossaimi MA, Mandal AK, abdulrahman A, Sahoo A. Nanomedicine-Based Drug-Targeting in Breast Cancer: Pharmacokinetics, Clinical Progress, and Challenges. ACS OMEGA 2023; 8:48625-48649. [PMID: 38162753 PMCID: PMC10753706 DOI: 10.1021/acsomega.3c07345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
Breast cancer (BC) is a malignant neoplasm that begins in the breast tissue. After skin cancer, BC is the second most common type of cancer in women. At the end of 2040, the number of newly diagnosed BC cases is projected to increase by over 40%, reaching approximately 3 million worldwide annually. The hormonal and chemotherapeutic approaches based on conventional formulations have inappropriate therapeutic effects and suboptimal pharmacokinetic responses with nonspecific targeting actions. To overcome such issues, the use of nanomedicines, including liposomes, nanoparticles, micelles, hybrid nanoparticles, etc., has gained wider attention in the treatment of BC. Smaller dimensional nanomedicine (especially 50-200 nm) exhibited improved in vivo effectiveness, such as better tissue penetration and more effective tumor suppression through enhanced retention and permeation, as well as active targeting of the drug. Additionally, nanotechnology, which further extended and developed theranostic nanomedicine by incorporating diagnostic and imaging agents in one platform, has been applied to BC. Furthermore, hybrid and theranostic nanomedicine has also been explored for gene delivery as anticancer therapeutics in BC. Moreover, the nanocarriers' size, shape, surface charge, chemical compositions, and surface area play an important role in the nanocarriers' stability, cellular absorption, cytotoxicity, cellular uptake, and toxicity. Additionally, nanomedicine clinical translation for managing BC remains a slow process. However, a few cases are being used clinically, and their progress with the current challenges is addressed in this Review. Therefore, this Review extensively discusses recent advancements in nanomedicine and its clinical challenges in BC.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shehla Nasar Mir
Najib Ullah
- Phyto
Pharmaceuticals Research Lab, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences and Research, Jamia
Hamdard University, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Mohammad Y. Alshahrani
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Ali G. Alkhathami
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | | | - Salem Salman Almujri
- Department
of Pharmacology, College of Pharmacy, King
Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Waleed H Almalki
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Eman M. Shorog
- Department
of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Manal A Alossaimi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ashok Kumar Mandal
- Department
of Pharmacology, Faculty of Medicine, University
Malaya, Kuala Lumpur 50603, Malaysia
| | - Alhamyani abdulrahman
- Pharmaceuticals
Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Ankit Sahoo
- Department
of Pharmaceutical Sciences, Shalom Institute of Health and Allied
Sciences, Sam Higginbottom University of
Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India
| |
Collapse
|
4
|
Pachla J, Kopiasz RJ, Marek G, Tomaszewski W, Głogowska A, Drężek K, Kowalczyk S, Podgórski R, Butruk-Raszeja B, Ciach T, Mierzejewska J, Plichta A, Augustynowicz-Kopeć E, Jańczewski D. Polytrimethylenimines: Highly Potent Antibacterial Agents with Activity and Toxicity Modulated by the Polymer Molecular Weight. Biomacromolecules 2023; 24:2237-2249. [PMID: 37093622 PMCID: PMC10170506 DOI: 10.1021/acs.biomac.3c00139] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cationic polymers have been extensively investigated as a potential replacement for traditional antibiotics. Here, we examined the effect of molecular weight (MW) on the antimicrobial, cytotoxic, and hemolytic activity of linear polytrimethylenimine (L-PTMI). The results indicate that the biological activity of the polymer sharply increases as MW increases. Thanks to a different position of the antibacterial activity and toxicity thresholds, tuning the MW of PTMI allows one to achieve a therapeutic window between antimicrobial activity and toxicity concentrations. L-PTMI presents significantly higher antimicrobial activity against model microorganisms than linear polyethylenimine (L-PEI) when polymers with a similar number of repeating units are compared. For the derivatives of L-PTMI and L-PEI, obtained through N-monomethylation and partial N,N-dimethylation of linear polyamines, the antimicrobial activity and toxicity were both reduced; however, resulting selectivity indices were higher. Selected materials were tested against clinical isolates of pathogens from the ESKAPE group and Mycobacteria, revealing good antibacterial properties of L-PTMI against antibiotic-resistant strains of Gram-positive and Gram-negative bacteria but limited antibacterial properties against Mycobacteria.
Collapse
Affiliation(s)
- Julita Pachla
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Gabriela Marek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agnieszka Głogowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sebastian Kowalczyk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Rafał Podgórski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Beata Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Płocka 26, 01-138 Warsaw, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
5
|
Paolino M, Varvarà P, Saletti M, Reale A, Gentile M, Paccagnini E, Giuliani G, Komber H, Licciardi M, Cappelli A. Hyaluronan‐coated poly(propylene imine) dendrimers as biomimetic nanocarriers of doxorubicin. J Appl Polym Sci 2022. [DOI: 10.1002/app.53300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022) Università degli Studi di Siena Siena Italy
| | - Paola Varvarà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Palermo Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022) Università degli Studi di Siena Siena Italy
| | - Annalisa Reale
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022) Università degli Studi di Siena Siena Italy
| | - Mariangela Gentile
- Dipartimento di Scienze della Vita Università degli Studi di Siena Siena Italy
| | - Eugenio Paccagnini
- Dipartimento di Scienze della Vita Università degli Studi di Siena Siena Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022) Università degli Studi di Siena Siena Italy
| | - Hartmut Komber
- Center Macromolecular Structure Analysis Leibniz Institute for Polymer Research Dresden Germany
| | - Mariano Licciardi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo Palermo Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018–2022) Università degli Studi di Siena Siena Italy
| |
Collapse
|
6
|
Synthesis, dynamics and applications (cytotoxicity and biocompatibility) of dendrimers: a mini-review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022; 14:pharmaceutics14061292. [PMID: 35745863 PMCID: PMC9230513 DOI: 10.3390/pharmaceutics14061292] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dendrimers are used for a variety of applications in medicine but, due to their host–guest and entrapment characteristics, are particularly used for the delivery of genes and drugs. However, dendrimers are intrinsically toxic, thus creating a major limitation for their use in biological systems. To reduce such toxicity, biocompatible dendrimers have been designed and synthesized, and surface engineering has been used to create advantageous changes at the periphery of dendrimers. Although dendrimers have been reviewed previously in the literature, there has yet to be a systematic and comprehensive review of the harmful effects of dendrimers. In this review, we describe the routes of dendrimer exposure and their distribution in vivo. Then, we discuss the toxicity of dendrimers at the organ, cellular, and sub-cellular levels. In this review, we also describe how technology can be used to reduce dendrimer toxicity, by changing their size and surface functionalization, how dendrimers can be combined with other materials to generate a composite formulation, and how dendrimers can be used for the diagnosis of disease. Finally, we discuss future challenges, developments, and research directions in developing biocompatible and safe dendrimers for medical purposes.
