1
|
Brito J, Moon J, Hlushko R, Aliakseyeu A, Andrianov AK, Sukhishvili SA. Engineering Degradation Rate of Polyphosphazene-Based Layer-by-Layer Polymer Coatings. J Funct Biomater 2024; 15:26. [PMID: 38391879 PMCID: PMC10889497 DOI: 10.3390/jfb15020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/13/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Degradable layer-by-layer (LbL) polymeric coatings have distinct advantages over traditional biomedical coatings due to their precision of assembly, versatile inclusion of bioactive molecules, and conformality to the complex architectures of implantable devices. However, controlling the degradation rate while achieving biocompatibility has remained a challenge. This work employs polyphosphazenes as promising candidates for film assembly due to their inherent biocompatibility, tunability of chemical composition, and the buffering capability of degradation products. The degradation of pyrrolidone-functionalized polyphosphazenes was monitored in solution, complexes and LbL coatings (with tannic acid), providing the first to our knowledge comparison of solution-state degradation to solid-state LbL degradation. In all cases, the rate of degradation accelerated in acidic conditions. Importantly, the tunability of the degradation rate of polyphosphazene-based LbL films was achieved by varying film assembly conditions. Specifically, by slightly increasing the ionization of tannic acid (near neutral pH), we introduce electrostatic "defects" to the hydrogen-bonded pairs that accelerate film degradation. Finally, we show that replacing the pyrrolidone side group with a carboxylic acid moiety greatly reduces the degradation rate of the LbL coatings. In practical applications, these coatings have the versatility to serve as biocompatible platforms for various biomedical applications and controlled release systems.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Junho Moon
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Aliaksei Aliakseyeu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77840, USA
| |
Collapse
|
2
|
Baghersad S, Madruga LYC, Martins AF, Popat KC, Kipper MJ. Expanding the Scope of an Amphoteric Condensed Tannin, Tanfloc, for Antibacterial Coatings. J Funct Biomater 2023; 14:554. [PMID: 37998123 PMCID: PMC10672460 DOI: 10.3390/jfb14110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it can be used as either a polyanion or a polycation in PEMs, thereby expanding the possibility of its use in PEM coatings. PEMs are ordinarily formed using a polycation and a polyanion, in which the functional (ionic) groups of the two polymers are complexed to each other. However, using the amphoteric polymer Tanfloc with weakly basic amine and weakly acidic catechol and pyrogallol groups enables PEM formation using only one or the other of its functional groups, leaving the other functional group available to impart antibacterial activity. This work demonstrates Tanfloc-containing PEMs using multiple counter-polyelectrolytes including three polyanionic glycosaminoglycans of varying charge density, and the polycations N,N,N-trimethyl chitosan and polyethyleneimine. The layer-by-layer (LbL) assembly of PEMs was monitored using in situ Fourier-transform surface plasmon resonance (FT-SPR), confirming a stable LbL assembly. X-ray photoelectron spectroscopy (XPS) was used to evaluate surface chemistry, and atomic force microscopy (AFM) was used to determine the surface roughness. The LDH release levels from cells cultured on the Tanfloc-containing PEMs were not statistically different from those on the negative control (p > 0.05), confirming their non-cytotoxicity, while exhibiting remarkable antiadhesive and bactericidal properties against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), respectively. The antibacterial effects were attributed to electrostatic interactions and Tanfloc's polyphenolic nature. This work underscores the potential of Tanfloc as a versatile biomaterial for combating infections on surfaces.
Collapse
Affiliation(s)
- Somayeh Baghersad
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA;
| | - Liszt Y. C. Madruga
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA; (L.Y.C.M.); (A.F.M.)
| | - Alessandro F. Martins
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA; (L.Y.C.M.); (A.F.M.)
- Department of Chemistry & Biotechnology, University of Wisconsin-River Falls, River Falls, WI 54022, USA
| | - Ketul C. Popat
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA;
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80526, USA
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80526, USA
| | - Matt J. Kipper
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80526, USA;
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80526, USA; (L.Y.C.M.); (A.F.M.)
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO 80526, USA
| |
Collapse
|
3
|
Rakhmatullayeva D, Ospanova A, Bekissanova Z, Jumagaziyeva A, Savdenbekova B, Seidulayeva A, Sailau A. Development and characterization of antibacterial coatings on surgical sutures based on sodium carboxymethyl cellulose/chitosan/chlorhexidine. Int J Biol Macromol 2023; 236:124024. [PMID: 36921816 DOI: 10.1016/j.ijbiomac.2023.124024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
The layer-by-layer assembly (LBL) method was used in this work to apply antibacterial coatings to the surface of sutures. The nanofilm was created using sodium carboxymethyl cellulose, chitosan, and chlorhexidine digluconate. Polyethylene terephthalate and polyamide surgical sutures were used as the substrate. At pH 5, thin, uniform coatings with the ideal number of biopolymers in the film (10 bilayers) are produced. The pH and the shape of the polyelectrolyte macromolecules determine the film's thickness and form. The morphology of the surface and the structure of the sutures after modification become homogeneous and smooth. Both treated and untreated sutures retain their mechanical strength, and there is no significant loss of tensile strength. Nanofilms obtained on the surface of the sutures showed high antimicrobial efficacy against microorganisms Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Staphylococcus epidermidis, and Streptococcus pneumoniae. Chlorhexidine incorporated into the multilayer membrane was found to have greater antimicrobial activity than sutures treated with chlorhexidine alone. Modified surgical sutures provide antibacterial qualities that last for up to 30 days in a stable, controlled manner. The results showed the prospects of applying nanofilms based on sodium carboxymethyl cellulose/chitosan/chlorhexidine to surgical sutures that can prevent the infectious consequences of surgical interventions.
Collapse
Affiliation(s)
- Dilafruz Rakhmatullayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Aliya Ospanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan.
| | - Zhanar Bekissanova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | | | - Balzhan Savdenbekova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Ayazhan Seidulayeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| | - Aruzhan Sailau
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; Center of Physical-Chemical Methods of Research and Analysis, Almaty 050012, Kazakhstan
| |
Collapse
|
4
|
Howard MT, Wang S, Berger AG, Martin JR, Jalili-Firoozinezhad S, Padera RF, Hammond PT. Sustained release of BMP-2 using self-assembled layer-by-layer film-coated implants enhances bone regeneration over burst release. Biomaterials 2022; 288:121721. [PMID: 35981926 PMCID: PMC10396073 DOI: 10.1016/j.biomaterials.2022.121721] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Current clinical products delivering the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) for bone regeneration have been plagued by safety concerns due to a high incidence of off-target effects resulting from bolus release and supraphysiological doses. Layer-by-layer (LbL) film deposition offers the opportunity to coat bone defect-relevant substrates with thin films containing proteins and other therapeutics; however, control of release kinetics is often hampered by interlayer diffusion of drugs throughout the film during assembly, which causes burst drug release. In this work, we present the design of different laponite clay diffusional barrier layer architectures in self-assembled LbL films to modulate the release kinetics of BMP-2 from the surface of a biodegradable implant. Release kinetics were tuned by incorporating laponite in different film arrangements and with varying deposition techniques to achieve release of BMP-2 over 2 days, 4 days, 14 days, and 30 days. Delivery of a low dose (0.5 μg) of BMP-2 over 2 days and 30 days using these LbL film architectures was then compared in an in vivo rat critical size calvarial defect model to determine the effect of BMP-2 release kinetics on bone regeneration. After 6 weeks, sustained release of BMP-2 over 30 days induced 3.7 times higher bone volume and 7.4 times higher bone mineral density as compared with 2-day release of BMP-2, which did not induce more bone growth than the uncoated scaffold control. These findings represent a crucial step in the understanding of how BMP-2 release kinetics influence treatment efficacy and underscore the necessity to optimize protein delivery methods in clinical formulations for bone regeneration. This work could be applied to the delivery of other therapeutic proteins for which careful tuning of the release rate is a key optimization parameter.
Collapse
Affiliation(s)
- MayLin T Howard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sheryl Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Adam G Berger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - John R Martin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Robert F Padera
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, United States.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
5
|
Stimuli-sensitive drug delivery systems for site-specific antibiotic release. Drug Discov Today 2022; 27:1698-1705. [DOI: 10.1016/j.drudis.2022.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
6
|
Mazzocchi T, Lucarini G, Roehrer I, Menciassi A, Ricotti L. PDMS and DLC-coated unidirectional valves for artificial urinary sphincters: Opening performance after 126 days of immersion in urine. J Biomed Mater Res B Appl Biomater 2021; 110:817-827. [PMID: 34726338 PMCID: PMC9298115 DOI: 10.1002/jbm.b.34961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/05/2022]
Abstract
In this work, unidirectional valves made of bare polydimethylsiloxane (PDMS) and PDMS provided with a micrometric diamond‐like carbon (DLC) coating were fabricated and characterized, in terms of surface properties and opening pressure. The valve performance was also tested over 1250 repeated cycles of opening/closure in water, finding a slight decrease in the opening pressure after such cycles (10%) for the PDMS valves, while almost no variation for the PDMS + DLC ones. The valves were then immersed in urine for 126 days, evaluating the formation of encrustations and the trend of the opening pressure over time. Results showed that PDMS valves were featured by a thin layer of encrustations after 126 days, but the overall encrustation level was much smaller than the one shown by PDMS in static conditions. Furthermore, the opening pressure was almost not affected by such a thin layer of crystals. DLC‐coated valves showed even less encrustations at the same time‐point, with no significant loss of performance over time, although they were featured by a higher variability. These results suggest that most encrustations can be removed by the mechanical action of the valve during daily openings/closures. Such a self‐cleaning behavior with respect to a static condition opens exciting scenarios for the long‐term functionality of mobile devices operating in the urinary environment.
