1
|
Chandel AKS, Sreedevi Madhavikutty A, Okada S, Qiming Z, Inagaki NF, Ohta S, Ito T. Injectable, shear-thinning, photocrosslinkable, and tissue-adhesive hydrogels composed of diazirine-modified hyaluronan and dendritic polyethyleneimine. Biomater Sci 2024; 12:1454-1464. [PMID: 38223981 DOI: 10.1039/d3bm01279d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
In the present study, we report the first synthesis of diazirine-modified hyaluronic acid (HA-DAZ). In addition, we also produced a precursor polymer solution composed of HA-DAZ and dendritic polyethyleneimine (DPI) that showed strong shear-thinning properties. Furthermore, its viscosity was strongly reduced (i.e., from 5 × 105 mPa s at 10-3 s-1 to 6 × 101 mPa s at 103 s-1), substantially, which enhanced solution injectability using a 21 G needle. After ultraviolet irradiation at 365 nm and 6 mW cm-2, the HA-DAZ/DPI solution achieved rapid gelation, as measured using the stirring method, and its gelation time decreased from 200 s to 9 s as the total concentrations of HA-DAZ and DPI increased. Following UV irradiation, the storage modulus increased from 40 to 200 Pa. In addition, reversible sol-gel transition and self-healing properties were observed even after UV irradiation. This suggests that the HA-DAZ/DPI hydrogel was crosslinked in multiple ways, i.e., via covalent bonding between the diazirine and amine groups and via intermolecular interactions, including hydrogen bonding, electrostatic interactions, and hydrophobic interactions. A lap shear test showed that the HA-DAZ/DPI hydrogel exhibited strong adhesiveness as a fibrin glue following UV irradiation. Finally, the HA-DAZ/DPI hydrogel showed higher tissue reinforcement than fibrin glue in an ex vivo burst pressure test of the porcine esophageal mucosa.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Athira Sreedevi Madhavikutty
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Saki Okada
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Zhang Qiming
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Natsuko F Inagaki
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Seiichi Ohta
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Radiology and Biomedical Engineering, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Polyethyleneimine-Based Drug Delivery Systems for Cancer Theranostics. J Funct Biomater 2022; 14:jfb14010012. [PMID: 36662059 PMCID: PMC9862060 DOI: 10.3390/jfb14010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
With the development of nanotechnology, various types of polymer-based drug delivery systems have been designed for biomedical applications. Polymer-based drug delivery systems with desirable biocompatibility can be efficiently delivered to tumor sites with passive or targeted effects and combined with other therapeutic and imaging agents for cancer theranostics. As an effective vehicle for drug and gene delivery, polyethyleneimine (PEI) has been extensively studied due to its rich surface amines and excellent water solubility. In this work, we summarize the surface modifications of PEI to enhance biocompatibility and functionalization. Additionally, the synthesis of PEI-based nanoparticles is discussed. We further review the applications of PEI-based drug delivery systems in cancer treatment, cancer imaging, and cancer theranostics. Finally, we thoroughly consider the outlook and challenges relating to PEI-based drug delivery systems.
Collapse
|
3
|
Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022; 10:5032-5053. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) holds promise for the early clinical diagnosis of various diseases, but most clinical MR techniques require the use of a contrast medium. Several nanomaterial (NM) mediated contrast agents (CAs) are widely used as T1- and T2-based MR contrast agents for clinical and non-clinical applications. Unfortunately, most NM-based CAs are toxic or non-biocompatible, restricting their practical/clinical applications. Therefore, the development of nontoxic and biocompatible CAs for clinical MRI diagnosis is highly desired. To this end, several biocompatible and biomimetic strategies have been developed to offer long blood circulation time, significant biocompatibility, in vivo biodistribution and high contrast ability for efficient imaging. However, detailed review reports on biocompatible NMs, specifically for MR imaging have not yet been summarized. Thus, in the present review we summarize various surface coating strategies (such as polymers, proteins, cell membranes, etc.) to achieve biocompatible NPs, providing a detailed discussion of advances and future prospects for safe MRI imaging.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Eng-Yen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
4
|
Targeted delivery of miR-218 via decorated hyperbranched polyamidoamine for liver cancer regression. Int J Pharm 2021; 610:121256. [PMID: 34732362 DOI: 10.1016/j.ijpharm.2021.121256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of most common causes of cancer death worldwide. MicroRNA (miRNA) replacement gene therapy is a novel approach for HCC management. MiR-218 is a promising tumor suppressor miRNA that is down-regulated in HCC. Here, our aim was the targeted delivery of miR-218 expressing DNA plasmid (pmiR-218) to suppress HCC in vitro and in vivo. Hyperbranched polyamidoamine was synthesized via simple and economically one-pot reaction followed by decoration with lactobionic acid (LA-PAMAM) to selectively deliver and restore miR-218 expression in HCC. In vitro cytotoxicity investigations revealed the high biocompatibility of LA-PAMAM. Furthermore, decoration of hyperbranched polymer with LA moieties enabled LA-PAMAM to deliver pmiR-218 more efficiently to HepG2 cells compared to both PMAMA and naked pmiR-218. Such efficient delivery of miR-218 resulted in suppression of HepG2 proliferation and down-regulation of its oncogenic HOXA1 target. In vivo, LA-PAMAM/pmiR-218 treatment of HCC induced by DEN and CCl4 in mice leads to an obvious decrease in the number and size of HCC nodules. In addition, LA-PAMAM/pmiR-218 significantly improved the liver histological features, as well as down-regulated the HOXA1 in liver tissue. In conclusion, this study showed the potential of LA-PAMAM carrier for the targeted delivery of tumor suppressor miR-218 as a therapeutic candidate for HCC.