Collapse
|
8
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
9
|
Chałubiński M, Szulc A, Gorzelak-Pabiś P, Wojdan K, Appelhan D, Bryszewska M, Broncel M. The effect of maltose modified fourth generation poly(propylene imine) (PPI G4) dendrimers on the barrier functions and inflammatory activation of human vascular endothelium – Possible consequences for the medical application. Vascul Pharmacol 2022; 143:106972. [DOI: 10.1016/j.vph.2022.106972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
|
10
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
11
|
Kharwade R, Badole P, Mahajan N, More S. Toxicity And Surface Modification Of Dendrimers: A Critical Review. Curr Drug Deliv 2021; 19:451-465. [PMID: 34674620 DOI: 10.2174/1567201818666211021160441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
As compared to other nano polymers, dendrimers have novel three dimensional, synthetic hyperbranched, nano-polymeric structures. The characteristic of these supramolecular dendritic structures has a high degree of significant surface as well as core functionality in the transportation of drugs for targeted therapy, specifically in host-guest response, gene transfer therapy and imaging of biological systems. However, there are conflicting shreds of evidence regarding biological safety and dendrimers toxicity due to their positive charge at the surface. It includes cytotoxicity, hemolytic toxicity, haematological toxicity, immunogenicity and in vivo toxicity. Therefore to resolve these problems surface modification of the dendrimer group is one of the methods. From that point, this review involves different strategies which reduce the toxicity and improve the biocompatibility of different types of dendrimers. From that viewpoint, we broaden the structural and safe characteristics of the dendrimers in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Payal Badole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| |
Collapse
|
12
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
13
|
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021; 82:100901. [PMID: 32891866 PMCID: PMC8317199 DOI: 10.1016/j.preteyeres.2020.100901] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Although once daily anti-glaucoma drug therapy is a current clinical reality, most therapies require multiple dosing and there is an unmet need to develop convenient, safe, and effective sustained release drug delivery systems for long-term treatment to improve patient adherence and outcomes. One of the first sustained release drug delivery systems was approved for the reduction of intraocular pressure in glaucoma patients. It is a polymeric reservoir-type insert delivery system, Ocusert™, placed under the eyelid and on the ocular surface for zero-order drug release over one week. The insert, marketed in two strengths, released pilocarpine on the eye surface. While many clinicians appreciated this drug product, it was eventually discontinued. No similar sustained release non-invasive drug delivery system has made it to the market to date for treating glaucoma. Drug delivery systems under development include punctal plugs, ring-type systems, contact lenses, implants, microspheres, nanospheres, gels, and other depot systems placed in the extraocular, periocular, or intraocular regions including intracameral, supraciliary, and intravitreal spaces. This article discusses the advantages and disadvantages of the various routes of administration and delivery systems for sustained glaucoma therapy. It also provides the reader with some examples and discussion of drug delivery systems that could potentially be applied for glaucoma treatment. Interestingly, one intracamerally injected implant, Durysta™, was approved recently for sustained intraocular pressure reduction. However, long-term acceptance of such devices has yet to be established. The ultimate success of the delivery system will depend on efficacy relative to eye drop dosing, safety, reimbursement options, and patient acceptance. Cautious development efforts are warranted considering prior failed approaches for sustained glaucoma drug delivery. Neuroprotective approaches for glaucoma therapy including cell, gene, protein, and drug-combination therapies, mostly administered intravitreally, are also rapidly progressing towards assessment in humans.
Collapse
Affiliation(s)
- Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Rachel R Hartman
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
14
|
Noske S, Karimov M, Aigner A, Ewe A. Tyrosine-Modification of Polypropylenimine (PPI) and Polyethylenimine (PEI) Strongly Improves Efficacy of siRNA-Mediated Gene Knockdown. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1809. [PMID: 32927826 PMCID: PMC7557430 DOI: 10.3390/nano10091809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022]
Abstract
The delivery of small interfering RNAs (siRNA) is an efficient method for gene silencing through the induction of RNA interference (RNAi). It critically relies, however, on efficient vehicles for siRNA formulation, for transfection in vitro as well as for their potential use in vivo. While polyethylenimines (PEIs) are among the most studied cationic polymers for nucleic acid delivery including small RNA molecules, polypropylenimines (PPIs) have been explored to a lesser extent. Previous studies have shown the benefit of the modification of small PEIs by tyrosine grafting which are featured in this paper. Additionally, we have now extended this approach towards PPIs, presenting tyrosine-modified PPIs (named PPI-Y) for the first time. In this study, we describe the marked improvement of PPI upon its tyrosine modification, leading to enhanced siRNA complexation, complex stability, siRNA delivery, knockdown efficacy and biocompatibility. Results of PPI-Y/siRNA complexes are also compared with data based on tyrosine-modified linear or branched PEIs (LPxY or PxY). Taken together, this establishes tyrosine-modified PPIs or PEIs as particularly promising polymeric systems for siRNA formulation and delivery.
