1
|
Kwan GT, Andrade LR, Prime KJ, Tresguerres M. Immunohistochemical and ultrastructural characterization of the inner ear epithelial cells of splitnose rockfish ( Sebastes diploproa). Am J Physiol Regul Integr Comp Physiol 2024; 326:R277-R296. [PMID: 38189166 DOI: 10.1152/ajpregu.00223.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
The inner ear of teleost fish regulates the ionic and acid-base chemistry and secretes protein matrix into the endolymph to facilitate otolith biomineralization, which is used to maintain vestibular and auditory functions. The otolith is biomineralized in a concentric ring pattern corresponding to seasonal growth, and this calcium carbonate (CaCO3) polycrystal has become a vital aging and life-history tool for fishery managers, ecologists, and conservation biologists. Moreover, biomineralization patterns are sensitive to environmental variability including climate change, thereby threatening the accuracy and relevance of otolith-reliant toolkits. However, the cellular biology of the inner ear is poorly characterized, which is a hurdle for a mechanistic understanding of the underlying processes. This study provides a systematic characterization of the cell types in the inner ear of splitnose rockfish (Sebastes diploproa). Scanning electron microscopy revealed the apical morphologies of six inner ear cell types. In addition, immunostaining and confocal microscopy characterized the expression and subcellular localization of the proteins Na+-K+-ATPase, carbonic anhydrase, V-type H+-ATPase, Na+-K+-2Cl--cotransporter, otolith matrix protein 1, and otolin-1 in six inner ear cell types bordering the endolymph. This fundamental cytological characterization of the rockfish inner ear epithelium illustrates the intricate physiological processes involved in otolith biomineralization and highlights how greater mechanistic understanding is necessary to predict their multistressor responses to future climate change.
Collapse
Affiliation(s)
- Garfield T Kwan
- Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California, United States
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States
| | - Kaelan J Prime
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
2
|
Kalka M, Bielak K, Ptak M, Stolarski J, Dobryszycki P, Wojtas M. Calcium carbonate polymorph selection in fish otoliths: A key role of phosphorylation of Starmaker-like protein. Acta Biomater 2024; 174:437-446. [PMID: 38061675 DOI: 10.1016/j.actbio.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Fish otoliths are calcium carbonate biominerals found in the inner ear commonly used for tracking fish biochronologies and as a model system for biomineralization. The process of fish otolith formation is biologically controlled by numerous biomacromolecules which not only affect crystal size, shape, mechanical properties, but also selection of calcium carbonate polymorph (e.g., aragonite, vaterite). The proteinaceous control over calcium carbonate polymorph selection occurs in many other species (e.g., corals, mollusks, echinoderms) but the exact mechanism of protein interactions with calcium and carbonate ions - constituents of CaCO3 - are not fully elucidated. Herein, we focus on a native Starmaker-like protein isolated from vaterite asteriscus otoliths from Cyprinus carpio. The proteomic studies show the presence of the phosphorylated protein in vaterite otoliths. In a series of in vitro mineralization experiments with Starmaker-like, we show that native phosphorylation is a crucial determinant for the selection of a crystal's polymorphic form. This is the first report showing that the switch in calcium carbonate phase depends on the phosphorylation pattern of a single isolated protein. STATEMENT OF SIGNIFICANCE: Calcium carbonate has numerous applications in industry and medicine. However, we still do not understand the mechanism of biologically driven polymorph selection which results in specific biomineral properties. Previous work on calcium carbonate biominerals showed that either several macromolecular factors or high magnesium concentration (non-physiological) are required for proper polymorph selection (e.g., in mollusk shells, corals and otoliths). In this work, we showed for the first time that protein phosphorylation is a crucial factor for controlling the calcium carbonate crystal phase. This is important because a single protein from the otolith organic matrix could switch between polymorphs depending on the phosphorylation level. It seems that protein post-translational modifications (native, not artificial) are more important for biomolecular control of crystal growth than previously considered.