Collapse
|
5
|
Lai TH, Keperscha B, Qiu X, Voit B, Appelhans D. Long-Term Retarded Release for the Proteasome Inhibitor Bortezomib through Temperature-Sensitive Dendritic Glycopolymers as Drug Delivery System from Calcium Phosphate Bone Cement. Macromol Rapid Commun 2021; 42:e2100083. [PMID: 34048124 DOI: 10.1002/marc.202100083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/24/2021] [Indexed: 12/22/2022]
Abstract
For the local treatment of bone defects, highly adaptable macromolecular architectures are still required as drug delivery system (DDS) in solid bone substitute materials. Novel DDS fabricated by host-guest interactions between β-cyclodextrin-modified dendritic glycopolymers and adamantane-modified temperature-sensitive polymers for the proteasome inhibitor bortezomib (BZM) is presented. These DDS induce a short- and long-term (up to two weeks) retarded release of BZM from calcium phosphate bone cement (CPC) in comparison to a burst release of the drug alone. Different release parameters of BZM/DDS/CPC are evaluated in phosphate buffer at 37 °C to further improve the long-term retarded release of BZM. This is achieved by increasing the amount of drug (50-100 µg) and/or DDS (100-400 µg) versus CPC (1 g), by adapting the complexes better to the porous bone cement environment, and by applying molar ratios of excess BZM toward DDS with 1:10, 1:25, and 1:100. The temperature-sensitive polymer shells of BZM/DDS complexes in CPC, which allow drug loading at room temperature but are collapsed at body temperature, support the retarding long-term release of BZM from DDS/CPC. Thus, the concept of temperature-sensitive DDS for BZM/DDS complexes in CPC works and matches key points for a local therapy of osteolytic bone lesions.
Collapse
Affiliation(s)
- Thu Hang Lai
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.,Department of Research and Development, ROTOP Pharmaka Ltd., Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Bettina Keperscha
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.,Organic Chemistry of Polymers, Technische Universität, Dresden, 01062, Germany
| | - Xianping Qiu
- Hubei Institute of Aerospace Chemotechnology, 1 Chunyuan Road, Fancheng District, Xiangyang, 441003, P. R. China
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.,Organic Chemistry of Polymers, Technische Universität, Dresden, 01062, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany
| |
Collapse
|
6
|
Salem SR, Sullivan JL, Topham PD, Tighe BJ. Supramolecular host–guest carrier based on maltose-modified hyperbranched polymer and polyelectrolyte multilayers: toward stable and reusable glucose biosensor. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02902-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Amirova A, Kirila T, Kurlykin M, Tenkovtsev A, Filippov A. Influence of Cross-Linking Degree on Hydrodynamic Behavior and Stimulus-Sensitivity of Derivatives of Branched Polyethyleneimine. Polymers (Basel) 2020; 12:polym12051085. [PMID: 32397458 PMCID: PMC7284568 DOI: 10.3390/polym12051085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Cross-linked derivatives of acylated branched polyethyleneimine containing 2-isopropyl-2-oxazoline units were investigated in chloroform and aqueous solutions using methods of molecular hydrodynamics, static and dynamic light scattering, and turbidity. The studied samples differed by the cross-linker content. The solubility of the polyethyleneimines studied worsened with the increasing mole fraction of the cross-linker. Cross-linked polyethyleneimines were characterized by small dimensions in comparison with linear analogs; the increase in the cross-linker content leads to a growth of intramolecular density. At low temperatures, the aqueous solutions of investigated samples were molecularly dispersed, and the large aggregates were formed due to the dehydration of oxazoline units and the formation of intermolecular hydrogen bonds. For the cross-linked polyethyleneimines, the phase separation temperatures were lower than that for linear and star-shaped poly-2-isopropyl-2-oxazolines. The low critical solution temperature of the solutions of studied polymers decreased with the increasing cross-linker mole fraction. The time of establishment of the constant characteristics of the studied solutions after the jump-like change in temperature reaches 3000 s, which is at least two times longer than for linear polymers.