Collapse
Affiliation(s)
- Tommaso Mazzocchi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Gioia Lucarini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Irene Roehrer
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
7
|
Chou JJ, Berger AG, Jalili-Firoozinezhad S, Hammond PT. A design approach for layer-by-layer surface-mediated siRNA delivery. Acta Biomater 2021; 135:331-341. [PMID: 34481054 PMCID: PMC9316412 DOI: 10.1016/j.actbio.2021.08.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/27/2022]
Abstract
The ability to coat scaffolds and wound dressings with therapeutic short interfering RNA (siRNA) holds much potential for applications in wound healing, cancer treatment, and regenerative medicine. Layer-by-layer (LbL) technology is an effective method to formulate polyelectrolyte thin films for local delivery of siRNA; however, the formation and efficacy of LbL coatings as drug delivery systems are highly contingent on the assembly conditions. Here, we investigate the effects of LbL assembly parameters on film composition and consequent siRNA-mediated gene knockdown efficiency in vitro. Films comprising poly(β-amino ester) (PBAE) and siRNA were built on polyglactin 910 (Vicryl) sutures consisting of poly(10% L-lactide, 90% glycolide). A fractional factorial design was employed, varying the following LbL assembly conditions: pH, ionic strength, PBAE concentration, and siRNA concentration. Effects of these parameters on PBAE loading, siRNA loading, their respective weight ratios, and in vitro siRNA-mediated knockdown were elucidated. The parameter effects were leveraged to create a rationally designed set of solution conditions that was predicted to give effective siRNA-mediated knockdown, but not included in any of the original experimental conditions. This level of knockdown with our rationally designed loading conditions (47%) is comparable to previous formulations from our lab while being simpler in construction and requiring fewer film layers, which could save time and cost in manufacturing. This study highlights the importance of LbL solution conditions in the preparation of surface-mediated siRNA delivery systems and presents an adaptable methodology for extending these electrostatically-assembled coatings to the delivery of other therapeutic nucleic acids. STATEMENT OF SIGNIFICANCE: Short interfering RNA (siRNA) therapeutics are powerful tools to silence aberrant gene expression in the diseased state; however, the clinical utility of these therapies relies on effective controlled delivery approaches. Electrostatic self-assembly through the layer-by-layer (LbL) process enables direct siRNA release from surfaces, but this method is highly dependent upon the specific solution conditions used. Here, we use a fractional factorial design to illustrate how these assembly conditions impact composition of siRNA-eluting LbL thin films. We then elucidate how these properties mediate in vitro transfection efficacy. Ultimately, this work presents a significant step towards understanding how optimization of assembly conditions for surface-mediated LbL delivery can promote transfection efficacy while reducing the processing and material required.
Collapse
Affiliation(s)
- Jonathan J Chou
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Adam G Berger
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Paula T Hammond
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
8
|
Buie TW, Whiteley M, McCune J, Lan Z, Jose A, Balakrishnan A, Wenke J, Cosgriff-Hernandez E. Comparative efficacy of resorbable fiber wraps loaded with gentamicin sulfate or gallium maltolate in the treatment of osteomyelitis. J Biomed Mater Res A 2021; 109:2255-2268. [PMID: 33950552 PMCID: PMC10641742 DOI: 10.1002/jbm.a.37210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/05/2022]
Abstract
The high incidence of osteomyelitis associated with critical-sized bone defects raises clinical challenges in fracture healing. Clinical use of antibiotic-loaded bone cement as an adjunct therapy is limited by incompatibility with many antimicrobials, sub-optimal release kinetics, and requirement of surgical removal. Furthermore, overuse of antibiotics can lead to bacterial modifications that increase efflux, decrease binding, or cause inactivation of the antibiotics. Herein, we compared the efficacy of gallium maltolate, a new metal-based antimicrobial, to gentamicin sulfate released from electrospun poly(lactic-co-glycolic) acid (PLGA) wraps in the treatment of osteomyelitis. In vitro evaluation demonstrated sustained release of each antimicrobial up to 14 days. A Kirby Bauer assay indicated that the gentamicin sulfate-loaded wrap inhibited the growth of osteomyelitis-derived isolates, comparable to the gentamicin sulfate powder control. In contrast, the gallium maltolate-loaded wrap did not inhibit bacteria growth. Subsequent microdilution assays indicated a lower than expected sensitivity of the osteomyelitis strain to the gallium maltolate with release concentrations below the threshold for bactericidal activity. A comparison of the selectivity indices indicated that gentamicin sulfate was less toxic and more efficacious than gallium maltolate. A pilot study in a contaminated femoral defect model confirmed that the sustained release of gentamicin sulfate from the electrospun wrap resulted in bacteria density reduction on the surrounding bone, muscle, and hardware below the threshold that impedes healing. Overall, these findings demonstrate the efficacy of a resorbable, antimicrobial wrap that can be used as an adjunct or stand-alone therapy for controlled release of antimicrobials in the treatment of osteomyelitis.
Collapse
Affiliation(s)
- Taneidra W. Buie
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Michael Whiteley
- Department of Orthopaedic Trauma, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, 78234
| | - Joshua McCune
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Anupriya Jose
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Annika Balakrishnan
- Department of Biomedical Engineering, The University of Texas, Austin, Texas, 78712
| | - Joseph Wenke
- Department of Orthopaedic Trauma, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, 78234
| | | |
Collapse
|
9
|
Zanuy D, Nir S, Aleman C, Reches M. Structural preferences of an anti-fouling peptide: From single chain to small molecular assemblies. Biophys Chem 2021; 272:106555. [PMID: 33713998 DOI: 10.1016/j.bpc.2021.106555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/16/2021] [Accepted: 01/31/2021] [Indexed: 11/15/2022]
Abstract
The structural features of a tripeptide constituted by two different non-coded amino acids, 3,4-dihydroxy-L-phenylalanine (L-DOPA) and 4-fluoro-Phenylalanine, (Phe(4F)), have been investigated by means of classical mechanics simulations. This tripeptide had been characterised as an antifouling agent with great adhesion capabilities. In this work, its conformational preferences have been described in two different environments (gas phase and water solution), at three different pHs and with different degrees of terminal capping. At the same time, the structural dynamics of small aggregates of the tripeptide have been investigated and their ability to stabilise β-sheet based assemblies has been studied. The reported results describe the complexity of the tripeptide conformational preferences due to both the amphiphilic nature of its side chains, and the effect of the ionisation state resulting from the solution conditions. The investigations performed with small tripeptide assemblies in water solution reproduced the previously reported structural features, such as the polymorphism of its aggregates as a function of the pH. At edge pH values, the electrostatic screening imposed by the ions present in the solution facilitates the aggregation of the tripeptide chains, while at neutral pH and low concentrations of ionised species, the polar groups and the hydrogen bond capable groups impose their strength and lead to the disaggregation of the peptide clusters by favouring the solvation of individual chains rather than stabilising the aggregated states.
Collapse
Affiliation(s)
- David Zanuy
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
| | - Sivan Nir
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Carlos Aleman
- Department of Chemical Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Centre for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. C, 08019 Barcelona, Spain
| | - Meital Reches
- Institute of Chemistry and The Centre for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
10
|
Liu Y, Li Y, Shi L. Controlled drug delivery systems in eradicating bacterial biofilm-associated infections. J Control Release 2021; 329:1102-1116. [DOI: 10.1016/j.jconrel.2020.10.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
|
11
|
Albright V, Penarete-Acosta D, Stack M, Zheng J, Marin A, Hlushko H, Wang H, Jayaraman A, Andrianov AK, Sukhishvili SA. Polyphosphazenes enable durable, hemocompatible, highly efficient antibacterial coatings. Biomaterials 2020; 268:120586. [PMID: 33310537 DOI: 10.1016/j.biomaterials.2020.120586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Biocompatible antibacterial coatings are highly desirable to prevent bacterial colonization on a wide range of medical devices from hip implants to skin grafts. Traditional polyelectrolytes are unable to directly form coatings with cationic antibiotics at neutral pH and suffer from high degrees of antibiotic release upon exposure to physiological concentrations of salt. Here, novel inorganic-organic hybrid polymer coatings based on direct layer-by-layer assembly of anionic polyphosphazenes (PPzs) of various degrees of fluorination with cationic antibiotics (polymyxin B, colistin, gentamicin, and neomycin) are reported. The coatings displayed low levels of antibiotic release upon exposure to salt and pH-triggered response of controlled doses of antibiotics. Importantly, coatings remained highly surface active against Escherichia coli and Staphylococcus aureus, even after 30 days of pre-exposure to physiological conditions (bacteria-free) or after repeated bacterial challenge. Moreover, coatings displayed low (<1%) hemolytic activity for both rabbit and porcine blood. Coatings deposited on either hard (Si wafers) or soft (electrospun fiber matrices) materials were non-toxic towards fibroblasts (NIH/3T3) and displayed controllable fibroblast adhesion via PPz fluorination degree. Finally, coatings showed excellent antibacterial activity in ex vivo pig skin studies. Taken together, these results suggest a new avenue to form highly tunable, biocompatible polymer coatings for medical device surfaces.