Collapse
Affiliation(s)
| | | | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; (S.N.); (M.K.)
| |
Collapse
|
15
|
Kelly IB, Fletcher RB, McBride JR, Weiss SM, Duvall CL. Tuning Composition of Polymer and Porous Silicon Composite Nanoparticles for Early Endosome Escape of Anti-microRNA Peptide Nucleic Acids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39602-39611. [PMID: 32805967 PMCID: PMC8356247 DOI: 10.1021/acsami.0c05827] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Porous silicon nanoparticles (PSNPs) offer tunable pore structure and easily modified surface chemistry, enabling high loading capacity for drugs with diverse chemicophysical properties. While PSNPs are also cytocompatible and degradable, PSNP integration into composite structures can be a useful approach to enhance carrier colloidal stability, drug-cargo loading stability, and endosome escape. Here, we explored PSNP polymer composites formed by coating of oxidized PSNPs with a series of poly[ethylene glycol-block-(dimethylaminoethyl methacrylate-co-butyl methacrylate)] (PEG-DB) diblock copolymers with varied molar ratios of dimethylaminoethyl methacrylate (D) and butyl methacrylate (B) in the random copolymer block. We screened and developed PSNP composites specifically toward intracellular delivery of microRNA inhibitory peptide nucleic acids (PNA). While a copolymer with 50 mol % B (50B) is optimal for early endosome escape in free polymer form, its pH switch was suppressed when it was formed into 50B polymer-coated PSNP composites (50BCs). We demonstrate that a lower mol % B (30BC) is the ideal PEG-DB composition for PSNP/PEG-DB nanocomposites based on having both the highest endosome disruption potential and miR-122 inhibitory activity. At a 1 mM PNA dose, 30BCs facilitated more potent inhibition of miR-122 in comparison to 40BC (p = 0.0095), 50BC (p < 0.0001), or an anti-miR-122 oligonucleotide delivered with the commercial transfection reagent Fugene 6. Using a live cell galectin 8-based endosome disruption reporter, 30BCs had greater endosomal escape than 40BCs and 50BCs within 2 h after treatment, suggesting that rapid endosome escape correlates with higher intracellular bioactivity. This study provides new insight on the polymer structure-dependent effects on stability, endosome escape, and cargo intracellular bioavailability for endosomolytic polymer-coated PSNPs.
Collapse
Affiliation(s)
- Isom B Kelly
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - R Brock Fletcher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - James R McBride
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sharon M Weiss
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
16
|
Dąbkowska M, Łuczkowska K, Rogińska D, Sobuś A, Wasilewska M, Ulańczyk Z, Machaliński B. Novel design of (PEG-ylated)PAMAM-based nanoparticles for sustained delivery of BDNF to neurotoxin-injured differentiated neuroblastoma cells. J Nanobiotechnology 2020; 18:120. [PMID: 32867843 PMCID: PMC7457365 DOI: 10.1186/s12951-020-00673-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for the development and function of human neurons, therefore it is a promising target for neurodegenerative disorders treatment. Here, we studied BDNF-based electrostatic complex with dendrimer nanoparticles encapsulated in polyethylene glycol (PEG) in neurotoxin-treated, differentiated neuroblastoma SH-SY5Y cells, a model of neurodegenerative mechanisms. PEG layer was adsorbed at dendrimer-protein core nanoparticles to decrease their cellular uptake and to reduce BDNF-other proteins interactions for a prolonged time. Cytotoxicity and confocal microscopy analysis revealed PEG-ylated BDNF-dendrimer nanoparticles can be used for continuous neurotrophic factor delivery to the neurotoxin-treated cells over 24 h without toxic effect. We offer a reliable electrostatic route for efficient encapsulation and controlled transport of fragile therapeutic proteins without any covalent cross-linker; this could be considered as a safe drug delivery system. Understanding the polyvalent BDNF interactions with dendrimer core nanoparticles offers new possibilities for design of well-ordered protein drug delivery systems.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Department of Medical Chemistry, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Anna Sobuś
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239, Cracow, Poland
| | - Zofia Ulańczyk
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| |
Collapse
|
17
|
Sorroza-Martínez K, González-Méndez I, Martínez-Serrano RD, Solano JD, Ruiu A, Illescas J, Zhu XX, Rivera E. Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity. RSC Adv 2020; 10:25557-25566. [PMID: 35518581 PMCID: PMC9055266 DOI: 10.1039/d0ra02574g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications. In this work, we completely modified the periphery of PAMAM dendrimer generation 1 (PAMAM G1) with β-cyclodextrin (β-CD) units through the Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) to obtain the PAMAM G1-β-CD dendrimer with high yield. The PAMAM G1-β-CD was characterized by 1H- and 13C-NMR and mass spectrometry studies. Moreover, the PAMAM G1-β-CD dendrimer showed remarkably higher water solubility than native β-CD. Finally, we studied the toxicity of PAMAM G1-β-CD dendrimer in four different cell lines, human breast cancer cells (MCF-7 and MDA-MB-231), human cervical adenocarcinoma cancer cells (HeLa) and pig kidney epithelial cells (LLC-PK1). The PAMAM G1-β-CD dendrimer did not present any cytotoxicity in cell lines tested which shows the potentiality of this new class of dendrimers. The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications.![]()
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Ricardo D Martínez-Serrano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - José D Solano
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Andrea Ruiu
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Av. Tecnológico S/N, Col. Agrícola Bellavista CP 52149 Metepec México
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal C.P. 6128, Succursale Centre-ville Montreal QC H3C 3J7 Canada
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| |
Collapse
|
18
|
Domingues WB, Blodorn EB, Martins ASW, Dellagostin EN, Komninou ER, Hurtado JI, Corcini CD, Varela Junior AS, Pinto LS, Kremer FS, Collares T, Pinhal D, Greif G, Robello C, Schneider A, Guo S, Campos VF. Transfection of exogenous DNA complexed to cationic dendrimer induces alterations of bovine sperm microRNAome. Theriogenology 2020; 156:11-19. [PMID: 32650250 DOI: 10.1016/j.theriogenology.2020.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/01/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022]
Abstract
MicroRNAs have been hypothesized to be involved in the regulation of male fertility potential. The primary aim of our study was to demonstrate the effects of transfection with dendrimer nanostructure on the parameters of bovine sperm quality and to investigate whether the microRNA profile could be disturbed after cationic dendrimer-mediated exogenous DNA transfection of bovine spermatozoa. The binding of exogenous DNA was significantly increased when dendrimer-based transfection was implemented. However, cationic dendrimer transfection induced detrimental changes in the kinetics and sperm quality parameters, such as membrane integrity, acrosome reaction, and mitochondrial membrane potential, when compared to the control group. Sperm microRNA sequencing revealed 218 known and 106 novel microRNAs in the sperm samples, among which nine were dysregulated after transfection (one was upregulated and eight were downregulated), in comparison to the non-transfected sperm. All the dysregulated microRNAs were related to sperm quality and embryonic development. These results suggest that the transfection process using the dendrimer nanostructure has an impact on the quality and microRNA profile of bovine sperm.