Collapse
|
8
|
Diverse Surface Chemistry of Cobalt Ferrite Nanoparticles to Optimize Copper(II) Removal from Aqueous Media. MATERIALS 2020; 13:ma13071537. [PMID: 32230764 PMCID: PMC7177944 DOI: 10.3390/ma13071537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 01/27/2023]
Abstract
Water pollution by heavy metals is one of the most serious worldwide environmental issues. With a focus on copper(II) ions and copper complex removal, in the present study, ultra-small primary CoFe2O4 magnetic nanoparticles (MNPs) coated with octadecylamine (ODA) of adequate magnetization were solvothermally prepared. The surface modification of the initial MNPs was adapted via three different chemical approaches based on amine and/or carboxylate functional groups: (i) the deposition of polyethylimide (PEI), (ii) covalent binding with diethylenetriaminepentaacetic acid (DTPA), and (iii) conjugation with both PEI and DTPA, respectively. FT-IR, TGA, and DLS measurements confirmed that PEI or/and DTPA were successfully functionalized. The percentage of the free amine (−NH2) groups was also estimated. Increased magnetization values were found in case of PEI and DTPA-modified MNPs that stemmed from the adsorbed amine or oxygen ligands. Comparative UV–Vis studies for copper(II) ion removal from aqueous solutions were conducted, and the effect of time on the adsorption capacity was analyzed. The PEI-modified particles exhibited the highest adsorption capacity (164.2 mg/g) for copper(II) ions and followed the pseudo-second-order kinetics, while the polynuclear copper(II) complex Cux(DTPA)y was also able to be immobilized. The nanoadsorbents were quickly isolated from the solution by magnetic separation and regenerated easily by acidic treatment.
Collapse
|
9
|
Yin D, Wen H, Wu G, Li S, Liu C, Lu H, Liang D. PEGylated gene carriers in serum under shear flow. SOFT MATTER 2020; 16:2301-2310. [PMID: 32052004 DOI: 10.1039/c9sm02397f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The behaviour of drug/gene carriers in the blood stream under shear is still a puzzle. In this work, using the complexes formed by 21 bp DNA and poly(ethylene glycol)-b-poly(l-lysine) (PEG-PLL) of varying PEG lengths, we studied the dynamic behaviour of the complexes in the presence of fetal bovine serum (FBS) and under flow at different shear rates, a condition mimicking the internal physical environment of blood vessels. The PEG5k-PLL/DNA complex possesses a dense DNA/PLL core and a loose PEG5k protecting layer. The PEGylated DNA complexes exhibit multiple responses to external shear in the presence of FBS. The loose PEG5k layer is firstly disturbed at a shear rate below 30 s-1. The exposure of the charged core to the environment results in a secondary aggregation of the complex with FBS. The size of the aggregate is limited to a certain range as the shear rate increases to 50 s-1. The dense DNA/PLL core starts to withstand the shear force as the shear rate reaches 500 s-1. The reorganization of the core to accommodate more serum molecules leads to tertiary aggregation of the complexes. If PEG cannot form a valid layer around the complex, as in PEG2k-PLL/DNA, the complex forms an aggregate even without shear, and the first shear dependent region is missing. If the PEG layer is too stable around the complex, as in PEG10k-PLL/DNA, no tertiary aggregation occurs. The mechanism of shear on the behaviour of delivery particles in serum helps to design gene carriers with high efficacy.