Collapse
Affiliation(s)
- Marta Kalka
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Klaudia Bielak
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| | | | - Piotr Dobryszycki
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Magdalena Wojtas
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland.
| |
Collapse
|
3
|
Białobrzewski MK, Klepka BP, Michaś A, Cieplak-Rotowska MK, Staszałek Z, Niedźwiecka A. Diversity of hydrodynamic radii of intrinsically disordered proteins. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:607-618. [PMID: 37831084 PMCID: PMC10618399 DOI: 10.1007/s00249-023-01683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Intrinsically disordered proteins (IDPs) form an important class of biomolecules regulating biological processes in higher organisms. The lack of a fixed spatial structure facilitates them to perform their regulatory functions and allows the efficiency of biochemical reactions to be controlled by temperature and the cellular environment. From the biophysical point of view, IDPs are biopolymers with a broad configuration state space and their actual conformation depends on non-covalent interactions of its amino acid side chain groups at given temperature and chemical conditions. Thus, the hydrodynamic radius (Rh) of an IDP of a given polymer length (N) is a sequence- and environment-dependent variable. We have reviewed the literature values of hydrodynamic radii of IDPs determined experimentally by SEC, AUC, PFG NMR, DLS, and FCS, and complement them with our FCS results obtained for a series of protein fragments involved in the regulation of human gene expression. The data collected herein show that the values of hydrodynamic radii of IDPs can span the full space between the folded globular and denatured proteins in the Rh(N) diagram.
Collapse
Affiliation(s)
- Michał K Białobrzewski
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Barbara P Klepka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Agnieszka Michaś
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Maja K Cieplak-Rotowska
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093, Warsaw, Poland
- The International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Flisa 6, PL-02247, Warsaw, Poland
| | - Zuzanna Staszałek
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland
| | - Anna Niedźwiecka
- Laboratory of Biological Physics, Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668, Warsaw, Poland.
| |
Collapse
|
4
|
Becker J, Peters JS, Crooks I, Helmi S, Synakewicz M, Schuler B, Kukura P. A Quantitative Description for Optical Mass Measurement of Single Biomolecules. ACS PHOTONICS 2023; 10:2699-2710. [PMID: 37602293 PMCID: PMC10436351 DOI: 10.1021/acsphotonics.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 08/22/2023]
Abstract
Label-free detection of single biomolecules in solution has been achieved using a variety of experimental approaches over the past decade. Yet, our understanding of the magnitude of the optical contrast and its relationship with the underlying atomic structure as well as the achievable measurement sensitivity and precision remain poorly defined. Here, we use a Fourier optics approach combined with an atomic structure-based molecular polarizability model to simulate mass photometry experiments from first principles. We find excellent agreement between several key experimentally determined parameters such as optical contrast-to-mass conversion, achievable mass accuracy, and molecular shape and orientation dependence. This allows us to determine detection sensitivity and measurement precision mostly independent of the optical detection approach chosen, resulting in a general framework for light-based single-molecule detection and quantification.
Collapse
Affiliation(s)
- Jan Becker
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Jack S. Peters
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Ivor Crooks
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Seham Helmi
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Marie Synakewicz
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Benjamin Schuler
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Department
of Physics, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Philipp Kukura
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Rd, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
5
|
First paleoproteome study of fossil fish otoliths and the pristine preservation of the biomineral crystal host. Sci Rep 2023; 13:3822. [PMID: 36882485 PMCID: PMC9992438 DOI: 10.1038/s41598-023-30537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Otoliths are calcium carbonate components of the stato-acoustical organ responsible for hearing and maintenance of the body balance in teleost fish. During their formation, control over, e.g., morphology and carbonate polymorph is influenced by complex insoluble collagen-like protein and soluble non-collagenous protein assemblages; many of these proteins are incorporated into their aragonite crystal structure. However, in the fossil record these proteins are considered lost through diagenetic processes, hampering studies of past biomineralization mechanisms. Here we report the presence of 11 fish-specific proteins (and several isoforms) in Miocene (ca. 14.8-14.6 Ma) phycid hake otoliths. These fossil otoliths were preserved in water-impermeable clays and exhibit microscopic and crystallographic features indistinguishable from modern representatives, consistent with an exceptionally pristine state of preservation. Indeed, these fossil otoliths retain ca. 10% of the proteins sequenced from modern counterparts, including proteins specific to inner ear development, such as otolin-1-like proteins involved in the arrangement of the otoliths into the sensory epithelium and otogelin/otogelin-like proteins that are located in the acellular membranes of the inner ear in modern fish. The specificity of these proteins excludes the possibility of external contamination. Identification of a fraction of identical proteins in modern and fossil phycid hake otoliths implies a highly conserved inner ear biomineralization process through time.