Collapse
Affiliation(s)
- Victoria Albright
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | | | - Mary Stack
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jeremy Zheng
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Hanna Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Dolid A, Gomes LC, Mergulhão FJ, Reches M. Combining chemistry and topography to fight biofilm formation: Fabrication of micropatterned surfaces with a peptide-based coating. Colloids Surf B Biointerfaces 2020; 196:111365. [DOI: 10.1016/j.colsurfb.2020.111365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
|
13
|
Junthip J, Tabary N, Maton M, Ouerghemmi S, Staelens JN, Cazaux F, Neut C, Blanchemain N, Martel B. Release-killing properties of a textile modified by a layer-by-layer coating based on two oppositely charged cyclodextrin polyelectrolytes. Int J Pharm 2020; 587:119730. [PMID: 32755687 DOI: 10.1016/j.ijpharm.2020.119730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/22/2022]
Abstract
Infections represent a major medical concern and have severe impact on the public health economy. Antimicrobial coatings represent one major solution and are the subject of many investigations in academic and industrial research. Polyelectrolyte multilayers (PEMs) consist in the step-by-step deposition of polyanions and polycations films on surfaces. The wide range of disposable polyelectrolytes makes this approach among the most versatile methods as it allows to design surfaces that prevent bacterial adhesion, and kill bacteria by contact or by releasing antibacterial agents. The present work focused on the release-killing effect of an active PEM coating of a polyethylene terephthalate (PET) textile support. This activity was obtained thanks to the PEM film build up using cationic and anionic polyelectrolytes both based on cyclodextrins (PCD- and PCD+) that provided a reservoir property and prolonged release of triclosan (TCS). To this effect, a PET non-woven preliminarily modified with carboxylate groups by applying a thermofixation process was then treated by dip-coating, alternating soaking cycles in cationic PCD+ and in anionic PCD- solutions. Samples coated with such PEM film were then loaded with TCS whose release was assessed in dynamic mode in a phosphate buffered saline solution (PBS) at 37 °C. In parallel, TCS/PCD+ and TCS/PCD- interactions were investigated by Nuclear Magnetic Resonance (NMR) and phase solubility study, and the biocide activity was assessed against S. aureus and E. coli. Finally, the present study has demonstrated that our PCD+/PCD- PEM system presented release-killing properties that supplement the contact-killing effect of this system that was reported in a previous paper.
Collapse
Affiliation(s)
- Jatupol Junthip
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Nicolas Tabary
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France.
| | - Mickael Maton
- INSERM U1008, CHU Lille, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France
| | - Safa Ouerghemmi
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Jean-Noel Staelens
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Frédéric Cazaux
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - Christel Neut
- INSERM U995 LIRIC, Laboratory of Bacteriology, College of Pharmacy, 59000 Lille, France
| | - Nicolas Blanchemain
- INSERM U1008, CHU Lille, Controlled Drug Delivery Systems and Biomaterials, 59000 Lille, France
| | - Bernard Martel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| |
Collapse
|
14
|
Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, Bohara RA. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110319. [DOI: 10.1016/j.msec.2019.110319] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
15
|
Grohmann S, Menne M, Hesse D, Bischoff S, Schiffner R, Diefenbeck M, Liefeith K. Biomimetic multilayer coatings deliver gentamicin and reduce implant-related osteomyelitis in rats. ACTA ACUST UNITED AC 2019; 64:383-395. [PMID: 30173199 DOI: 10.1515/bmt-2018-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/16/2018] [Indexed: 02/01/2023]
Abstract
Implant-related infections like periprosthetic joint infections (PJI) are still a challenging issue in orthopedic surgery. In this study, we present a prophylactic anti-infective approach based on a local delivery of the antibiotic gentamicin. The local delivery is achieved via a nanoscale polyelectrolyte multilayer (PEM) coating that leaves the bulk material properties of the implant unaffected while tuning the surface properties. The main components of the coating, i.e. polypeptides and sulfated glycosaminoglycans (sGAG) render this coating both biomimetic (matrix mimetic) and biodegradable. We show how adaptions in the conditions of the multilayer assembly process and the antibiotic loading process affect the amount of delivered gentamicin. The highest concentration of gentamicin could be loaded into films composed of polypeptide poly-glutamic acid when the pH of the loading solution was acidic. The concentration of gentamicin on the surface could be tailored with the number of deposited PEM layers. The resulting coatings reveal a bacteriotoxic effect on Staphylococcus cells but show no signs of cytotoxic effects on MC3T3-E1 osteoblasts. Moreover, when multilayer-coated titanium rods were implanted into contaminated medullae of rat tibiae, a reduction in the development of implant-related osteomyelitis was observed. This reduction was more pronounced for the multifunctional, matrix-mimetic heparin-based coatings that only deliver lower amounts of gentamicin.
Collapse
Affiliation(s)
- Steffi Grohmann
- Institute for Bioprocessing and Analytical Measurement Techniques (iba) e.V., Department of Biomaterials, 37308 Heilbad Heiligenstadt, Germany
| | - Manuela Menne
- Institute for Bioprocessing and Analytical Measurement Techniques (iba) e.V., Department of Biomaterials, 37308 Heilbad Heiligenstadt, Germany
| | - Diana Hesse
- Institute for Bioprocessing and Analytical Measurement Techniques (iba) e.V., Department of Biomaterials, 37308 Heilbad Heiligenstadt, Germany
| | - Sabine Bischoff
- Institute for Laboratory Animal Science and Welfare, University Hospital, 07743 Jena, Germany
| | - René Schiffner
- Orthopaedic Department, University Hospital, 07743 Jena, Germany
| | - Michael Diefenbeck
- Scientific Consulting in Orthopaedic Surgery and Traumatology, 22081 Hamburg, Germany
| | - Klaus Liefeith
- Institute for Bioprocessing and Analytical Measurement Techniques (iba) e.V., Department of Biomaterials, 37308 Heilbad Heiligenstadt, Germany
| |
Collapse
|
16
|
Kheiri S, Liu X, Thompson M. Nanoparticles at biointerfaces: Antibacterial activity and nanotoxicology. Colloids Surf B Biointerfaces 2019; 184:110550. [PMID: 31606698 DOI: 10.1016/j.colsurfb.2019.110550] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/28/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
Abstract
Development of a biomaterial that is resistant to the adhesion and consequential proliferation of bacteria, represents a significant challenge in terms of application of such materials in various aspects of health care. Over recent years a large number of synthetic methods have appeared with the overall goal of the prevention of bacterial adhesion to surfaces. In contrast to these artificial techniques, living organisms over millions of years have developed different systems to prevent the colonization of microorganisms. Recently, these natural approaches, which are based on surface nanotopography, have been mimicked to fabricate a modern antibacterial surface. In this vein, use of nanoparticle (NP) technology has been explored in order to create a suitable antibacterial surface. However, few studies have focused on the toxicity of these techniques and the ecotoxicity of NP materials on mammalian and bacterial cells simultaneously. Researchers have observed that the majority of previous studies have demonstrated some of the extents of the harmful impacts on mammalian cells. Here, we provide a critical review of the NP approach to antibacterial surface treatment, and also summarize the studies of toxic effects caused by metal NPs on bacteria and mammalian cells.
Collapse
Affiliation(s)
- Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada.
| | - Michael Thompson
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
17
|
Qiao Z, Yao Y, Su Y, Song S, Yin M, Luo J. Layer-by-Layer Assembled Multilayer Films with Multiple Antibacterial and pH-Induced Self-Cleaning Activities Based on Polyurethane Micelles. ACS APPLIED BIO MATERIALS 2019; 2:4583-4593. [DOI: 10.1021/acsabm.9b00678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhuangzhuang Qiao
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, 610041 Chengdu, China
| | - Yan Yao
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, 610041 Chengdu, China
| | - Yuling Su
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, 610041 Chengdu, China
| | - Shaomin Song
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, 610041 Chengdu, China
| | - Meihui Yin
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, 610041 Chengdu, China
| | - Jianbin Luo
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, 610041 Chengdu, China
| |
Collapse
|
18
|
Alotaibi HF, Perni S, Prokopovich P. Nanoparticle-based model of anti-inflammatory drug releasing LbL coatings for uncemented prosthesis aseptic loosening prevention. Int J Nanomedicine 2019; 14:7309-7322. [PMID: 31571855 PMCID: PMC6750844 DOI: 10.2147/ijn.s217112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction The only treatment for aseptic loosening is the replacement of the prosthesis through revision surgery. A preventive approach, achieved through anti-inflammatory drugs released from the device, has shown to be a viable strategy; however, the performance of these devices is not yet satisfactory thus further improvements are necessary. Methods We used titanium nanoparticles as a model for implant surfaces and developed a coating containing dexamethasone (DEX) using layer-by-layer deposition. Results The amount of deposited drug depended on the number of layers and the release was sustained for months. The efficiency of the released DEX in reducing inflammation markers (tumor necrosis factor alpha and IL-6) produced by human monocytes and macrophages was similar to the pure drug at the same concentration without negative impacts on the viability and morphology of these cells. Conclusion These coatings were not inferior to medical grade titanium (the standard material used in uncemented devices) regarding their ability to sustain osteoblasts and fibroblasts growth.
Collapse
Affiliation(s)
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
19
|
Vikulina AS, Skirtach AG, Volodkin D. Hybrids of Polymer Multilayers, Lipids, and Nanoparticles: Mimicking the Cellular Microenvironment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8565-8573. [PMID: 30726090 DOI: 10.1021/acs.langmuir.8b04328] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we address research directions and trends developed following novel concepts in 2D/3D self-assembled polymer structures established in the department led by Helmuth Möhwald. These functional structures made of hybrids of polymer multilayers, lipids, and nanoparticles stimulated research in the design of the cellular microenvironment. The composition of the extracellular matrix (ECM) and dynamics of biofactor presentation in the ECM can be recapitulated by the hybrids. Proteins serve as models for protein-based biofactors such as growth factors, cytokines, hormones, and so forth. A fundamental understanding of complex intermolecular interactions and approaches developed for the externally IR-light-triggered release offers a powerful tool for controlling the biofactor presentation. Pure protein beads made via a mild templating on vaterite CaCO3 crystals can mimic cellular organelles in terms of the compartmentalization of active proteins. We believe that an integration of the approaches developed and described here offers a strong tool for engineering and mimicking both extra- and intracellular microenvironments.