Collapse
Affiliation(s)
- William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo B Blodorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda S W Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo N Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza R Komninou
- Laboratório de Reprodução Animal, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Joaquin I Hurtado
- Unidad de Biología Molecular, Institut Pasteur, Montevideo, Montevideo, Uruguay
| | - Carine D Corcini
- Laboratório de Reprodução Animal, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antonio S Varela Junior
- Laboratório de Reprodução Animal, Programa de Pós-Graduação em Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Luciano S Pinto
- Laboratório de Bioinformática e Proteômica, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Frederico S Kremer
- Laboratório de Bioinformática e Proteômica, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Laboratório de Biotecnologia do Câncer, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Danillo Pinhal
- Laboratório Genômica e Evolução Molecular, Departamento de Genética, Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, RS, Brazil
| | - Gonzalo Greif
- Unidad de Biología Molecular, Institut Pasteur, Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Unidad de Biología Molecular, Institut Pasteur, Montevideo, Montevideo, Uruguay
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Su Guo
- Department of Biopharmaceutical Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA, USA
| | - Vinicius F Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Vaghasiya K, Sharma A, Kumar K, Ray E, Adlakha S, Katare OP, Hota SK, Verma RK. Heparin-Encapsulated Metered-Dose Topical “Nano-Spray Gel” Liposomal Formulation Ensures Rapid On-Site Management of Frostbite Injury by Inflammatory Cytokines Scavenging. ACS Biomater Sci Eng 2019; 5:6617-6631. [DOI: 10.1021/acsbiomaterials.9b01486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kalpesh Vaghasiya
- Institute of Nano Science and Technology (INST), Phase X, Sector 64, Mohali, Punjab 160062, India
| | - Ankur Sharma
- Institute of Nano Science and Technology (INST), Phase X, Sector 64, Mohali, Punjab 160062, India
| | - Kushal Kumar
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir 901205, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Phase X, Sector 64, Mohali, Punjab 160062, India
| | - Suneera Adlakha
- Institute of Nano Science and Technology (INST), Phase X, Sector 64, Mohali, Punjab 160062, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, Panjab University, Sector-14, Chandigarh 160014, India
| | - Sunil Kumar Hota
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir 901205, India
| | - Rahul K. Verma
- Institute of Nano Science and Technology (INST), Phase X, Sector 64, Mohali, Punjab 160062, India
| |
Collapse
|
20
|
Huang X, Cao J, Zhang Y, Liu T, Yan H. Polyethylenimine modified with 2,3-dimethylmaleic anhydride potentiates the antitumor efficacy of conventional chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:558-568. [DOI: 10.1016/j.msec.2019.04.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
|
21
|
Abstract
Drug delivery systems are molecular platforms in which an active compound is packed into or loaded on a biocompatible nanoparticle. Such a solution improves the activity of the applied drug or decreases its side effects. Dendrimers are promising molecular platforms for drug delivery due to their unique properties. These macromolecules are known for their defined size, shape, and molecular weight, as well as their monodispersity, the presence of the void space, tailorable structure, internalization by cells, selectivity toward cells and intracellular components, protection of guest molecules, and controllable release of the cargo. Dendrimers were tested as carriers of various molecules and, simultaneously, their toxicity was examined using different cell lines. It was discovered that, in general, dendrimer cytotoxicity depended on the generation, the number of surface groups, and the nature of terminal moieties (anionic, neutral, or cationic). Higher cytotoxicity occurred for higher-generation dendrimers and for dendrimers with positive charges on the surface. In order to decrease the cytotoxicity of dendrimers, scientists started to introduce different chemical modifications on the periphery of the nanomolecule. Dendrimers grafted with polyethylene glycol (PEG), acetyl groups, carbohydrates, and other moieties did not affect cell viability, or did so only slightly, while still maintaining other advantageous properties. Dendrimers clearly have great potential for wide utilization as drug and gene carriers. Moreover, some dendrimers have biological properties per se, being anti-fungal, anti-bacterial, or toxic to cancer cells without affecting normal cells. Therefore, intrinsic cytotoxicity is a comprehensive problem and should be considered individually depending on the potential destination of the nanoparticle.
Collapse
|
22
|
Markowicz-Piasecka M, Sadkowska A, Podsiedlik M, Mikiciuk-Olasik E, Sikora J. Generation 2 (G2) - Generation 4 (G4) PAMAM dendrimers disrupt key plasma coagulation parameters. Toxicol In Vitro 2019; 59:87-99. [PMID: 30981695 DOI: 10.1016/j.tiv.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 11/08/2022]
Abstract
The aim of the research was to evaluate the effects of G2 - G4 PAMAM dendrimers on basic plasma haemostasis parameters (Partially Activated Thrombin Time (APTT), Prothrombin Time (PT), Thrombin Time (TT)) as well as the activity of factor X, antithrombin III (AT), protein C and plasmin. Furthermore, tissue factor (TF) synthesis in endothelial cells and viability of smooth muscle cells in the presence of PAMAM dendrimers was investigated. APTT, PT and TT were performed according to the available commercial methods. The activity of factor X was conducted based on deficient plasma factor X. Protein C, AT and plasmin activity were measured spectrophotometrically using chromogenic substrates. Intracellular TF production in human umbilical vein endothelial cells (HUVECs) was measured using immunohistochemical method. Viability of Human Aortal Smooth Muscle cells (hAoSMCs) was established using WST-1 assay. PAMAM dendrimers decreased activity of factor X, and concomitantly prolonged PT and APTT. We also demonstrated shortened TT and increased fibrinogen concentrations in plasma treated with G4 PAMAM dendrimers, suggesting formation of fibrinogen aggregates. G2 - G4 PAMAM dendrimers decreased the activity of both naturally occurring anticoagulants AT and protein C. G2 and G3 PAMAM dendrimers did not affect the proteolytic reaction with plasmin. PAMAM dendrimers were found not to trigger TF production in undisturbed endothelial cells. PAMAM dendrimers, depending on the concentration and generation decreased viability of AoSMCs. The results presented within the current study suggest complex but mostly undesirable effect of G2 - G4 PAMAM dendrimers on plasma haemostasis and underscore the need for further in-depth research.
Collapse
Affiliation(s)
- Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland.
| | - Adrianna Sadkowska
- Students Research Group, Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Maria Podsiedlik
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland.