Collapse
|
6
|
Bielak K, Hołubowicz R, Zoglowek A, Żak A, Kędzierski P, Ożyhar A, Dobryszycki P. N'-terminal- and Ca 2+-induced stabilization of high-order oligomers of full-length Danio rerio and Homo sapiens otolin-1. Int J Biol Macromol 2022; 209:1032-1047. [PMID: 35447266 DOI: 10.1016/j.ijbiomac.2022.04.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023]
Abstract
Otolin-1 is a C1q family member and a major component of the organic matrix of fish otoliths and human otoconia. To date, the protein molecular properties have not been characterized. In this work, we describe biochemical characterization and comparative studies on saccular-specific otolin-1 derived from Danio rerio and Homo sapiens. Due to the low abundance of proteins in the otoconial matrix, we developed a production and purification method for both recombinant homologues of otolin-1. Danio rerio and Homo sapiens otolin-1 forms higher-order oligomers that can be partially disrupted under reducing conditions. The presence of Ca2+ stabilizes the oligomers and significantly increases the thermal stability of the proteins. Despite the high sequence coverage, the oligomerization of Danio rerio otolin-1 is more affected by the reducing conditions and presence of Ca2+ than the human homologue. The results show differences in molecular behaviour, which may be reflected in Danio rerio and Homo sapiens otolin-1 role in otolith and otoconia formation.
Collapse
Affiliation(s)
- Klaudia Bielak
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Rafał Hołubowicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Zoglowek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Paweł Kędzierski
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland.
| |
Collapse
|
7
|
Newcombe EA, Fernandes CB, Lundsgaard JE, Brakti I, Lindorff-Larsen K, Langkilde AE, Skriver K, Kragelund BB. Insight into Calcium-Binding Motifs of Intrinsically Disordered Proteins. Biomolecules 2021; 11:1173. [PMID: 34439840 PMCID: PMC8391695 DOI: 10.3390/biom11081173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/31/2021] [Accepted: 08/06/2021] [Indexed: 01/28/2023] Open
Abstract
Motifs within proteins help us categorize their functions. Intrinsically disordered proteins (IDPs) are rich in short linear motifs, conferring them many different roles. IDPs are also frequently highly charged and, therefore, likely to interact with ions. Canonical calcium-binding motifs, such as the EF-hand, often rely on the formation of stabilizing flanking helices, which are a key characteristic of folded proteins, but are absent in IDPs. In this study, we probe the existence of a calcium-binding motif relevant to IDPs. Upon screening several carefully selected IDPs using NMR spectroscopy supplemented with affinity quantification by colorimetric assays, we found calcium-binding motifs in IDPs which could be categorized into at least two groups-an Excalibur-like motif, sequentially similar to the EF-hand loop, and a condensed-charge motif carrying repetitive negative charges. The motifs show an affinity for calcium typically in the ~100 μM range relevant to regulatory functions and, while calcium binding to the condensed-charge motif had little effect on the overall compaction of the IDP chain, calcium binding to Excalibur-like motifs resulted in changes in compaction. Thus, calcium binding to IDPs may serve various structural and functional roles that have previously been underreported.
Collapse
Affiliation(s)
- Estella A. Newcombe
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen, Denmark; (E.A.N.); (C.B.F.); (J.E.L.); (I.B.); (K.L.-L.); (K.S.)