Collapse
Affiliation(s)
- A S Vikulina
- Branch Bioanalytics and Bioprocesses, Department Cellular Biotechnology & Biochips , Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13 , 14476 Potsdam-Golm , Germany
| | - A G Skirtach
- NanoBioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - D Volodkin
- Department of Chemistry and Forensics, School of Science & Technology , Nottingham Trent University , Clifton Lane , Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
20
|
Zhao Y, Chen X, Li S, Zeng R, Zhang F, Wang Z, Guan S. Corrosion resistance and drug release profile of gentamicin-loaded polyelectrolyte multilayers on magnesium alloys: Effects of heat treatment. J Colloid Interface Sci 2019; 547:309-317. [DOI: 10.1016/j.jcis.2019.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
|
21
|
Nir S, Zanuy D, Zada T, Agazani O, Aleman C, Shalev DE, Reches M. Tailoring the self-assembly of a tripeptide for the formation of antimicrobial surfaces. NANOSCALE 2019; 11:8752-8759. [PMID: 30778487 DOI: 10.1039/c8nr10043h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The accumulation of bacteria on surfaces is currently one of the greatest concerns for the management of proper healthcare systems, water and energy. Here, we describe the mechanism by which a single peptide forms two pH-dependent supramolecular particles that resist bacterial contamination. By using NMR and molecular dynamics (MD), we determined the structures of the peptide monomers and showed the forces directing the self-assembly of each structure under different conditions. These peptide assemblies change the characteristics of bare glass and confer it with the ability to prevent biofilm formation. Furthermore, they can adsorb and release active compounds as demonstrated with an anticancer drug, antibiotic and enzyme. This synergism and the detailed understanding of the processes are necessary for developing new sterile surfaces for healthcare systems, water purification devices, food packaging or any environment that suffers from biocontamination.
Collapse
Affiliation(s)
- Sivan Nir
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904. Israel.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ji XJ, Gao L, Liu JC, Wang J, Cheng Q, Li JP, Li SQ, Zhi KQ, Zeng RC, Wang ZL. Corrosion resistance and antibacterial properties of hydroxyapatite coating induced by gentamicin-loaded polymeric multilayers on magnesium alloys. Colloids Surf B Biointerfaces 2019; 179:429-436. [PMID: 31005002 DOI: 10.1016/j.colsurfb.2019.04.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 01/07/2023]
Abstract
As a result of their good biocompatibility, bioactivity, and mechanical properties, magnesium (Mg) alloys have received considerable attention as next generation biodegradable implants. Herein, in order to achieve a proper degradation rate and good antibacterial ability, we reported a novel hydroxyapatite coating induced by gentamicin (GS)-loaded polymeric multilayers for the surface treatment of the Mg alloy. The coating was characterized by X-ray diffraction, fourier transform infrared spectroscopy and scanning electron microscopy. The as-prepared hydroxyapatite coating showed the compact morphology and a well-crystallized apatite structure. This coating could improve the adhesion strength and reduce the corrosion rate of the substrate in simulated body fluid solution. Meanwhile, the drug release and antibacterial experiments demonstrated that the GS loaded specimen revealed a significant antimicrobial performance toward Staphylococcus aureus and had a prolonged release profile of GS, which would be helpful to the long-term bactericidal activity of the Mg implant. This coating showed acceptable biocompatibility via MTT assay and Live/dead staining. Thus, the multilayers-hydroxyapatite coated Mg alloy could improve the corrosion resistance and biocompatibility while delivering vital drugs to the site of implantation.
Collapse
Affiliation(s)
- Xiao-Jing Ji
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Ling Gao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Jia-Cheng Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; School of Stomatology, Qingdao University, Qingdao, Shandong, 266071, China
| | - Jing Wang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Qiang Cheng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jian-Peng Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shuo-Qi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Ke-Qian Zhi
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China; Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Zhen-Lin Wang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400065, China
| |
Collapse
|
23
|
Perni S, Caserta S, Pasquino R, Jones SA, Prokopovich P. Prolonged Antimicrobial Activity of PMMA Bone Cement with Embedded Gentamicin-Releasing Silica Nanocarriers. ACS APPLIED BIO MATERIALS 2019; 2:1850-1861. [DOI: 10.1021/acsabm.8b00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Rossana Pasquino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Steve A. Jones
- University Hospital Llandough, Cardiff & Vale University Health Board, Penlan Road, Penarth, Vale of Glamorgan, Wales CF64 2XX, United Kingdom
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
24
|
Keller N, Bruchmann J, Sollich T, Richter C, Thelen R, Kotz F, Schwartz T, Helmer D, Rapp BE. Study of Biofilm Growth on Slippery Liquid-Infused Porous Surfaces Made from Fluoropor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4480-4487. [PMID: 30645094 DOI: 10.1021/acsami.8b12542] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Undesired growth of biofilms represents a fundamental problem for all surfaces in long-term contact with aqueous media. Mature biofilms resist most biocide treatments and often are a pathogenic threat. One way to prevent biofilm growth on surfaces is by using slippery liquid-infused porous surfaces (SLIPS). SLIPS consist of a porous substrate which is infused with a lubricant immiscible with the aqueous medium in which the bacteria are suspended. Because of the lubricant, bacteria cannot attach to the substrate surface and thus formation of the biofilm is prevented. For this purpose, we manufactured substrates with different porosity and surface roughness values via UV-initiated free-radical polymerization in Fluoropor. Fluoropor is a class of highly fluorinated bulk-porous polymers with tunable porosity, which we recently introduced. We investigated the growth of the biofilm on the substrates, showing that a reduced surface roughness is beneficial for the reduction of biofilm growth. Samples of low roughness effectively reduced Pseudomonas aeruginosa biofilm growth for 7 days in a flow chamber experiment. The low-roughness samples also become transparent when infused with the lubricant, making such surfaces ideal for real-time observation of biofilm growth by optical examination.
Collapse
|
25
|
Motealleh A, Dorri P, Kehr NS. Self-assembled monolayers of chiral periodic mesoporous organosilica as a stimuli responsive local drug delivery system. J Mater Chem B 2019; 7:2362-2371. [DOI: 10.1039/c8tb02507j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
pH responsive PMOs deliver higher dosages of drugs to malignant cells while delivering less of the drugs to healthy cells.
Collapse
Affiliation(s)
- Andisheh Motealleh
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Pooya Dorri
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and Center für Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- D-48149 Münster
- Germany
- California NanoSystems Institute (CNSI)
| |
Collapse
|
26
|
Al Thaher Y, Yang L, Jones SA, Perni S, Prokopovich P. LbL-assembled gentamicin delivery system for PMMA bone cements to prolong antimicrobial activity. PLoS One 2018; 13:e0207753. [PMID: 30543660 PMCID: PMC6292632 DOI: 10.1371/journal.pone.0207753] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/06/2018] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Antibiotic-loaded poly(methyl methacrylate) bone cements (ALBCs) are widely used in total joint replacement (TJR), for local delivery of antibiotics to provide prophylaxis against prosthetic joint infections (PJI). One of the shortcomings of the current generation of ALBCs is that the antibiotic release profile is characterized by a burst over the first few hours followed by a sharp decrease in rate for the following several days (often below minimum inhibitory concentration (MIC)), and, finally, exhaustion (after, typically, ~ 20 d). This profile means that the ALBCs provide only short-term antimicrobial action against bacterial strains involved PJI. RATIONALE The purpose of the present study was to develop an improved antibiotic delivery system for an ALBC. This system involved using a layer-by-layer technique to load the antibiotic (gentamicin sulphate) (GEN) on silica nanoparticles, which are then blended with the powder of the cement. Then, the powder was mixed with the liquid of the cement (NP-GEN cement). For controls, two GEN-loaded brands were used (Cemex Genta and Palacos R+G). Gentamicin release and a host of other relevant properties were determined for all the cements studied. RESULTS Compared to control cement specimens, improved GEN release, longer antimicrobial activity (against clinically-relevant bacterial strains), and comparable setting time, cytocompatibility, compressive strength (both prior to and after aging in PBS at 37 oC for 30 d), 4-point bend strength and modulus, fracture toughness, and PBS uptake. CONCLUSIONS NP-GEN cement may have a role in preventing or treating PJI.