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Joanna Sikora
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland.
| |
Collapse
|
23
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299:64-89. [DOI: 10.1016/j.jconrel.2019.02.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022]
|
24
|
Roeven E, Scheres L, Smulders MMJ, Zuilhof H. Design, Synthesis, and Characterization of Fully Zwitterionic, Functionalized Dendrimers. ACS OMEGA 2019; 4:3000-3011. [PMID: 30847431 PMCID: PMC6398351 DOI: 10.1021/acsomega.8b03521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Dendrimers are interesting candidates for various applications because of the high level of control over their architecture, the presence of internal cavities, and the possibility for multivalent interactions. More specifically, zwitterionic dendrimers modified with an equal number of oppositely charged groups have found use in in vivo biomedical applications. However, the design and control over the synthesis of these dendrimers remains challenging, in particular with respect to achieving full modification of the dendrimer. In this work, we show the design and subsequent synthesis of dendrimers that are highly charged while having zero net charge, that is zwitterionic dendrimers that are potential candidates for biomedical applications. First, we designed and fully optimized the synthesis of charge-neutral carboxybetaine and sulfobetaine zwitterionic dendrimers. Following their synthesis, the various zwitterionic dendrimers were extensively characterized. In this study, we also report for the first time the use of X-ray photoelectron spectroscopy as an easy-to-use and quantitative tool for the compositional analysis of this type of macromolecules that can complement techniques such as nuclear magnetic resonance and gel permeation chromatography. Finally, we designed and synthesized zwitterionic dendrimers that contain a variable number of alkyne and azide groups that allow straightforward (bio)functionalization via click chemistry.
Collapse
Affiliation(s)
- Esther Roeven
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Surfix BV, Bronland
12 B-1, 6708 WH Wageningen, The Netherlands
| | - Luc Scheres
- Surfix BV, Bronland
12 B-1, 6708 WH Wageningen, The Netherlands
| | - Maarten M. J. Smulders
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic
Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of
Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People’s Republic of China
- Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Saraf J, Kalia K, Bhattacharya P, Tekade RK. Growing synergy of nanodiamonds in neurodegenerative interventions. Drug Discov Today 2019; 24:584-594. [DOI: 10.1016/j.drudis.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
|
26
|
Zhang L, Hao P, Yang D, Feng S, Peng B, Appelhans D, Zhang T, Zan X. Designing nanoparticles with improved tumor penetration: surface properties from the molecular architecture viewpoint. J Mater Chem B 2019; 7:953-964. [PMID: 32255100 DOI: 10.1039/c8tb03034k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is the second most common cause of death, and nanomedicine is regarded as one of the strategies that may revolutionize cancer treatments. However, the tumor microenvironment (e.g., increased interstitial fluid pressure and dense extracellular matrix) hinders the penetration of nanomedicine into tumor cells, which leads to a short acting time and low drug concentration with tumors, eventually leading to a high recurrence rate and therapeutic failure in clinics. Developing a delivery system with deep penetration ability into the tumor has always been pursued and highly desirable for cancer treatments. Inspired by the high cellular uptake efficiency of enveloped viruses with rough and nanoscale surfaces, we constructed polystyrene nanoparticles (NPs) with similar sizes and charges, but with different surface topologies at the molecular level, by conjugating poly(propylene imine) (PPI) dendrimers with different generations onto the NPs. We found that subtle changes made to the surficial chemical properties led to changes in surface roughness and wettability, which considerably influenced the cellular internalization, endocytosis mechanism, and penetration into the tumor model both in vitro and in vivo. This will shed light on the future design of drug delivery vehicles and facilitate understanding the interactions between NP surfaces and cells, as well as tumor penetration.
Collapse
Affiliation(s)
- Long Zhang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Chan LY, Khung YL, Lin CY. Preparation of Messenger RNA Nanomicelles via Non-Cytotoxic PEG-Polyamine Nanocomplex for Intracerebroventicular Delivery: A Proof-of-Concept Study in Mouse Models. NANOMATERIALS 2019; 9:nano9010067. [PMID: 30621291 PMCID: PMC6359661 DOI: 10.3390/nano9010067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
The specific delivery of messenger RNA (mRNA) is an excellent alternative to plasmid DNA, due to the latter’s potential risk for random integration into the host genome. In this study, we propose the use of specially tailored polyplex nanomicelles for the intravenous delivery of mRNA into the brain of mice. In brief, along the backbone of a polyaspartamide polymer that is terminated with a 42k Polyethylene glycol chain (PEG), aminoethylene-repeating groups (two, three, and four units, respectively) were conjugated to side-chains to promote electrostatic interactions with mRNA. This structural configuration would ultimately condense into a polyplex nanomicelle ranging between 24 and 34 nm, as was confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) while the chemistry of the synthesis was validated through NMR analysis. Subsequently, we hypothesized an important correlation pertaining to the role of hydrogen bonding between the interaction of polyamine and mRNA in due course. As a proof of concept, we encapsulated the luciferase (Luc2) mRNA as a reporter gene through in vitro transcription (IVT) and subsequently infused the polyplex nanomicelles into mouse brains via an intracerebroventricular (ICV) injection to bypass the blood–brain barriers (BBB). Data revealed that PEGylated polyplex nanomicelles possessing four repeating units of aminoethylene groups had exhibited the best Luc2 mRNA delivery efficiency with no significant immune response registered.
Collapse
Affiliation(s)
- Long Yi Chan
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Tsuzuki Institute for Traditional Medicine, Collage of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
28
|
Cao J, Wang C, Guo L, Xiao Z, Liu K, Yan H. Co-administration of a charge-conversional dendrimer enhances antitumor efficacy of conventional chemotherapy. Eur J Pharm Biopharm 2018; 127:371-377. [DOI: 10.1016/j.ejpb.2018.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 01/14/2023]
|
29
|
Yang L, Wang X, Suchyta DJ, Schoenfisch MH. Antibacterial Activity of Nitric Oxide-Releasing Hyperbranched Polyamidoamines. Bioconjug Chem 2018; 29:35-43. [PMID: 29243926 PMCID: PMC6773256 DOI: 10.1021/acs.bioconjchem.7b00537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperbranched polyamidoamines (h-PAMAM) were prepared using a one-pot reaction to have similar molecular weight to third generation PAMAM (G3-PAMAM) dendrimers, and then functionalized with N-diazeniumdiolate nitric oxide (NO) donors. A wide range of NO storage capacities (∼1-2.50 μmol mg-1) and NO-release kinetics (t1/2 ∼30-80 min) were achieved by changing the extent of propylene oxide (PO) modification. The therapeutic potential of these materials was evaluated by studying their antibacterial activities and toxicity against common dental pathogens and human gingival fibroblast cells, respectively. Our results indicate that the combination of NO release and PO modification is necessary to yield h-PAMAM materials with efficient bactericidal action without eliciting unwarranted cytotoxicity. Of importance, NO-releasing PO-modified h-PAMAM polymers exhibited comparable biological properties (i.e., antibacterial action and cytotoxicity) to defect-free G3-PAMAM dendrimers, but at a substantially lower synthetic burden.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Xingzhi Wang
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Dakota J. Suchyta
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina – Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
30
|
Hu B, Pei F, Sun X, Liang Y, He Z, Zhang L, Li J. Fabrication of supramolecular hyperbranched polyamidoamine–dextran conjugates and their self-assembly in the presence of EGCG. NEW J CHEM 2018. [DOI: 10.1039/c8nj04162h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular hyperbranched conjugate, HPAM–Dex, was prepared and it could self-assemble into size-controllable micelles in the presence of EGCG.