Collapse
Affiliation(s)
- Dongxiao Yin
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Hao Wen
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Shaolu Li
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chenyang Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Glucose-modified carbosilane dendrimers: Interaction with model membranes and human serum albumin. Int J Pharm 2020; 579:119138. [PMID: 32061725 DOI: 10.1016/j.ijpharm.2020.119138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
Glycodendrimers are a novel group of dendrimers (DDMs) characterized by surface modifications with various types of glycosides. It has been shown previously that such modifications significantly decrease the cytotoxicity of DDMs. Here, we present an investigation of glucose-modified carbosilane DDMs (first-third-generation, DDM1-3Glu) interactions with two models of biological structures: lipid membranes (liposomes) and serum protein (human serum albumin, HSA). The changes in lipid membrane fluidity with increasing concentration of DDMs was monitored by spectrofluorimetry and calorimetry methods. The influence of glycodendrimers on serum protein was investigated by monitoring changes in protein fluorescence intensity (fluorescence quenching) and as protein secondary structure alterations by circular dichroism spectrometry. Generally, all generations of DDMGlu induced a decrease of membrane fluidity and interacted weakly with HSA. Interestingly, in contrast to other dendritic type polymers, the extent of the DDM interaction with both biological models was not related to DDM generation. The most significant interaction with protein was shown in the case of DDM2Glu, whereas DDM1Glu induced the highest number of changes in membrane fluidity. In conclusion, our results suggest that the flexibility of a DDM molecule, as well as its typical structure (hydrophobic interior and hydrophilic surface) along with the formation of larger aggregates of DDM2-3Glu, significantly affect the type and extent of interaction with biological structures.
Collapse
|
11
|
Versatile titanium dioxide nanoparticles prepared by surface-grown polymerization of polyethylenimine for photodegradation and catalytic C C bond forming reactions. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Affiliation(s)
- Azis Adharis
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katja Loos
- Macromolecular Chemistry and New Polymeric MaterialsZernike Institute for Advanced MaterialsUniversity of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
13
|
Fingernagel J, Boye S, Kietz A, Höbel S, Wozniak K, Moreno S, Janke A, Lederer A, Aigner A, Temme A, Voit B, Appelhans D. Mono- and Polyassociation Processes of Pentavalent Biotinylated PEI Glycopolymers for the Fabrication of Biohybrid Structures with Targeting Properties. Biomacromolecules 2019; 20:3408-3424. [DOI: 10.1021/acs.biomac.9b00667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Fingernagel
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - André Kietz
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Sabrina Höbel
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Katarzyna Wozniak
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Andreas Janke
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| | - Albena Lederer
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Achim Aigner
- Clinical Pharmacology, Faculty of Medicine, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany
| | - Achim Temme
- Experimental Neurosurgery/Tumor Immunology, TU Dresden, D-01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner site Dresden, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden, Germany
| |
Collapse
|
14
|
Schulze F, Keperscha B, Appelhans D, Rösen-Wolff A. Immunomodulatory Effects of Dendritic Poly(ethyleneimine) Glycoarchitectures on Human Multiple Myeloma Cell Lines, Mesenchymal Stromal Cells, and in Vitro Differentiated Macrophages for an Ideal Drug Delivery System in the Local Treatment of Multiple Myeloma. Biomacromolecules 2019; 20:2713-2725. [DOI: 10.1021/acs.biomac.9b00475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Felix Schulze
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Bettina Keperscha
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
15
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Mignani S, Majoral JP, Shi X. Targeted tumor dual mode CT/MR imaging using multifunctional polyethylenimine-entrapped gold nanoparticles loaded with gadolinium. Drug Deliv 2018; 25:178-186. [PMID: 29301434 PMCID: PMC6058675 DOI: 10.1080/10717544.2017.1422299] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022] Open
Abstract