Collapse
Affiliation(s)
- Yazan Al Thaher
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Lirong Yang
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Steve A. Jones
- University Hospital Llandough, Cardiff & Vale University Health Board, Vale of Glamorgan, Wales, United Kingdom
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Cardona A, Iacovacci V, Mazzocchi T, Menciassi A, Ricotti L. Novel Nanostructured Coating on PDMS Substrates Featuring High Resistance to Urine. ACS APPLIED BIO MATERIALS 2018; 2:255-265. [DOI: 10.1021/acsabm.8b00586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Angelo Cardona
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Veronica Iacovacci
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Tommaso Mazzocchi
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Arianna Menciassi
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| | - Leonardo Ricotti
- Scuola Superiore Sant’anna, The BioRobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera (PI), Italy
| |
Collapse
|
28
|
Park S, Han U, Choi D, Hong J. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications. Biomater Res 2018; 22:29. [PMID: 30275972 PMCID: PMC6158909 DOI: 10.1186/s40824-018-0139-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The main purpose of drug delivery systems is to deliver the drugs at the appropriate concentration to the precise target site. Recently, the application of a thin film in the field of drug delivery has gained increasing interest because of its ability to safely load drugs and to release the drug in a controlled manner, which improves drug efficacy. Drug loading by the thin film can be done in various ways, depending on type of the drug, the area of exposure, and the purpose of drug delivery. MAIN TEXT This review summarizes the various methods used for preparing thin films with drugs via Layer-by-layer (LbL) assembly. Furthermore, additional functionalities of thin films using surface modification in drug delivery are briefly discussed. There are three types of methods for preparing a drug-carrying multilayered film using LbL assembly. First methods include approaches for direct loading of the drug into the pre-fabricated multilayer film. Second methods are preparing thin films using drugs as building blocks. Thirdly, the drugs are incorporated in the cargo so that the cargo itself can be used as the materials of the film. CONCLUSION The appropriate designs of the drug-loaded film were produced in consideration of the release amounts and site of the desired drug. Furthermore, additional surface modification using the LbL technique enabled the preparation of effective drug delivery carriers with improved targeting effect. Therefore, the multilayer thin films fabricated by the LbL technique are a promising candidate for an ideal drug delivery system and the development possibilities of this technology are infinite.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| | - Uiyoung Han
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| | - Daheui Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering Yonsei University, 50 Yonsei Ro, Seodaemun Gu, Seoul, 038722 Republic of Korea
| |
Collapse
|
29
|
Cao M, Zhao W, Wang L, Li R, Gong H, Zhang Y, Xu H, Lu JR. Graphene Oxide-Assisted Accumulation and Layer-by-Layer Assembly of Antibacterial Peptide for Sustained Release Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24937-24946. [PMID: 29956912 DOI: 10.1021/acsami.8b07417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fabrication of antibacterial materials with sustained release of active components is of great importance for long-term antibacterial applications. Graphene oxide (GO) has been found to be an excellent carrier for accumulating the antibacterial peptide of G(IIKK)4I-NH2 and mediating its loading into the layer-by-layer (LBL) films for sustained release applications. G(IIKK)4I-NH2 takes random coiled conformation in monomeric state below 0.17 mM but self-assembles into supramolecular aggregates with α-helical secondary structure at higher concentrations. It can bind onto GO surface in both monomeric and aggregate states to form stable GO@G(IIKK)4I-NH2 composites. Upon binding, the local amphiphilic environment of GO surface induces a conformational transition of G(IIKK)4I-NH2 monomers from random coils to α-helix. The aggregate binding enhances the loading amount greatly. GO (1 mg) can load as high as 1.7 mg of peptide at saturation. This enables the GO@G(IIKK)4I-NH2 composites to serve as reservoirs for sustained release of active G(IIKK)4I-NH2 monomers. Moreover, G(IIKK)4I-NH2 itself shows low efficiency in LBL assembly, whereas the GO@G(IIKK)4I-NH2 composites are ideal LBL assembling units with highly enhanced loading efficiency of G(IIKK)4I-NH2. The LBL films involving degradable poly(β-amino esters) can realize sustained release of G(IIKK)4I-NH2 for bacteria killing in a well-controlled manner. This study demonstrates an efficient strategy for fabrication of long-durable antibacterial materials and surface coatings by using GO as the carrier for drug accumulation and loading.
Collapse
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Wenjing Zhao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Lei Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Ruiheng Li
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Schuster Building, Oxford Road , Manchester M13 9PL , U.K
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Schuster Building, Oxford Road , Manchester M13 9PL , U.K
| | - Yu Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy , University of Manchester , Schuster Building, Oxford Road , Manchester M13 9PL , U.K
| |
Collapse
|
30
|
Manoukian OS, Aravamudhan A, Lee P, Arul MR, Yu X, Rudraiah S, Kumbar SG. Spiral Layer-by-Layer Micro-Nanostructured Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2018; 4:2181-2192. [PMID: 30976659 DOI: 10.1021/acsbiomaterials.8b00393] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This Article reports the fabrication and characterization of composite micro-nanostructured spiral scaffolds functionalized with nanofibers and hydroxyapatite (HA) for bone regeneration. The spiral poly(lactic acid-co-glycolic acid) (PLGA) porous microstructure was coated with sparsely spaced PLGA nanofibers and HA to enhance surface area and bioactivity. Polyelectrolyte-based HA coating in a layer-by-layer (LBL) fashion allowed 10-70 μM Ca2+/mm2 incorporation. These scaffolds provided a controlled release of Ca2+ ions up to 60 days with varied release kinetics accounting up to 10-50 μg. Spiral scaffolds supported superior adhesion, proliferation, and osteogenic differentiation of rat bone marrow stromal cells (MSCs) as compared to controls microstructures. Spiral micro-nanostructures supported homogeneous tissue ingrowth and resulted in bone-island formation in the center of the scaffold as early as 3 weeks in a rabbit ulnar bone defect model. In contrast, control cylindrical scaffolds showed tissue ingrowth only at the surface because of limitations in scaffold transport features.
Collapse
Affiliation(s)
- Ohan S Manoukian
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Avenue, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut 06269, United States
| | - Aja Aravamudhan
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Avenue, Farmington, Connecticut 06030, United States
| | - Paul Lee
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Michael R Arul
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Avenue, Farmington, Connecticut 06030, United States
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology, and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, 229 Trumbull St., Hartford Connecticut 06103, United States
| | - Sangamesh G Kumbar
- Department of Orthopaedic Surgery, University of Connecticut Health, 263 Farmington Avenue, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, Connecticut 06269, United States
| |
Collapse
|
31
|
Al Thaher Y, Latanza S, Perni S, Prokopovich P. Role of poly-beta-amino-esters hydrolysis and electrostatic attraction in gentamicin release from layer-by-layer coatings. J Colloid Interface Sci 2018; 526:35-42. [PMID: 29715613 DOI: 10.1016/j.jcis.2018.04.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
Layer-by-layer (LbL) deposition is a versatile technique that has been employed in numerous industrial applications i.e. biomaterials, drug delivery and electronics to confer peculiar properties to the system. When LbL is employed for drug delivery, the active molecule is sandwiched between layers of polyelectrolytes and the release is controlled by the diffusion of the drug through the layers and the possible hydrolysis of the coating (delamination). Poly-beta-amino-esters (PBAEs) are a class of hydrolysable polyelectrolytes that have been widely used in DNA delivery and for LbL on medical devices. Their use allowed the controlled release of antibiotics and other bioactive compounds from the surface of medical devices without cytotoxic effects. The general accepted consensus is that drug released from LbL coating assembled using PBAEs is the results of the polymer hydrolysis; however, no attention has been paid to the role of the electrostatic attraction between PBAE and the other polyelectrolyte utilised in the LbL assembly. In this work, we prepared LbL coatings on the surface of silica nanoparticles entrapping gentamicin as model drug and demonstrated that the drug release from PBAEs containing LbL coatings is predominantly controlled by the electrostatic attraction between opposite charged electrolytes. The positive charge of PBAE decreased from pH = 5 to pH = 7.4 while alginate negative charges remained unchanged in this pH range while PBAE hydrolysis kinetics was faster, as determined with Gel Permeation Chromatography (GPC), in acidic conditions. When PBAE were employed in the LbL construct higher levels of drug were released at pH = 7.4 than at pH = 5; additionally, replacing PBAE with chitosan (the charge of chitosan is not influenced in this pH range) resulted in comparable gentamicin release kinetics at pH = 5.
Collapse
Affiliation(s)
- Yazan Al Thaher
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK
| | - Silvia Latanza
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK.
| |
Collapse
|
32
|
Perni S, Martini-Gilching K, Prokopovich P. Controlling release kinetics of gentamicin from silica nano-carriers. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Wang D, Zhang J, Zhong Y, Chu M, Chang W, Yao Z. Mussel-inspired bio-compatible free-standing adhesive films assembled layer-by-layer with water-resistance. RSC Adv 2018; 8:18904-18912. [PMID: 35539663 PMCID: PMC9080690 DOI: 10.1039/c8ra03214a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Abstract
The development of mussel-inspired materials with enhanced mechanical and physiological characteristics is fascinating due to the resulting structural properties. In this work, based on a chemical reaction, 3-(3,4-dihydroxyphenyl)propionic acid and dopamine hydrochloride (DA), with a catechol group, were covalently grafted onto a bio-compatible polymer backbone of chitosan hydrochloride (CHI) and hyaluronic acid sodium (HA). A mussel-inspired water-resistant adhesive film that could adhere in water was then fabricated by an environmentally friendly layer-by-layer (LbL) process. The water-resistant adhesive film demonstrated a strong underwater mechanical connection (0.82 ± 0.19 MPa) and a high transmittance (more than 83%) in the visible region; these characteristics are beneficial for clinical observation. A free-standing water-resistant adhesive film with a high transmittance of over 83% was also demonstrated and obtained from a facial and effective mechanical exfoliation method. The free-standing film exhibited favorable adhesion capacity with porcine skin, making it attractive for applications in the biomedical field. Mussel-inspired, water-resistant, free-standing adhesive films with high transmittance were fabricated with an environmentally friendly layer-by-layer process.![]()
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Jianfu Zhang
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Yingjie Zhong
- China Japan Friendship Hospital
- Jilin University
- Changchun
- P. R. China
| | - Ming Chu
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
| | - Wenyang Chang
- School of Chemistry and Environmental Engineering
- Changchun University of Science and Technology
- Changchun
- P. R. China
| | - Zhanhai Yao
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
34
|
Xu Q, Li X, Jin Y, Sun L, Ding X, Liang L, Wang L, Nan K, Ji J, Chen H, Wang B. Bacterial self-defense antibiotics release from organic-inorganic hybrid multilayer films for long-term anti-adhesion and biofilm inhibition properties. NANOSCALE 2017; 9:19245-19254. [PMID: 29188848 DOI: 10.1039/c7nr07106j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Implant-associated bacterial infections pose serious medical and financial issues due to the colonization and proliferation of pathogens on the surface of the implant. The as-prepared traditional antibacterial surfaces can neither resist bacterial adhesion nor inhibit the development of biofilm over the long term. Herein, novel (montmorillonite/poly-l-lysine-gentamicin sulfate)8 ((MMT/PLL-GS)8) organic-inorganic hybrid multilayer films were developed to combine enzymatic degradation PLL for on-demand self-defense antibiotics release. Small molecule GS was loaded into the multilayer films during self-assembly and the multilayer films showed pH-dependent and linear growth behavior. The chymotrypsin- (CMS) and bacterial infections-responsive film degradation led to the peeling of the films and GS release. Enzyme-responsive GS release exhibited CMS concentration dependence as measured by the size of the inhibition zone and SEM images. Notably, the obtained antibacterial films showed highly efficient bactericidal activity which killed more than 99.9% of S. aureus in 12 h. Even after 3 d of incubation in S. aureus, E. coli or S. epidermidis solutions, the multilayer films exhibited inhibition zones of more than 1.5 mm in size. Both in vitro and in vivo antibacterial tests indicated good cell compatibility, and anti-inflammatory, and long-term bacterial anti-adhesion and biofilm inhibition properties.