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
| | - Catarina B. Fernandes
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen, Denmark; (E.A.N.); (C.B.F.); (J.E.L.); (I.B.); (K.L.-L.); (K.S.)
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Jeppe E. Lundsgaard
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen, Denmark; (E.A.N.); (C.B.F.); (J.E.L.); (I.B.); (K.L.-L.); (K.S.)
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Inna Brakti
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen, Denmark; (E.A.N.); (C.B.F.); (J.E.L.); (I.B.); (K.L.-L.); (K.S.)
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen, Denmark; (E.A.N.); (C.B.F.); (J.E.L.); (I.B.); (K.L.-L.); (K.S.)
| | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
| | - Karen Skriver
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen, Denmark; (E.A.N.); (C.B.F.); (J.E.L.); (I.B.); (K.L.-L.); (K.S.)
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| | - Birthe B. Kragelund
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, 2200 Copenhagen, Denmark; (E.A.N.); (C.B.F.); (J.E.L.); (I.B.); (K.L.-L.); (K.S.)
- REPIN, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Kalka M, Markiewicz N, Ptak M, Sone ED, Ożyhar A, Dobryszycki P, Wojtas M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization. FASEB J 2019; 33:6877-6886. [PMID: 30840836 DOI: 10.1096/fj.201802268r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Otoliths are one of the biominerals whose formation is highly controlled by proteins. The first protein discovered to be involved in otolith biomineralization in zebrafish was starmaker (Stm). Previously, Stm was shown to be responsible for the preferential formation of aragonite, a polymorph of calcium carbonate, in otoliths. In this work, proteomic analysis of adult zebrafish otoliths was performed. Stm is the only highly phosphorylated protein found in our studies. Besides previously studied otolith proteins, we discovered several dozens of unknown proteins that reveal the likely mechanism of biomineralization. A comparison of aragonite and vaterite otoliths showed similarities in protein composition. We observed the presence of Stm in both types of otoliths. In vitro studies of 2 characteristic Stm fragments indicated that the DS-rich region has a special biomineralization activity, especially after phosphorylation.-Kalka, M., Markiewicz, N., Ptak, M., Sone, E. D., Ożyhar, A., Dobryszycki, P., Wojtas, M. In vivo and in vitro analysis of starmaker activity in zebrafish otolith biomineralization.
Collapse
Affiliation(s)
- Marta Kalka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Natalia Markiewicz
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland; and
| | - Eli D Sone
- Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, and.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Piotr Dobryszycki
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland.,Department of Materials Science and Engineering, Institute of Biomaterials and Biomedical Engineering, and.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Thomas ORB, Swearer SE, Kapp EA, Peng P, Tonkin‐Hill GQ, Papenfuss A, Roberts A, Bernard P, Roberts BR. The inner ear proteome of fish. FEBS J 2018; 286:66-81. [DOI: 10.1111/febs.14715] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/30/2018] [Accepted: 12/03/2018] [Indexed: 01/28/2023]
Affiliation(s)
| | - Stephen E. Swearer
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Eugene A. Kapp
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia
| | - Po Peng
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Gerry Q. Tonkin‐Hill
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia
| | - Anthony Papenfuss
- The Walter and Eliza Hall Institute of Medical Research Parkville Vic. Australia
| | - Anne Roberts
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
| | - Pascal Bernard
- School of BioSciences The University of Melbourne Parkville Vic. Australia
| | - Blaine R. Roberts