Collapse
Affiliation(s)
- Bingshen Hu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Fanfan Pei
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Xiaoyi Sun
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Yuqing Liang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Zhiyong He
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Lili Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Juan Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| |
Collapse
|
31
|
Amariei G, Santiago-Morales J, Boltes K, Letón P, Iriepa I, Moraleda I, Fernández-Alba AR, Rosal R. Dendrimer-functionalized electrospun nanofibres as dual-action water treatment membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:732-740. [PMID: 28577408 DOI: 10.1016/j.scitotenv.2017.05.243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
This work reports the preparation of composite electrospun membranes combining antimicrobial action with the capacity of retaining low-molecular weight non-polar pollutants. The membranes were electrospun blends of polyvinyl alcohol (PVA) and poly(acrylic acid) (PAA) stabilized using heat curing. The membranes were functionalized by grafting amino-terminated poly(amidoamine) (PAMAM) G3 dendrimers. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form new colonies and their metabolic impairment upon contact with membranes. The antimicrobial activity was particularly high to the gram-positive bacterium S. aureus with a 3-log reduction in their capacity to colonize dendrimer-functionalized membranes with respect to neat PVA/PAA fibers. The effect to gram-positive bacteria was attributed to the interaction of dendrimers with the negatively charged bacterial membranes and resulted in membranes essentially free of bacterial colonization after 20h in contact with cultures at 36°C. The adsorption of toluene on PAA/PVA fibers and on dendrimer-functionalized membranes was assayed using toluene over a broad concentration range. The host-guest encapsulation of toluene inside dendrimer molecules was computed through docking studies, which allowed calculating a maximum capacity of 14 molecules of toluene per molecule of PAMAM G3. The theoretical prediction was in good agreement with the experimental capacity at the higher concentrations assayed.
Collapse
Affiliation(s)
- Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Javier Santiago-Morales
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Karina Boltes
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Pedro Letón
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Isabel Iriepa
- Department of Organic Chemistry and Inorganic Chemistry, School of Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Ignacio Moraleda
- Department of Organic Chemistry and Inorganic Chemistry, School of Biology, Environmental Sciences and Chemistry, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Amadeo R Fernández-Alba
- Department of Analytical Chemistry, Agrifood Campus of International Excellence (ceiA3), European Union Reference Laboratory for Pesticide Residues in Fruit & Vegetables, University of Almeria, E-04010 Almería, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
32
|
Elkin I, Banquy X, Barrett CJ, Hildgen P. Non-covalent formulation of active principles with dendrimers: Current state-of-the-art and prospects for further development. J Control Release 2017; 264:288-305. [DOI: 10.1016/j.jconrel.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022]
|
33
|
Aluani D, Tzankova V, Kondeva-Burdina M, Yordanov Y, Nikolova E, Odzhakov F, Apostolov A, Markova T, Yoncheva K. Еvaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 2017; 103:771-782. [DOI: 10.1016/j.ijbiomac.2017.05.062] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/12/2017] [Accepted: 05/13/2017] [Indexed: 01/05/2023]
|
34
|
Naz S, Shahzad H, Ali A, Zia M. Nanomaterials as nanocarriers: a critical assessment why these are multi-chore vanquisher in breast cancer treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:899-916. [PMID: 28914553 DOI: 10.1080/21691401.2017.1375937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Breast cancer is a group of diseases with various subtypes and leads to high mortality throughout the globe. Various conventional techniques are in practice to cure breast cancer but these techniques are linked with various shortcomings. Mostly these treatments are not site directed and cause toxicity towards normal cells. In order to overcome these issues, we need smart system that can deliver anticancer drugs to specific sites. Targeted drug delivery can be achieved via passive or active drug delivery using nanocarriers. This mode of drug delivery is more effective against breast cancer and may help in the reduction of mortality rate. Potentially used nanocarriers for targeted drug delivery belong to organic and inorganic molecules. Various FDA approved nano products are in use to cure breast cancer. However, body's defense system is main limitation for potential use of nano systems. However, this can be overcome by surface modification of nanocarriers. In this review, breast cancer and its types, targeted drug delivery and nanocarriers used to cure breast cancer are discussed. By progressing nanotechnology, we will be able to fight against this life threatening issue and serve the humanity, which is the basic aim of scientific knowledge.