Collapse
Affiliation(s)
- Qingwen Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Prokopovic VZ, Vikulina AS, Sustr D, Shchukina EM, Shchukin DG, Volodkin DV. Binding Mechanism of the Model Charged Dye Carboxyfluorescein to Hyaluronan/Polylysine Multilayers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38908-38918. [PMID: 29035502 PMCID: PMC5682609 DOI: 10.1021/acsami.7b12449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biopolymer-based multilayers become more and more attractive due to the vast span of biological application they can be used for, e.g., implant coatings, cell culture supports, scaffolds. Multilayers have demonstrated superior capability to store enormous amounts of small charged molecules, such as drugs, and release them in a controlled manner; however, the binding mechanism for drug loading into the multilayers is still poorly understood. Here we focus on this mechanism using model hyaluronan/polylysine (HA/PLL) multilayers and a model charged dye, carboxyfluorescein (CF). We found that CF reaches a concentration of 13 mM in the multilayers that by far exceeds its solubility in water. The high loading is not related to the aggregation of CF in the multilayers. In the multilayers, CF molecules bind to free amino groups of PLL; however, intermolecular CF-CF interactions also play a role and (i) endow the binding with a cooperative nature and (ii) result in polyadsorption of CF molecules, as proven by fitting of the adsorption isotherm using the BET model. Analysis of CF mobility in the multilayers by fluorescence recovery after photobleaching has revealed that CF diffusion in the multilayers is likely a result of both jumping of CF molecules from one amino group to another and movement, together with a PLL chain being bound to it. We believe that this study may help in the design of tailor-made multilayers that act as advanced drug delivery platforms for a variety of bioapplications where high loading and controlled release are strongly desired.
Collapse
Affiliation(s)
- Vladimir Z. Prokopovic
- Branch Bioanalytics
and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer
Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Anna S. Vikulina
- Branch Bioanalytics
and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer
Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
- School of Science and Technology, Nottingham
Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
- E-mail: . Tel: +44 115 848 8062
| | - David Sustr
- Branch Bioanalytics
and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer
Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Elena M. Shchukina
- Stephenson Institute
for Renewable Energy, University of Liverpool, L69 7ZF Liverpool, U.K.
| | - Dmitry G. Shchukin
- Stephenson Institute
for Renewable Energy, University of Liverpool, L69 7ZF Liverpool, U.K.
| | - Dmitry V. Volodkin
- School of Science and Technology, Nottingham
Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| |
Collapse
|
36
|
Feeney M, Hu X, Srinivasan R, Van N, Hunter M, Georgakoudi I, Thomas SW. UV and NIR-Responsive Layer-by-Layer Films Containing 6-Bromo-7-hydroxycoumarin Photolabile Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10877-10885. [PMID: 28967754 PMCID: PMC5647567 DOI: 10.1021/acs.langmuir.7b01469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/11/2017] [Indexed: 06/07/2023]
Abstract
This paper describes polyelectrolyte multilayer films prepared by the layer-by-layer (LbL) technique capable of undergoing dissolution upon exposure to either ultraviolet or near-infrared light. Film dissolution is driven by photochemical deprotection of a random methacrylic copolymer with two types of side chains: (i) 6-bromo-7-hydroxycoumarinyl esters, photocleavable groups that are known to have substantial two-photon photolysis cross sections, and (ii) cationic residues from the commercially available monomer N,N-dimethylaminoethyl methacrylate (DMAEMA). In addition, the dependence of stability of both unirradiated and irradiated films on pH provides experimental evidence for the necessity of disrupting both ion-pairing and hydrophobic interactions between polyelectrolytes to realize film dissolution. This work therefore provides both new fundamental insight regarding photolabile LbL films and expands their applied capabilities to nonlinear photochemical processes.
Collapse
Affiliation(s)
- Matthew
J. Feeney
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaoran Hu
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Rati Srinivasan
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Nhi Van
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| | - Martin Hunter
- Department
of Biomedical Engineering, 4 Colby Street, Tufts
University, Medford, Massachusetts 02155, United States
| | - Irene Georgakoudi
- Department
of Biomedical Engineering, 4 Colby Street, Tufts
University, Medford, Massachusetts 02155, United States
| | - Samuel W. Thomas
- Department
of Chemistry, 62 Talbot
Avenue, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
37
|
Albright V, Zhuk I, Wang Y, Selin V, van de Belt-Gritter B, Busscher HJ, van der Mei HC, Sukhishvili SA. Self-defensive antibiotic-loaded layer-by-layer coatings: Imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomater 2017; 61:66-74. [PMID: 28803214 DOI: 10.1016/j.actbio.2017.08.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/22/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
Self-defensive antibiotic-loaded coatings have shown promise in inhibiting growth of pathogenic bacteria adhering to biomaterial implants and devices, but direct proof that their antibacterial release is triggered by bacterially-induced acidification of the immediate environment under buffered conditions remained elusive. Here, we demonstrate that Staphylococcus aureus and Escherichia coli adhering to such coatings generate highly localized acidification, even in buffered conditions, to activate pH-triggered, self-defensive antibiotic release. To this end, we utilized chemically crosslinked layer-by-layer hydrogel coatings of poly(methacrylic acid) with a covalently attached pH-sensitive SNARF-1 fluorescent label for imaging, and unlabeled-antibiotic (gentamicin or polymyxin B) loaded coatings for antibacterial studies. Local acidification of the coatings induced by S. aureus and E. coli adhering to the coatings was demonstrated by confocal-laser-scanning-microscopy via wavelength-resolved imaging. pH-triggered antibiotic release under static, small volume conditions yielded high bacterial killing efficiencies for S. aureus and E. coli. Gentamicin-loaded films retained their antibacterial activity against S. aureus under fluid flow in buffered conditions. Antibacterial activity increased with the number of polymer layers in the films. Altogether, pH-triggered, self-defensive antibiotic-loaded coatings become activated by highly localized acidification in the immediate environment of an adhering bacterium, offering potential for clinical application with minimized side-effects. STATEMENT OF SIGNIFICANCE Polymeric coatings were created that are able to uptake and selectively release antibiotics upon stimulus by adhering bacteria in order to understand the fundamental mechanisms behind pH-triggered antibiotic release as a potential way to prevent biomaterial-associated infections. Through fluorescent imaging studies, this work importantly shows that adhering bacteria produce highly localized pH changes even in buffer. Accordingly such coatings only demonstrate antibacterial activity by antibiotic release in the presence of adhering bacteria. This is clinically important, because ad libitum releasing antibiotic coatings usually show a burst release and have often lost their antibiotic content when bacteria adhere.
Collapse
|
38
|
Lee HS, Myers C, Zaidel L, Nalam PC, Caporizzo MA, A Daep C, Eckmann DM, Masters JG, Composto RJ. Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13079-13091. [PMID: 28332813 DOI: 10.1021/acsami.7b02774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A current effort in preventive dentistry is to inhibit surface attachment of bacteria using antibacterial polymer coatings on the tooth surface. For the antibacterial coatings, the physisorption of anionic and cationic polymers directly onto hydroxyapatite (HA) and saliva-treated HA surfaces was studied using quartz crystal microbalance, force spectroscopy, and atomic force microscopy. First, single species adsorption is shown to be stronger on HA surfaces than on silicon oxide surfaces for all polymers (i.e., Gantrez, sodium hyaluronate (NaHa), and poly(allylamine-co-allylguanidinium) (PAA-G75)). It is observed through pH dependence of Gantrez, NaHa, and PAA-G75 adsorption on HA surfaces that anionic polymers swell at high pH and collapse at low pH, whereas cationic polymers behave in the opposite fashion. Thicknesses of Gantrez, NaHa, and PAA-G75 are 52 nm (46 nm), 35 nm (11 nm), and 6 nm (54 nm) at pH 7 (3.5), respectively. Second, absorption of charged polymer is followed by absorption of the oppositely charged polymer. Upon exposure of the anionic polymer layers, Gantrez and NaHa, to the cationic polymer, PAA-G75, films collapse from 52 to 8 nm and 35 to 11 nm, respectively. This decrease in film thickness is attributed to the electrostatic cross-linking between anionic and cationic polymers. Third, for HA surfaces pretreated with artificial saliva (AS), the total thickness decreases from 25 to 16 nm upon exposure to PAA-G75. Force spectroscopy is used to further investigate the PAA-G75/AS coating. The results show that the interaction between a negatively charged colloidal bead and the AS surface is strongly repulsive, whereas PAA-G75/AS is attractive but varies across the surface. Additionally, AFM studies show that AS/HA is smooth with a RMS roughness of 1.7 nm, and PAA-G75-treated AS/HA is rough (RMS roughness of 5.4 nm) with patches of polymer distributed across the surface with an underlying coating. The high roughness of PAA-G75 treated AS/HA is attributed to the strong adsorption of the relatively small PAA-G75 onto the heterogeneously distributed negatively charged AS surface. In addition, uptake of PAA-G75 by pellicle layer (saliva-treated HA surface) is observed, and the adsorbed amount of PAA-G75 on/into pellicle layer is ∼2 times more than that on/into AS layer. These studies show that polymer adsorption onto HA and saliva-coated HA depends strongly on the polymer type and size and that there is an electrostatic interaction between polymer and saliva and/or oppositely charged polymers that stabilizes the coatings on HA. Lastly, assessing the viability of the adherent bacteria collected from the PAA-G75-coated surfaces showed a significant reduction (∼93%) in bacterial viability when compared to bacteria collected from untreated and Gantrez-coated HA. These results suggest the potential antimicrobial activity of PAA-G75.