- The Florey Institute of Neuroscience and Mental Health The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
10
|
Schulz-Mirbach T, Ladich F, Plath M, Heß M. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol Rev Camb Philos Soc 2018; 94:457-482. [DOI: 10.1111/brv.12463] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tanja Schulz-Mirbach
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| | - Friedrich Ladich
- Department of Behavioural Biology; University of Vienna; Althanstrasse 14, 1090 Vienna Austria
| | - Martin Plath
- College of Animal Science & Technology; Northwest A&F University; 22 Xinong Road, Yangling Shaanxi China
| | - Martin Heß
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| |
Collapse
|
11
|
Calcium-Binding Proteins with Disordered Structure and Their Role in Secretion, Storage, and Cellular Signaling. Biomolecules 2018; 8:biom8020042. [PMID: 29921816 PMCID: PMC6022996 DOI: 10.3390/biom8020042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
Calcium is one of the most important second messengers and its intracellular signaling regulates many aspects of cell physiology. Calcium ions, like phosphate ions, are highly charged and thus are able to alter protein conformation upon binding; thereby they constitute key factors in signal transduction. One of the most common calcium-binding structural motifs is the EF-hand, a well-defined helix-loop-helix structural domain, present in many calcium-binding proteins (CBPs). Nonetheless, some CBPs contain non-canonical, disordered motifs, which usually bind calcium with high capacity and low affinity, and which represent a subset of proteins with specific functions, but these functions rarely involve signaling. When compared with phosphorylation-mediated signal transduction, the role of intrinsic disorder in calcium signaling is significantly less prominent and not direct. The list of known examples of intrinsically disordered CBPs is relatively short and the disorder in these examples seems to be linked to secretion and storage. Calcium-sensitive phosphatase calcineurin is an exception, but it represents an example of transient disorder, which is, nevertheless, vital to the functioning of this protein. The underlying reason for the different role of disordered proteins in the two main cellular signaling systems appears to be linked to the gradient of calcium concentration, present in all living cells.
Collapse
|
12
|
Poznar M, Hołubowicz R, Wojtas M, Gapiński J, Banachowicz E, Patkowski A, Ożyhar A, Dobryszycki P. Structural properties of the intrinsically disordered, multiple calcium ion-binding otolith matrix macromolecule-64 (OMM-64). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1358-1371. [PMID: 28866388 DOI: 10.1016/j.bbapap.2017.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/28/2017] [Indexed: 01/28/2023]
Abstract
Fish otoliths are calcium carbonate biominerals that are involved in hearing and balance sensing. An organic matrix plays a crucial role in their formation. Otolith matrix macromolecule-64 (OMM-64) is a highly acidic, calcium-binding protein (CBP) found in rainbow trout otoliths. It is a component of high-molecular-weight aggregates, which influence the size, shape and polymorph of calcium carbonate in vitro. In this study, a protocol for the efficient expression and purification of OMM-64 was developed. For the first time, the complete structural characteristics of OMM-64 were described. Various biophysical methods were combined to show that OMM-64 occurs as an intrinsically disordered monomer. Under denaturing conditions (pH, temperature) OMM-64 exhibits folding propensity. It was determined that OMM-64 binds approximately 61 calcium ions with millimolar affinity. The folding-unfolding experiments showed that calcium ions induced the collapse of OMM-64. The effect of other counter ions present in trout endolymph on OMM-64 conformational changes was studied. The significance of disordered properties of OMM-64 and the possible function of this protein is discussed.