Collapse
Affiliation(s)
- Sania Naz
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Hira Shahzad
- b Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture , Rawalpindi , Pakistan
| | - Attarad Ali
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muhammad Zia
- a Department of Biotechnology , Quaid-i-Azam University , Islamabad , Pakistan
| |
Collapse
|
35
|
Chen J, Banaszak Holl MM. Dendrimer and dendrimer–conjugate protein complexes and protein coronas. CAN J CHEM 2017. [DOI: 10.1139/cjc-2017-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dendrimers and dendrimer conjugates are widely employed for biological applications such as bio-imaging and drug delivery. Understanding the interaction between dendrimers and their biological environment is key to evaluating the efficacy and safety of these materials. Proteins can form an adsorbed layer, termed a “protein corona”, on dendrimers in either a non-specific or specific fashion. A tight-binding, non-exchangeable corona is defined as a “hard” corona, whereas a loosely bound, highly exchangeable corona is called a “soft” corona. Recent research indicates that small molecules conjugated to the polymer surface can induce protein structural change, leading to tighter protein–dendrimer binding and further protein aggregation. This “triggered” corona formation on dendrimer and dendrimer conjugates is reviewed and discussed along with the existing hard or soft corona model. This review describes the triggered corona model to further the understanding of protein corona formation.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. New Modalities for Challenging Targets in Drug Discovery. Angew Chem Int Ed Engl 2017; 56:10294-10323. [PMID: 28186380 DOI: 10.1002/anie.201611914] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Indexed: 12/11/2022]
Abstract
Our ever-increasing understanding of biological systems is providing a range of exciting novel biological targets, whose modulation may enable novel therapeutic options for many diseases. These targets include protein-protein and protein-nucleic acid interactions, which are, however, often refractory to classical small-molecule approaches. Other types of molecules, or modalities, are therefore required to address these targets, which has led several academic research groups and pharmaceutical companies to increasingly use the concept of so-called "new modalities". This Review defines for the first time the scope of this term, which includes novel peptidic scaffolds, oligonucleotides, hybrids, molecular conjugates, as well as new uses of classical small molecules. We provide the most representative examples of these modalities to target large binding surface areas such as those found in protein-protein interactions and for biological processes at the center of cell regulation.
Collapse
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Stéphanie M Guéret
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden.,AstraZeneca MPI Satellite Unit, Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Germany
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany.,Department of Chemistry & Pharmaceutical Sciences, VU University Amsterdam, The Netherlands
| | - Alleyn T Plowright
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| |
Collapse
|
37
|
Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611914] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Valeur
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Stéphanie M. Guéret
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Hélène Adihou
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Ranganath Gopalakrishnan
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
- AstraZeneca MPI Satellite Unit; Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
| | - Malin Lemurell
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| | - Herbert Waldmann
- Abteilung Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Dortmund Deutschland
- Fakultät für Chemie and Chemische Biologie; Technische Universität Dortmund; Deutschland
| | - Tom N. Grossmann
- Chemical Genomics Centre der Max-Planck-Gesellschaft; Dortmund Deutschland
- Department of Chemistry & Pharmaceutical Sciences; VU University Amsterdam; Niederlande
| | - Alleyn T. Plowright
- Cardiovascular and Metabolic Diseases; Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Pepparedsleden 1 Mölndal 431 83 Schweden
| |
Collapse
|
38
|
Joseph M, Trinh HM, Cholkar K, Pal D, Mitra AK. Recent perspectives on the delivery of biologics to back of the eye. Expert Opin Drug Deliv 2017; 14:631-645. [PMID: 27573097 PMCID: PMC5570518 DOI: 10.1080/17425247.2016.1227783] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Biologics are generally macromolecules, large in size with poor stability in biological environments. Delivery of biologics to tissues at the back of the eye remains a challenge. To overcome these challenges and treat posterior ocular diseases, several novel approaches have been developed. Nanotechnology-based delivery systems, like drug encapsulation technology, macromolecule implants and gene delivery are under investigation. We provide an overview of emerging technologies for biologics delivery to back of the eye tissues. Moreover, new biologic drugs currently in clinical trials for ocular neovascular diseases have been discussed. Areas covered: Anatomy of the eye, posterior segment disease and diagnosis, barriers to biologic delivery, ocular pharmacokinetic, novel biologic delivery system Expert opinion: Anti-VEGF therapy represents a significant advance in developing biologics for the treatment of ocular neovascular diseases. Various strategies for biologic delivery to posterior ocular tissues are under development with some in early or late stages of clinical trials. Despite significant progress in the delivery of biologics, there is unmet need to develop sustained delivery of biologics with nearly zero-order release kinetics to the back of the eye tissues. In addition, elevated intraocular pressure associated with frequent intravitreal injections of macromolecules is another concern that needs to be addressed.
Collapse
Affiliation(s)
- Mary Joseph
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Hoang M. Trinh
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Kishore Cholkar
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
- RiconPharma LLC, 100 Ford Road, Suite 9, Denville, NJ, 07834 USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| | - Ashim K. Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, 5258 Health Science Building, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108 USA
| |
Collapse
|
39
|
Hlídková H, Kotelnikov I, Pop-Georgievski O, Proks V, Horák D. Antifouling Peptide Dendrimer Surface of Monodisperse Magnetic Poly(glycidyl methacrylate) Microspheres. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02545] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Helena Hlídková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Ilyia Kotelnikov
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Vladimír Proks
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
40
|
Luong D, Kesharwani P, Deshmukh R, Mohd Amin MCI, Gupta U, Greish K, Iyer AK. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater 2016; 43:14-29. [PMID: 27422195 DOI: 10.1016/j.actbio.2016.07.015] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/27/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED Poly(amidoamine) dendrimers (PAMAM) are well-defined, highly branched, nanoscale macromolecules with numerous active amine groups on the surface. PAMAM dendrimer can enhance the solubility of hydrophobic drugs, and with numerous reactive groups on the surface PAMAM dendrimer can be engineered with various functional groups for specific targeting ability. However, in physiological conditions, these amine groups are toxic to cells and limit the application of PAMAM. In the recent years, polyethylene glycol (PEG) conjugation has been the most widely used approach to reduce the toxicity of the active group on dendrimer surface. PEG molecules are known to be inert, non-immunogenic, and non-antigenic with a significant water solubility. PEGylated PAMAM-mediated delivery could not only overcome the limitations of dendrimer such as drug leakage, immunogenicity, hemolytic toxicity, systemic cytotoxicity but they also have the ability to enhance the solubilization of hydrophobic drugs and facilitates the potential for DNA transfection, siRNA delivery and tumor targeting. This review focuses on the recent developments on the application and influence of PEGylation on various biopharmaceutical properties of PAMAM dendrimers. STATEMENT OF SIGNIFICANCE It is well established that dendrimers have demonstrated promising potentials for drug delivery. However, the inherent toxicity poses challenges for its clinical translation. In this regard, PEGylation has helped mitigate some of the toxicity concerns of dendrimers and have paved the way forward for testing its translational potentials. The review is a collection of articles demonstrating the utility of PEGylation of the most studied PAMAM dendrimers. To our knowledge, this is a first such attempt to draw reader's attention, specifically, towards PEGylated PAMAM dendrimers.