We report the construction and characterization of polyethylenimine (PEI)-entrapped gold nanoparticles (AuNPs) chelated with gadolinium (Gd) ions for targeted dual mode tumor CT/MR imaging in vivo. In this work, polyethylene glycol (PEG) monomethyl ether-modified PEI was sequentially modified with Gd chelator and folic acid (FA)-linked PEG (FA-PEG) was used as a template to synthesize AuNPs, followed by Gd(III) chelation and acetylation of the remaining PEI surface amines. The formed FA-targeted PEI-entrapped AuNPs loaded with Gd (FA-Gd-Au PENPs) were well characterized in terms of structure, composition, morphology, and size distribution. We show that the FA-Gd-Au PENPs with an Au core size of 3.0 nm are water dispersible, colloidally stable, and noncytotoxic in a given concentration range. Thanks to the coexistence of Au and Gd elements within one nanoparticulate system, the FA-Gd-Au PENPs display a better X-ray attenuation property than clinical iodinated contrast agent (e.g. Omnipaque) and reasonable r1 relaxivity (1.1 mM-1s-1). These properties allow the FA-targeted particles to be used as an efficient nanoprobe for dual mode CT/MR imaging of tumors with excellent FA-mediated targeting specificity. With the demonstrated organ biocompatibility, the designed FA-Gd-Au PENPs may hold a great promise to be used as a nanoprobe for CT/MR dual mode imaging of different FA receptor-overexpressing tumors.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghaiP. R. China
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua UniversityShanghaiP. R. China
| | - Zuogang Xiong
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Peng Wang
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua UniversityShanghaiP. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Mingwu Shen
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua UniversityShanghaiP. R. China
| | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris CitéParisFrance
- CQM – Centro de Química da Madeira, MMRG, Universidade da MadeiraFunchalPortugal
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRSToulouseFrance
- UPS, INPT, Université de ToulouseToulouseFrance
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghaiP. R. China
- State Key Laboratory for Modifcation of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua UniversityShanghaiP. R. China
- CQM – Centro de Química da Madeira, MMRG, Universidade da MadeiraFunchalPortugal
| |
Collapse
|
16
|
Zhu J, Li H, Xiong Z, Shen M, Conti PS, Shi X, Chen K. Polyethyleneimine-Coated Manganese Oxide Nanoparticles for Targeted Tumor PET/MR Imaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34954-34964. [PMID: 30234287 PMCID: PMC7469916 DOI: 10.1021/acsami.8b12355] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A Mn3O4 nanoparticle (NP)-based dual-modality probe has been developed for tumor positron emission tomography (PET)/magnetic resonance (MR) imaging. The dual-modality imaging probe was constructed by modifying multifunctional polyethyleneimine (PEI)-coated Mn3O4 NPs with folic acid (FA), followed with the radiolabeling with 64Cu. The formed imaging probe was utilized for PET/MR imaging of human cervical cancer mouse xenografts, which overexpress folate receptor (FR). The PEI-coated Mn3O4 NPs were synthesized using a solvothermal approach via decomposition of acetylacetone manganese. Multifunctional groups, including fluorescein isothiocyanate (FI), PEGylated FA, and NOTA chelator, were then sequentially loaded onto the surface of the amine groups of the Mn3O4 NPs. The remaining PEI amines were neutralized by the acetylation reaction. The resulting NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs were fully characterized and evaluated in vitro and successfully radiolabeled with 64Cu for tumor PET/MR imaging in small animals. In vivo blocking experiments were performed to determine the FR binding specificity of NPs. PET imaging results demonstrated that 64Cu-labeled Mn3O4 NPs display good tracer uptake in the FR-expressing HeLa tumors (tumor-to-muscle (T/M) ratio: 5.35 ± 0.31 at 18 h postinjection (pi)) and substantially reduced tracer uptake in the FR-blocked HeLa tumors (T/M ratio: 2.78 ± 0.68 at 18 h pi). The ex vivo data, including PET imaging and biodistribution, further confirmed the tumor binding specificity of the 64Cu-labeled Mn3O4 NPs. Moreover, the FR-targeted Mn3O4 NPs exhibited efficient T1-weighted MR imaging (MRI), leading to the precise tumor MRI at 18 h pi. PET/MR imaging with the 64Cu-NOTA-FA-FI-PEG-PEI-Ac-Mn3O4 NPs may offer a new quantitative approach to precisely measure the FR in tumors. The strategy of incorporating PEI nanotechnology into the construction of new biomaterials may be applied for the construction of novel nanoplatforms for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jingyi Zhu
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hongsheng Li
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Peter S. Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Corresponding Authors:. Tel: +86-21-67792656. Fax: +86-21-67792306 804 (X.S.)., . Tel: +1-323-442-3858. Fax: +1-323-442-3253 (K.C.)