Collapse
Affiliation(s)
- Monika Poznar
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Hołubowicz
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Wojtas
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jacek Gapiński
- A. Mickiewicz University, Faculty of Physics, Molecular Biophysics Division, Umultowska 85, 61-614, Poznań, Poland
| | - Ewa Banachowicz
- A. Mickiewicz University, Faculty of Physics, Molecular Biophysics Division, Umultowska 85, 61-614, Poznań, Poland
| | - Adam Patkowski
- A. Mickiewicz University, Faculty of Physics, Molecular Biophysics Division, Umultowska 85, 61-614, Poznań, Poland
| | - Andrzej Ożyhar
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Piotr Dobryszycki
- Wrocław University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
13
|
Loewen TN, Carriere B, Reist JD, Halden NM, Anderson WG. Linking physiology and biomineralization processes to ecological inferences on the life history of fishes. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:123-140. [PMID: 27328377 DOI: 10.1016/j.cbpa.2016.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/07/2023]
Abstract
Biomineral chemistry is frequently used to infer life history events and habitat use in fishes; however, significant gaps remain in our understanding of the underlying mechanisms. Here we have taken a multidisciplinary approach to review the current understanding of element incorporation into biomineralized structures in fishes. Biominerals are primarily composed of calcium-based derivatives such as calcium carbonate found in otoliths and calcium phosphates found in scales, fins and bones. By focusing on non-essential life elements (strontium and barium) and essential life elements (calcium, zinc and magnesium), we attempt to connect several fields of study to synergise how physiology may influence biomineralization and subsequent inference of life history. Data provided in this review indicate that the presence of non-essential elements in biominerals of fish is driven primarily by hypo- and hyper-calcemic environmental conditions. The uptake kinetics between environmental calcium and its competing mimics define what is ultimately incorporated in the biomineral structure. Conversely, circannual hormonally driven variations likely influence essential life elements like zinc that are known to associate with enzyme function. Environmental temperature and pH as well as uptake kinetics for strontium and barium isotopes demonstrate the role of mass fractionation in isotope selection for uptake into fish bony structures. In consideration of calcium mobilisation, the action of osteoclast-like cells on calcium phosphates of scales, fins and bones likely plays a role in fractionation along with transport kinetics. Additional investigations into calcium mobilisation are warranted to understand differing views of strontium, and barium isotope fractionation between calcium phosphates and calcium carbonate structures in fishes.
Collapse
Affiliation(s)
- T N Loewen
- Interdisciplinary Studies (Geological Sciences), University of Manitoba, Winnipeg, MB, Canada; Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada.
| | - B Carriere
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - J D Reist
- Freshwater Institute, Fisheries & Oceans, Winnipeg, MB, Canada
| | - N M Halden
- Geological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - W G Anderson
- Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
14
|
Wojtas M, Hołubowicz R, Poznar M, Maciejewska M, Ożyhar A, Dobryszycki P. Calcium ion binding properties and the effect of phosphorylation on the intrinsically disordered Starmaker protein. Biochemistry 2015; 54:6525-34. [PMID: 26445027 DOI: 10.1021/acs.biochem.5b00933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Starmaker (Stm) is an intrinsically disordered protein (IDP) involved in otolith biomineralization in Danio rerio. Stm controls calcium carbonate crystal formation in vivo and in vitro. Phosphorylation of Stm affects its biomineralization properties. This study examined the effects of calcium ions and phosphorylation on the structure of Stm. We have shown that CK2 kinase phosphorylates 25 or 26 residues in Stm. Furthermore, we have demonstrated that Stm's affinity for calcium binding is dependent on its phosphorylation state. Phosphorylated Stm (StmP) has an estimated 30 ± 1 calcium binding sites per protein molecule with a dissociation constant (KD) of 61 ± 4 μM, while the unphosphorylated protein has 28 ± 3 sites and a KD of 210 ± 22 μM. Calcium ion binding induces a compaction of the Stm molecule, causing a significant decrease in its hydrodynamic radius and the formation of a secondary structure. The screening effect of Na(+) ions on calcium binding was also observed. Analysis of the hydrodynamic properties of Stm and StmP showed that Stm and StmP molecules adopt the structure of native coil-like proteins.
Collapse
Affiliation(s)
- Magdalena Wojtas
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Hołubowicz
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Monika Poznar
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marta Maciejewska
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Piotr Dobryszycki
- Wrocław University of Technology , Faculty of Chemistry, Department of Biochemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
15
|
Różycka M, Wojtas M, Jakób M, Stigloher C, Grzeszkowiak M, Mazur M, Ożyhar A. Intrinsically disordered and pliable Starmaker-like protein from medaka (Oryzias latipes) controls the formation of calcium carbonate crystals. PLoS One 2014; 9:e114308. [PMID: 25490041 PMCID: PMC4260845 DOI: 10.1371/journal.pone.0114308] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/07/2014] [Indexed: 01/31/2023] Open
Abstract
Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed.