Collapse
Affiliation(s)
- Duy Luong
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz 50300, Kuala Lumpur, Malaysia
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer 305801, India
| | - Khaled Greish
- Aljawhara Center for Molecular Medicine, Arabian Gulf University, Bahrain
| | - Arun K Iyer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
41
|
Nanoformulation strategies for the enhanced oral bioavailability of antiretroviral therapeutics. Ther Deliv 2016; 6:469-90. [PMID: 25996045 DOI: 10.4155/tde.15.4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The oral delivery of drugs with poor aqueous solubility is challenging and often results in poor bioavailability. Various nanoformulation platforms have demonstrated improved oral bioavailability of a range of drugs for different indications. The focus of this review is to provide an overview of the application of nanomedicine to oral antiretroviral therapy and outline how the current short-falls of this life-long therapy may be resolved using nanotechnology. As well as highlighting the rationale for a nanomedicine-based approach, the review focuses on the various strategies used to enhance oral bioavailability and describes the mechanisms of particle absorption across the GI tract. The recent advances in the development of long-acting formulations for both HIV treatment and pre-exposure prophylaxis are also discussed.
Collapse
|
42
|
Hsu H, Bugno J, Lee S, Hong S. Dendrimer‐based nanocarriers: a versatile platform for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1409] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hao‐Jui Hsu
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Jason Bugno
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seung‐ri Lee
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
| | - Seungpyo Hong
- Department of Biopharmaceutical Sciences, College of PharmacyUniversity of IllinoisChicagoILUSA
- Department of Integrated OMICs for Biomedical Science and Underwood International CollegeYonsei UniversitySeoulKorea
| |
Collapse
|
43
|
Tripathi SK, Ahmadi Z, Gupta KC, Kumar P. Polyethylenimine-polyacrylic acid nanocomposites: Type of bonding does influence the gene transfer efficacy and cytotoxicity. Colloids Surf B Biointerfaces 2016; 140:117-120. [DOI: 10.1016/j.colsurfb.2015.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/10/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022]
|
44
|
Wan J, Alewood PF. Peptide-Decorated Dendrimers and Their Bioapplications. Angew Chem Int Ed Engl 2016; 55:5124-34. [DOI: 10.1002/anie.201508428] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/01/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Jingjing Wan
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| | - Paul F. Alewood
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australia
| |
Collapse
|
45
|
Wan J, Alewood PF. Mit Peptiden dekorierte Dendrimere und ihre biotechnologische Nutzung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Jingjing Wan
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australien
| | - Paul F. Alewood
- Institute of Molecular Bioscience; The University of Queensland; 306 Carmody Road St Lucia QLD 4072 Australien
| |
Collapse
|
46
|
Mishra V, Kesharwani P. Dendrimer technologies for brain tumor. Drug Discov Today 2016; 21:766-78. [PMID: 26891979 DOI: 10.1016/j.drudis.2016.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/21/2016] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Despite low prevalence, brain tumors are one of the most lethal forms of cancer. Unfortunately the blood-brain barrier (BBB), a highly regulated, well coordinated and efficient barrier, checks the permeation of most of the drugs across it. Hence, crossing this barrier is one of the most significant challenges in the development of efficient central nervous system therapeutics. Surface-engineered dendrimers improve biocompatibility, drug-release kinetics and aptitude to target the BBB and/or tumors and facilitate transportation of anticancer bioactives across the BBB. This review sheds light on different aspects of brain tumors and dendrimers based on different approaches for treatment including recent research, opportunities and challenges encountered in development of novel and efficient dendrimer-based therapeutics for the treatment of brain tumors.
Collapse
Affiliation(s)
- Vijay Mishra
- Pharmaceutical Nanotechnology Research Laboratory, Adina Institute of Pharmaceutical Sciences, Sagar, M.P. 470002, India
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
47
|
Lee GJ, Ryu K, Kim K, Choi JY, Kim TI. Crosslinked Polypropylenimine Dendrimers With Bioreducible Linkages for Gene Delivery Systems and Their Reductive Degradation Behaviors. Macromol Biosci 2015; 15:1595-604. [DOI: 10.1002/mabi.201500141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/03/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Gyeong Jin Lee
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Kitae Ryu
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Kyunghwan Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Ji-yeong Choi
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| | - Tae-il Kim
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
- Research Institute of Agriculture and Life Sciences; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 151-921 Republic of Korea
| |
Collapse
|
48
|
Russier J, Grillaud M, Bianco A. Elucidation of the Cellular Uptake Mechanisms of Polycationic HYDRAmers. Bioconjug Chem 2015; 26:1484-93. [DOI: 10.1021/acs.bioconjchem.5b00270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Julie Russier
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique, 67000 Strasbourg, France
| | - Maxime Grillaud
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique, 67000 Strasbourg, France
| | - Alberto Bianco
- CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique, 67000 Strasbourg, France
| |
Collapse
|
49
|
Dendrimer generational nomenclature: the need to harmonize. Drug Discov Today 2015; 20:497-9. [DOI: 10.1016/j.drudis.2014.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 11/16/2022]
|
50
|
Worley BV, Schilly KM, Schoenfisch MH. Anti-Biofilm Efficacy of Dual-Action Nitric Oxide-Releasing Alkyl Chain Modified Poly(amidoamine) Dendrimers. Mol Pharm 2015; 12:1573-83. [PMID: 25873449 DOI: 10.1021/acs.molpharmaceut.5b00006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herein, we describe the synthesis of nitric oxide (NO)-releasing alkyl chain modified poly(amidoamine) (PAMAM) dendrimers of various sizes (i.e., generations). Generation 1 (G1) through generation 4 (G4) dendrimers were modified with either short (i.e., butyl) or medium (i.e., hexyl) alkyl chains via a ring-opening reaction. The resulting secondary amines were subsequently modified with N-diazeniumdiolate NO donors to establish NO payloads of ∼1.0 μmol/mg. The bactericidal efficacy of these dendrimers was evaluated against Gram-negative and Gram-positive biofilms, including antibiotic-resistant strains. The anti-biofilm action of the dendrimer biocides was found to be dependent on dendrimer generation, bacterial Gram class, and alkyl chain length, with the most effective biofilm eradication occurring when antibacterial agents were capable of efficient biofilm infiltration. The addition of NO release markedly enhanced anti-biofilm activity of dendrimers incapable of effective biofilm penetration.
Collapse
Affiliation(s)
- Brittany V Worley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kelci M Schilly
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|