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
- Corresponding Authors:. Tel: +86-21-67792656. Fax: +86-21-67792306 804 (X.S.)., . Tel: +1-323-442-3858. Fax: +1-323-442-3253 (K.C.)
| |
Collapse
|
17
|
Interactions of bioactive molecules with thin dendritic glycopolymer layers. Biointerphases 2018; 13:06D405. [PMID: 30227717 DOI: 10.1116/1.5042703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The authors report on highly swellable, stable layers of spherical dendritic glycopolymers, composed of hyperbranched poly(ethylene imine) (PEI) as core and two different maltose shells (A = dense shell and B = open shell). These glycopolymers are cross-linked and attached with poly(ethylene-alt-maleic anhydride) (PEMA) or citric acid on SiOx substrates. The swelling and adsorption of biomolecules were analyzed by spectroscopic ellipsometry and quartz crystal microbalance with dissipation. The swelling degree and complexation with the drug molecule adenosine triphosphate (ATP) were found to be up to 10 times higher for dendritic glycopolymer layers cross-linked with PEMA than for layers cross-linked with citric acid. ATP complexation by electrostatic interaction with the PEI cores was confirmed by x-ray photoelectron spectroscopy analysis. Complexation led to partial collapsing, stiffening, and increase of polymer layer viscosity of the PEMA cross-linked layers. From modeling of ellipsometric data, it was deduced that ATP complexation preferably takes place at the polymer layer-solution interface. The size effect of the adsorbates was investigated by comparing ATP complexation with the adsorption of larger vitamin B12 and human serum albumin (HSA) protein. PEI-Mal A cross-linked with PEMA was found to be resistant toward B12 and HSA adsorption due to the diffusion barrier of the polymer layer. Thus, the authors present potentially biocompatible polymer surfaces for drug loading and their surface supported release.
Collapse
|
18
|
Quadir M, Fehse S, Multhaup G, Haag R. Hyperbranched Polyglycerol Derivatives as Prospective Copper Nanotransporter Candidates. Molecules 2018; 23:E1281. [PMID: 29861466 PMCID: PMC6100100 DOI: 10.3390/molecules23061281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/18/2022] Open
Abstract
Hyperbranched polyglycerol (hPG) has been used as a multivalent scaffold to develop a series of nanocarriers capable of high-affinity encapsulation of copper (Cu). A rationally selected set of Cu-complexing motifs has been conjugated to hPG hydroxyl groups to render the constructs potentially usable as exogenous sources of Cu for addressing different pathological conditions associated with Cu-deficiency. We have utilized a newly discovered route to attach Cu-binding domains exclusively within a hPG core by selective differentiation between the primary and secondary hydroxyl groups of the polyol. These hPG-derivatives were found to form a stable complex with Cu ions depending on the type of immobilized ligands and corresponding degree of functionalization. In addition, these Cu-bearing nano-complexes demonstrated moderately cationic surface charge resulting in adjustable protein-binding characteristics and low cellular toxicity profile. We envision that these Cu-loaded hPG nanocarriers can be used as a stable platform to transport the metal ion across the systemic circulation to supply bioavailable quantity of Cu in disease-afflicted tissues.
Collapse
Affiliation(s)
- Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58105, USA.
| | - Susanne Fehse
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
| | - Gerhard Multhaup
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
| |
Collapse
|
19
|
Toxicological investigations of "naked" and polymer-entrapped AOT-based gold nanotriangles. Colloids Surf B Biointerfaces 2018; 167:560-567. [PMID: 29734066 DOI: 10.1016/j.colsurfb.2018.04.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 02/02/2023]
Abstract
Negatively charged ultrathin gold nanotriangles (AuNTs) were synthesized in a vesicular dioctyl sodium sulfosuccinate (AOT)/phospholipid-based template phase. These "naked" AuNTs with localized surface plasmon resonances in the NIR region at about 1300 nm and special photothermal properties are of particular interest for imaging and hyperthermia of cancerous tissues. For these kinds of applications the toxicity and the cellular uptake of the AuNTs is of outstanding importance. Therefore, this study focuses on the toxicity of "naked" AOT-stabilized AuNTs compared to polymer-coated AuNTs. Polymeric coating consisted of non-modified hyperbranched poly(ethyleneimine) (PEI), maltose-modified poly(ethyleneimine) (PEI-Mal) and heparin. The toxicological experiments were carried out with two different cell lines (embryonic kidney carcinoma cell line HEK293T and NK-cell leukemia cell line YTS). This study revealed that the heparin-coating of AuNTs improved biocompatibility by a factor of 50 when compared to naked AuNTs. Of note, the highest nontoxic concentration of the AuNTs coated with PEI and PEI-Mal is drastically decreased. Overall, this is mainly triggered by the different surface charges of polymeric coatings. Therefore, AuNTs coated with heparin were selected to carry out uptake studies. Their promising high biocompatibility and cellular uptake may open future studies in the field of biomedical applications.