Collapse
Affiliation(s)
- Mirosława Różycka
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Michał Jakób
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Christian Stigloher
- Division of Electron Microscopy, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mikołaj Grzeszkowiak
- NanoBioMedical Centre and Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
| | - Maciej Mazur
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
- * E-mail:
| |
Collapse
|
16
|
Schad E, Kalmar L, Tompa P. Exon-phase symmetry and intrinsic structural disorder promote modular evolution in the human genome. Nucleic Acids Res 2013; 41:4409-22. [PMID: 23460204 PMCID: PMC3632108 DOI: 10.1093/nar/gkt110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A key signature of module exchange in the genome is phase symmetry of exons, suggestive of exon shuffling events that occurred without disrupting translation reading frame. At the protein level, intrinsic structural disorder may be another key element because disordered regions often serve as functional elements that can be effectively integrated into a protein structure. Therefore, we asked whether exon-phase symmetry in the human genome and structural disorder in the human proteome are connected, signalling such evolutionary mechanisms in the assembly of multi-exon genes. We found an elevated level of structural disorder of regions encoded by symmetric exons and a preferred symmetry of exons encoding for mostly disordered regions (>70% predicted disorder). Alternatively spliced symmetric exons tend to correspond to the most disordered regions. The genes of mostly disordered proteins (>70% predicted disorder) tend to be assembled from symmetric exons, which often arise by internal tandem duplications. Preponderance of certain types of short motifs (e.g. SH3-binding motif) and domains (e.g. high-mobility group domains) suggests that certain disordered modules have been particularly effective in exon-shuffling events. Our observations suggest that structural disorder has facilitated modular assembly of complex genes in evolution of the human genome.
Collapse
Affiliation(s)
- Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest 1113, Hungary
| | | | | |
Collapse
|
17
|
Wojtas M, Kapłon TM, Dobryszycki P, Ożyhar A. The effect of counter ions on the conformation of intrinsically disordered proteins studied by size-exclusion chromatography. Methods Mol Biol 2012; 896:319-330. [PMID: 22821534 DOI: 10.1007/978-1-4614-3704-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Counter ions are able to change the conformation of intrinsically disordered proteins (IDPs) to a more compact structure via the reduction of electrostatic repulsion. When the extended IDP conformation is transformed into a more ordered one, the value of the Stokes radius should decrease. Size-exclusion chromatography is a simple method for the determination of the Stokes radius, which describes the hydrodynamic properties of protein molecules. In our paper size-exclusion chromatography experiments of Starmaker (a highly acidic IDP), in the presence of various counter ions, are presented as an example of a simple experimental method, which provides valuable information about subtle counter ions-induced conformational changes in IDP.
Collapse
Affiliation(s)
- Magdalena Wojtas
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | | | | | | |
Collapse
|
18
|
Masica DL, Schrier SB, Specht EA, Gray JJ. De novo design of peptide-calcite biomineralization systems. J Am Chem Soc 2010; 132:12252-62. [PMID: 20712308 DOI: 10.1021/ja1001086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many organisms produce complex, hierarchically structured, inorganic materials via protein-influenced crystal growth--a process known as biomineralization. Understanding this process would shed light on hard-tissue formation and guide efforts to develop biomaterials. We created and tested a computational method to design protein-biomineralization systems. The algorithm folds a protein from a fully extended structure and simultaneously optimizes the fold, orientation, and sequence of the protein adsorbed to a crystal surface. We used the algorithm to design peptides (16 residues) to modify calcite (CaCO(3)) crystallization. We chemically synthesized six peptides that were predicted to bind different states of a calcite growth plane. All six peptides dramatically affected calcite crystal growth (as observed by scanning electron microscopy), and the effects were dependent on the targeted state of the {001} growth plane. Additionally, we synthesized and assayed scrambled variants of all six designed peptides to distinguish cases where sequence composition determines the interactions versus cases where sequence order (and presumably structure) plays a role. Scrambled variants of negatively charged peptides also had dramatic effects on calcite crystallization; in contrast, scrambled variants of positively charged peptides had a variable effect on crystallization, ranging from dramatic to mild. Special emphasis is often placed on acidic protein residues in calcified tissue mineralization; the work presented here suggests an important role for basic residues as well. In particular, this work implicates a potential role for basic residues in sequence-order specificity for peptide-mineral interactions.