Collapse
Affiliation(s)
| | - Carl Myers
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | - Lynette Zaidel
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | | | | | - Carlo A Daep
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | | | - James G Masters
- Colgate-Palmolive Company, Piscataway, New Jersey 08855, United States
| | | |
Collapse
|
39
|
Sustained tobramycin release from polyphosphate double network hydrogels. Acta Biomater 2017; 50:484-492. [PMID: 27993638 DOI: 10.1016/j.actbio.2016.12.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022]
Abstract
Sustained local delivery of antibiotics from a drug reservoir to treat or prevent bacterial infections can avoid many of the drawbacks of systemic administration of antibiotics. Prolonged local release of high concentrations of antibiotics may also be more effective at treating bacteria in established biofilm populations that are resistant to systemic antibiotics. A double network hydrogel comprising an organic polyphosphate pre-polymer network polymerized within a polyacrylamide network de-swelled to about 50% of its initial volume when the polyphosphate network was crosslinked with polycationic tobramycin, an aminoglycoside antibiotic. The antibiotic-loaded hydrogels contained approximately 200mg/ml of tobramycin. The hydrogels continuously released daily amounts of tobramycin above the Pseudomonas aeruginosa minimal bactericidal concentration for greater than 50days, over the pH range 6.0-8.0, and completely eradicated established P. aeruginosa biofilms within 72h in a flow cell bioreactor. The presence of physiological concentrations of Mg2+ and Ca2+ ions doubled the cumulative release over 60days. The polyphosphate hydrogels show promise as materials for sustained localized tobramycin delivery to prevent post-operative P. aeruginosa infections including infections established in biofilms. STATEMENT OF SIGNIFICANCE Polyphosphate hydrogels were loaded with high concentrations of tobramycin. The hydrogels provided sustained release of bactericidal concentrations of tobramycin for 50days, and were capable of completely eradicating P. aeruginosa in established biofilms. The hydrogels have potential for localized prevention or treatment of P. aeruginosa infections.
Collapse
|
40
|
Wang B, Liu H, Wang Z, Shi S, Nan K, Xu Q, Ye Z, Chen H. A self-defensive antibacterial coating acting through the bacteria-triggered release of a hydrophobic antibiotic from layer-by-layer films. J Mater Chem B 2017; 5:1498-1506. [PMID: 32264640 DOI: 10.1039/c6tb02614a] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Drug delivery systems play important roles in the construction of antibacterial coatings on the surfaces of biomaterials. However, excessive release of antibiotics in the environment can lead to the generation of resistant bacteria. A methoxy poly(ethylene glycol)-poly(ε-caprolactone)-chitosan (MPEG-PCL-CS) block polymer was prepared through covalent grafting of CS onto MPEG-PCL. MPEG-PCL-CS micelles were prepared and showed a high load capacity for the hydrophobic antibiotic triclosan (TCA) (∼5 wt%). Multilayer films were constructed through self-assembling TCA/MPEG-PCL-CS cationic micelles with poly(acrylic acid) (PAA). Transmission and scanning electron microscopy analyses confirmed the presence of micelles on the surface (20-40 nm). As barriers for the antibiotic, the (TCA/MPEG-PCL-CS)/PAA multilayer films contained a high load of TCA (255 μg cm-2). Importantly, the multilayer films showed both bacteria-triggered and pH-responsive release properties and can be used as self-defensive antibacterial coatings. Bacterial adhesion caused a local acidic environment and altered the permeability of the multilayer films, promoting drug release. Both in vitro and in vivo antibacterial tests indicated a high bactericidal activity of drug-loaded multilayer films against both E. coli and S. aureus.
Collapse
Affiliation(s)
- Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hartmann H, Krastev R. Biofunctionalization of surfaces using polyelectrolyte multilayers. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/bnm-2016-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractBiomaterials play a central role in modern strategies in regenerative medicine and tissue engineering to restore the structure and function of damaged or dysfunctional tissue and to direct cellular behavior. Both biologically derived and synthetic materials have been extensively explored in this context. However, most materials when implanted into living tissue initiate a host response. Modern implant design therefore aims to improve implant integration while avoiding chronic inflammation and foreign body reactions, and thus loss of the intended implant function. Directing these processes requires an in-depth understanding of the immunological processes that take place at the interface between biomaterials and the host tissue. The physicochemical properties of biomaterial surfaces (charge, charge density, hydrophilicity, functional molecular domains, etc.) are decisive, as are their stiffness, roughness and topography. This review outlines specific strategies, using polyelectrolyte multilayers to modulate the interactions between biomaterial surfaces and biological systems. The described coatings have the potential to control the adhesion of proteins, bacteria and mammalian cells. They can be used to decrease the risk of bacterial infections occurring after implantation and to achieve better contact between biological tissue and implants. In summary, these results are important for further development and modification of surfaces from different medical implants.
Collapse
|
42
|
Yu J, Meharg BM, Lee I. Adsorption and interlayer diffusion controlled growth and unique surface patterned growth of polyelectrolyte multilayers. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Xu Q, Liu H, Ye Z, Nan K, Lin S, Chen H, Wang B. Antimicrobial efficiency of PAA/(PVP/CHI) erodible polysaccharide multilayer through loading and controlled release of antibiotics. Carbohydr Polym 2016; 161:53-62. [PMID: 28189246 DOI: 10.1016/j.carbpol.2016.12.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022]
Abstract
The adhesion of bacteria and subsequent formation of biofilm on the surface of implants greatly affect the long-term use of the implants. The low molar mass gentamicin (GS) cations could hardly be directly incorporated into the multilayer films through alternately deposition with a polyanion. Herein, we have designed and constructed a (poly(acrylic acid)/(polyvinylpyrrolidone/chitosan))n ((PAA/(PVP/CHI))n) multilayer films through layer-by-layer self-assembly method. Through increasing the pH to destroy hydrogen bonding between PAA and PVP, PVP released into the solution and GS simultaneously combined with PAA through electrostatic interactions. The loading dosage of GS into the (PAA/(PVP/CHI))10 multilayer film was up to 153.84±18.64μg/cm2 and could be precisely tuned through changing the thickness of the films. The release behaviour of GS in phosphate buffer saline could also be regulated through thermal cross-linking of the films. The drug-loaded multilayer films displayed efficient against three kinds of Gram-positive and three kinds of Gram-negative bacteria and one kind of fungi, and good biocompatibility towards human lens epithelial cells. GS-loaded multilayer films-coated polydimethylsiloxane (PDMS) were compared with pristine PDMS in the rabbit subcutaneous S. aureus infection model. The antimicrobial-coated implants yielded a much lower degree of infections than pristine implants at day seven.
Collapse
Affiliation(s)
- Qingwen Xu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihua Liu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zi Ye
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Sen Lin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China.
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 32500, China.