Collapse
|
20
|
Gorzkiewicz M, Buczkowski A, Appelhans D, Voit B, Pułaski Ł, Pałecz B, Klajnert-Maculewicz B. Poly(propyleneimine) glycodendrimers non-covalently bind ATP in a pH- and salt-dependent manner - model studies for adenosine analogue drug delivery. Int J Pharm 2018; 544:83-90. [PMID: 29653214 DOI: 10.1016/j.ijpharm.2018.03.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
Abstract
Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues.
Collapse
Affiliation(s)
- Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Adam Buczkowski
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, 165 Pomorska St., 90-236 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Łukasz Pułaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa St., 93-232 Lodz, Poland
| | - Bartłomiej Pałecz
- Department of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, 165 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland; Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
21
|
Gorzkiewicz M, Jatczak-Pawlik I, Studzian M, Pułaski Ł, Appelhans D, Voit B, Klajnert-Maculewicz B. Glycodendrimer Nanocarriers for Direct Delivery of Fludarabine Triphosphate to Leukemic Cells: Improved Pharmacokinetics and Pharmacodynamics of Fludarabine. Biomacromolecules 2018; 19:531-543. [PMID: 29323872 DOI: 10.1021/acs.biomac.7b01650] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fludarabine, a nucleoside analogue antimetabolite, has complicated pharmacokinetics requiring facilitated transmembrane transport and intracellular conversion to triphosphate nucleotide form (Ara-FATP), causing it to be susceptible to emergence of drug resistance. We are testing a promising strategy to improve its clinical efficacy by direct delivery of Ara-FATP utilizing a biocompatible glycodendrimer nanocarrier system. Here, we present results of a proof-of-concept experiment in several in vitro-cultured leukemic cell lines (CCRF, THP-1, U937) using noncovalent complexes of maltose-modified poly(propyleneimine) dendrimer and fludarabine triphosphate. We show that Ara-FATP has limited cytotoxic activity toward investigated cells relative to free nucleoside (Ara-FA), but complexation with the glycodendrimer (which does not otherwise influence cellular metabolism) drastically increases its toxicity. Moreover, we show that transport via hENT1 is a limiting step in Ara-FA toxicity, while complexation with dendrimer allows Ara-FATP to kill cells even in the presence of a hENT1 inhibitor. Thus, the use of glycodendrimers for drug delivery would allow us to circumvent naturally occurring drug resistance due to decreased transporter activity. Finally, we demonstrate that complex formation does not change the advantageous multifactorial intracellular pharmacodynamics of Ara-FATP, preserving its high capability to inhibit DNA and RNA synthesis and induce apoptosis via the intrinsic pathway. In comparison to other nucleoside analogue drugs, fludarabine is hereby demonstrated to be an optimal candidate for maltose glycodendrimer-mediated drug delivery in antileukemic therapy.
Collapse
Affiliation(s)
| | | | | | - Łukasz Pułaski
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS , 106 Lodowa Street, 93-232 Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | | |
Collapse
|
22
|
Albuquerque LJC, Alavarse AC, Carlan da Silva MC, Zilse MS, Barth MT, Bellettini IC, Giacomelli FC. Sweet Vector for Gene Delivery: the Sugar Decoration of Polyplexes Reduces Cytotoxicity with a Balanced Effect on Gene Expression. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/09/2017] [Indexed: 01/22/2023]
Affiliation(s)
| | - Alex C. Alavarse
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André 09210-580 Brazil
| | - Maria C. Carlan da Silva
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André 09210-580 Brazil
| | - Morgana S. Zilse
- Departamento de Ciências Exatas e Educação; Universidade Federal de Santa Catarina; Blumenau 89036-256 Brazil
| | - Maitê T. Barth
- Departamento de Ciências Exatas e Educação; Universidade Federal de Santa Catarina; Blumenau 89036-256 Brazil
| | - Ismael C. Bellettini
- Departamento de Ciências Exatas e Educação; Universidade Federal de Santa Catarina; Blumenau 89036-256 Brazil
| | - Fernando C. Giacomelli
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; Santo André 09210-580 Brazil
| |
Collapse
|
23
|
Wang Y, Xiong Z, He Y, Zhou B, Qu J, Shen M, Shi X, Xia J. Optimization of the composition and dosage of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool, tumor, and lymph node CT imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 83:9-16. [PMID: 29208291 DOI: 10.1016/j.msec.2017.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 02/01/2023]
Abstract