Collapse
Affiliation(s)
- David L Masica
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | |
Collapse
|
19
|
Abbas L, Whitfield TT. The zebrafish inner ear. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1546-5098(10)02904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
20
|
Amos FF, Ndao M, Evans JS. Evidence of Mineralization Activity and Supramolecular Assembly by the N-Terminal Sequence of ACCBP, a Biomineralization Protein That Is Homologous to the Acetylcholine Binding Protein Family. Biomacromolecules 2009; 10:3298-305. [DOI: 10.1021/bm900893f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fairland F. Amos
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - Moise Ndao
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|
21
|
Kapłon TM, Michnik A, Drzazga Z, Richter K, Kochman M, Ożyhar A. The rod-shaped conformation of Starmaker. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1616-24. [DOI: 10.1016/j.bbapap.2009.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 12/13/2022]
|
22
|
Delak K, Collino S, Evans JS. Polyelectrolyte Domains and Intrinsic Disorder within the Prismatic Asprich Protein Family. Biochemistry 2009; 48:3669-77. [DOI: 10.1021/bi900113v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Katya Delak
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - Sebastiano Collino
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|
23
|
Amos FF, Evans JS. AP7, a Partially Disordered Pseudo C-RING Protein, Is Capable of Forming Stabilized Aragonite in Vitro. Biochemistry 2009; 48:1332-9. [DOI: 10.1021/bi802148r] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fairland F. Amos
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|
24
|
Mann K, Poustka AJ, Mann M. In-depth, high-accuracy proteomics of sea urchin tooth organic matrix. Proteome Sci 2008; 6:33. [PMID: 19068105 PMCID: PMC2614417 DOI: 10.1186/1477-5956-6-33] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/09/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The organic matrix contained in biominerals plays an important role in regulating mineralization and in determining biomineral properties. However, most components of biomineral matrices remain unknown at present. In sea urchin tooth, which is an important model for developmental biology and biomineralization, only few matrix components have been identified. The recent publication of the Strongylocentrotus purpuratus genome sequence rendered possible not only the identification of genes potentially coding for matrix proteins, but also the direct identification of proteins contained in matrices of skeletal elements by in-depth, high-accuracy proteomic analysis. RESULTS We identified 138 proteins in the matrix of tooth powder. Only 56 of these proteins were previously identified in the matrices of test (shell) and spine. Among the novel components was an interesting group of five proteins containing alanine- and proline-rich neutral or basic motifs separated by acidic glycine-rich motifs. In addition, four of the five proteins contained either one or two predicted Kazal protease inhibitor domains. The major components of tooth matrix were however largely identical to the set of spicule matrix proteins and MSP130-related proteins identified in test (shell) and spine matrix. Comparison of the matrices of crushed teeth to intact teeth revealed a marked dilution of known intracrystalline matrix proteins and a concomitant increase in some intracellular proteins. CONCLUSION This report presents the most comprehensive list of sea urchin tooth matrix proteins available at present. The complex mixture of proteins identified may reflect many different aspects of the mineralization process. A comparison between intact tooth matrix, presumably containing odontoblast remnants, and crushed tooth matrix served to differentiate between matrix components and possible contributions of cellular remnants. Because LC-MS/MS-based methods directly measures peptides our results validate many predicted genes and confirm the existence of the corresponding proteins. Knowledge of the components of this model system may stimulate further experiments aiming at the elucidation of structure, function, and interaction of biomineral matrix components.
Collapse
Affiliation(s)
- Karlheinz Mann
- Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Martinsried, Germany.
| | | | | |
Collapse
|