| |
Collapse
|
44
|
Wei T, Zhan W, Cao L, Hu C, Qu Y, Yu Q, Chen H. Multifunctional and Regenerable Antibacterial Surfaces Fabricated by a Universal Strategy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30048-30057. [PMID: 27759376 DOI: 10.1021/acsami.6b11187] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Development of a versatile strategy for antibacterial surfaces is of great scientific interest and practical significance. However, few methods can be used to fabricate antibacterial surfaces on substrates of different chemistries and structures. In addition, traditional antibacterial surfaces may suffer problems related to the attached dead bacteria. Herein, antibacterial surfaces with multifunctionality and regenerability are fabricated by a universal strategy. Various substrates are first deposited with multilayered films containing guest moieties, which can be further used to incorporate biocidal host molecules, β-cyclodextrin (β-CD) derivatives modified with quaternary ammonium salt groups (CD-QAS). The resulting surfaces exhibit strong biocidal activity to kill more than 95% of attached pathogenic bacteria. Notably, almost all the dead bacteria can be easily removed from the surfaces by simple immersion in sodium dodecyl sulfate, and the regenerated surfaces can be treated with new CD-QAS for continued use. Moreover, when another functional β-CD derivative molecule is co-incorporated together with CD-QAS, the surfaces exhibit both functions simultaneously, and neither specific biofunction and antibacterial activity is compromised by the presence of the other. These results thus present a promising way to fabricate multifunctional and regenerable antibacterial surfaces on diverse materials and devices in the biomedical fields.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China
| | - Limin Cao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China
| | - Changming Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, People's Republic of China
| |
Collapse
|
45
|
Herron M, Schurr MJ, Murphy CJ, McAnulty JF, Czuprynski CJ, Abbott NL. Interfacial Stacks of Polymeric Nanofilms on Soft Biological Surfaces that Release Multiple Agents. ACS APPLIED MATERIALS & INTERFACES 2016; 8:26541-26551. [PMID: 27579573 DOI: 10.1021/acsami.6b08608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a general and facile method that permits the transfer (stacking) of multiple independently fabricated and nanoscopically thin polymeric films, each containing a distinct bioactive agent, onto soft biomedically relevant surfaces (e.g., collagen-based wound dressings). By using polyelectrolyte multilayer films (PEMs) formed from poly(allyl amine hydrochloride) and poly(acrylic acid) as representative polymeric nanofilms and micrometer-thick water-soluble poly(vinyl alcohol) sacrificial films to stack the PEMs, we demonstrate that it is possible to create stacked polymeric constructs containing multiple bioactive agents (e.g., antimicrobial and antibiofilm agents) on soft and chemically complex surfaces onto which PEMs cannot be routinely transferred by stamping. We illustrate the characteristics and merits of the approach by fabricating stacks of Ga3+ (antibiofilm agent)- and Ag+ (antimicrobial agent)-loaded PEMs as prototypical examples of agent-containing PEMs and demonstrate that the stacked PEMs incorporate precise loadings of the agents and provide flexibility in terms of tuning release rates. Specifically, we show that simultaneous release of Ga3+ and Ag+ from the stacked PEMs on collagen-based wound dressings can lead to synergistic effects on bacteria, killing and dispersing biofilms formed by Pseudomonas aeruginosa (two strains: ATCC 27853 and MPAO1) at sufficiently low loadings of agents such that cytotoxic effects on mammalian cells are avoided. The approach is general (a wide range of bioactive agents other than Ga3+ and Ag+ can be incorporated into PEMs), and the modular nature of the approach potentially allows end-user functionalization of soft biological surfaces for programmed release of multiple bioactive agents.
Collapse
Affiliation(s)
- Maggie Herron
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Michael J Schurr
- Division of General Surgery, Mountain Area Health Education Center , 509 Biltmore Avenue, Asheville, North Carolina 28801, United States
| | - Christopher J Murphy
- Department of Ophthalmology and Vision Sciences, School of Medicine and Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis , 1423 Tupper Hall, Davis, California 95616, United States
| | - Jonathan F McAnulty
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison , 2015 Linden Drive, Madison, Wisconsin 53706, United States
| | - Charles J Czuprynski
- Department of Pathobiology, School of Veterinary Medicine, University of Wisconsin-Madison , 2015 Linden Drive, Madison, Wisconsin 53706, United States
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
46
|
ter Boo GJA, Richards RG, Moriarty TF, Grijpma DW, Eglin D. Hyaluronic acid derivatives and its polyelectrolyte complexes with gentamicin as a delivery system for antibiotics. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gert-Jan A. ter Boo
- AO Research Institute Davos; AO Foundation; Clavadelerstrasse 8 CH7270 Davos Switzerland
- Department of Biomaterials Science and Technology; University of Twente; P.O. Box 217 7500 Enschede the Netherlands
| | - Robert G. Richards
- AO Research Institute Davos; AO Foundation; Clavadelerstrasse 8 CH7270 Davos Switzerland
| | - Thomas F. Moriarty
- AO Research Institute Davos; AO Foundation; Clavadelerstrasse 8 CH7270 Davos Switzerland
| | - Dirk W. Grijpma
- Department of Biomaterials Science and Technology; University of Twente; P.O. Box 217 7500 Enschede the Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, UMC Groningen; University of Groningen; Hanzeplein 1 9713 GZ Groningen the Netherlands
| | - David Eglin
- AO Research Institute Davos; AO Foundation; Clavadelerstrasse 8 CH7270 Davos Switzerland
| |
Collapse
|
47
|
Prokopović VZ, Vikulina AS, Sustr D, Duschl C, Volodkin D. Biodegradation-Resistant Multilayers Coated with Gold Nanoparticles. Toward a Tailor-made Artificial Extracellular Matrix. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24345-9. [PMID: 27607839 DOI: 10.1021/acsami.6b10095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polymer multicomponent coatings such as multilayers mimic an extracellular matrix (ECM) that attracts significant attention for the use of the multilayers as functional supports for advanced cell culture and tissue engineering. Herein, biodegradation and molecular transport in hyaluronan/polylysine multilayers coated with gold nanoparticles were described. Nanoparticle coating acts as a semipermeable barrier that governs molecular transport into/from the multilayers and makes them biodegradation-resistant. Model protein lysozyme (mimics of ECM-soluble signals) diffuses into the multilayers as fast- and slow-diffusing populations existing in an equilibrium. Such a composite system may have high potential to be exploited as degradation-resistant drug-delivery platforms suitable for cell-based applications.
Collapse
Affiliation(s)
- Vladimir Z Prokopović
- Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
- Institute for Biochemistry and Biology, University of Potsdam , Maulbeerallee 2, 14469 Potsdam, Germany
| | - Anna S Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - David Sustr
- Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
- Institute for Biochemistry and Biology, University of Potsdam , Maulbeerallee 2, 14469 Potsdam, Germany
| | - Claus Duschl
- Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| | - Dmitry Volodkin
- Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
- School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS, United Kingdom
| |
Collapse
|
48
|
Liu Q, Li W, Wang H, Newby BMZ, Cheng F, Liu L. Amino Acid-Based Zwitterionic Polymer Surfaces Highly Resist Long-Term Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7866-7874. [PMID: 27397718 DOI: 10.1021/acs.langmuir.6b01329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The surfaces or coatings that can effectively suppress bacterial adhesion in the long term are of critical importance for biomedical applications. Herein, a group of amino acid-based zwitterionic polymers (pAAZ) were investigated for their long-term resistance to bacterial adhesion. The polymers were derived from natural amino acids including serine, ornithine, lysine, aspartic acid, and glutamic acid. The pAAZ brushes were grafted on gold via the surface-initiated photoiniferter-mediated polymerization (SI-PIMP). Results show that the pAAZ coatings highly suppressed adsorption from the undiluted human serum and plasma. Long-term bacterial adhesion on these surfaces was investigated, using two kinds of representative bacteria [Gram-positive Staphylococcus epidermidis and Gram-negative Pseudomonas aeruginosa] as the model species. Results demonstrate that the pAAZ surfaces were highly resistant to bacterial adhesion after culturing for 1, 5, 9, or even 14 days, representing at least 95% reduction at all time points compared to the control unmodified surfaces. The bacterial accumulation on the pAAZ surfaces after 9 or 14 days was even lower than on the surfaces grafted with poly[poly(ethyl glycol) methyl ether methacrylate] (pPEGMA), one of the most common antifouling materials known to date. The pAAZ brushes also exhibited excellent structural stability in phosphate-buffered saline after incubation for 4 weeks. The bacterial resistance and stability of pAAZ polymers suggest they have good potential to be used for those applications where long-term suppression to bacterial attachment is desired.
Collapse
Affiliation(s)
- Qingsheng Liu
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Wenchen Li
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Hua Wang
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Bi-Min Zhang Newby
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Fang Cheng
- School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian, Liaoning, China 116024
| | - Lingyun Liu
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
49
|
Dorner F, Malek-Luz A, Saar JS, Bonaus S, Al-Ahmad A, Lienkamp K. Synthetic Mimics of Antimicrobial Peptides (SMAMPs) in Layer-by-Layer Architectures: Possibilities and Limitations. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Franziska Dorner
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Alicia Malek-Luz
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Julia S. Saar
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Sebastian Bonaus
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology; Center for Dental Medicine of the Albert-Ludwigs-Universität; Hugstetter Str. 55 79106 Freiburg Germany
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group; Department of Microsystems Engineering (IMTEK) and Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT); Georges-Köhler-Allee 103 79110 Freiburg Germany
| |
Collapse
|
50
|
Ergün B, De Cola L, Galla HJ, Kehr NS. Surface-Mediated Stimuli Responsive Delivery of Organic Molecules from Porous Carriers to Adhered Cells. Adv Healthc Mater 2016; 5:1588-92. [PMID: 27114067 DOI: 10.1002/adhm.201600098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/18/2016] [Indexed: 01/09/2023]
Abstract
The alternating layer-by-layer deposition of oppositely charged polyelectrolytes on fluorescence-dye-(Hst)-loaded zeolites L ((Hst) Zeo-PSS/PLL) is described. The arrays and nanocomposite (NC) hydrogels of (Hst) Zeo-PSS/PLL are prepared. The subsequent cell experiments show the potential application of arrays and NC hydrogels of (Hst) Zeo-PSS/PLL as alternative 2D- and 3D-surfaces, respectively, for 2D- and 3D-surface-mediated controlled organic molecules delivery applications.
Collapse
Affiliation(s)
- Bahar Ergün
- Department of Chemistry; Biochemistry Division; Hacettepe University; 06800 Ankara Turkey
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires; 8 allée Gaspard Monge 67083 Strasbourg France
| | - Hans-Joachim Galla
- Institut für Biochemie; Westfälische Wilhelms-Universität Münster; Wilhelm-Klemm-Str.2 D-48149 Münster Germany
| | - Nermin Seda Kehr
- Physikalisches Institut and CeNTech; Westfälische Wilhelms-Universität Münster; Heisenbergstraße 11 D-48149 Münster Germany
| |
Collapse
|