Gold nanoparticles (Au NPs) with a high X-ray attenuation coefficient have a good potential in CT imaging applications. Here, we report the design and synthesis of Au NPs entrapped within polyethylene glycol (PEG)-modified branched polyethyleneimine (PEI) with varying the initial Au salt/PEI molar ratios and with the remaining PEI surface amines being acetylated for blood pool, lung tumor and lymph node CT imaging. The formed unacetylated and acetylated PEGylated PEI-entrapped Au NPs (Au PENPs) were characterized via different methods. We show that the PEGylated PEI is an effective template to entrap Au NPs having a uniform size ranging from 1.7nm to 4.4nm depending on the Au salt/PEI molar ratio. After optimization of the composition-dependent X-ray attenuation effect, we then selected {(Au0)100-PEI·NHAc-mPEG} NPs for biological testing and show that the particles have good cytocompatibility in the given concentration range and can be used as a contrast agent for effective CT imaging of the blood pool of rats, lung cancer model of nude mice and lymph node of rabbits after intravenous injection. For each application, the injected dosage of the particles was optimized. In addition, the {(Au0)100-PEI·NHAc-mPEG} NPs could be excreted out of the body with time. Our results indicate that the formed Au PENPs with an appropriate composition and dosage hold a great promise to be used for CT imaging of various biosystems.
Collapse
Affiliation(s)
- Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, People's Republic of China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yao He
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, People's Republic of China
| | - Benqing Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Jiao Qu
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, People's Republic of China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China; CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal, Portugal.
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, People's Republic of China.
| |
Collapse
|
24
|
Dzema D, Kartsova L, Kapizova D, Appelhans D. New Approach to the Formation of Physically Adsorbed Capillary Coatings Consisting of Hyperbranched Poly(Ethylene Imine) with a Maltose Shell to Enhance the Separation of Catecholamines and Proteins in CE. Chromatographia 2017. [DOI: 10.1007/s10337-017-3390-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Acebo C, Ramis X, Serra A. Improved epoxy thermosets by the use of poly(ethyleneimine) derivatives. PHYSICAL SCIENCES REVIEWS 2017. [DOI: 10.1515/psr-2016-0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Epoxy resins are commonly used as thermosetting materials due to their excellent mechanical properties, high adhesion to many substrates and good heat and chemical resistances. This type of thermosets is intensively used in a wide range of fields, where they act as fiber-reinforced materials, general-purpose adhesives, high-performance coatings and encapsulating materials. These materials are formed by the chemical reaction of multifunctional epoxy monomers forming a polymer network produced through an irreversible way. In this article the improvement of the characteristics of epoxy thermosets using different hyperbranched poly(ethyleneimine) (PEI) derivatives will be explained.
Collapse
|
26
|
Superporous hyaluronic acid cryogel composites embedding synthetic polyethyleneimine microgels and Halloysite Nanotubes as natural clay. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
DNA polyplexes with dendritic glycopolymer-entrapped gold nanoparticles. Colloids Surf B Biointerfaces 2017; 154:74-81. [DOI: 10.1016/j.colsurfb.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 11/21/2022]
|
28
|
Albuquerque LJC, de Castro CE, Riske KA, da Silva MCC, Muraro PIR, Schmidt V, Giacomelli C, Giacomelli FC. Gene Transfection Mediated by Catiomers Requires Free Highly Charged Polymer Chains To Overcome Intracellular Barriers. Biomacromolecules 2017; 18:1918-1927. [PMID: 28453254 DOI: 10.1021/acs.biomac.7b00344] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prospective use of the block copolymers poly(ethylene oxide)113-b-poly[2-(diethylamino)ethyl methacrylate]50 (PEO113-b-PDEA50) and poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly[oligo(ethylene glycol)methyl ether methacrylate10-co-2-(diethylamino)ethyl methacrylate47-co-2-(diisopropylamino)ethyl methacrylate47] (POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47)) as nonviral gene vectors was evaluated. The polymers are able to properly condense DNA into nanosized particles (RH ≈ 75 nm), which are marginally cytotoxic and can be uptaken by cells. However, the green fluorescent protein (GFP) expression assays evidenced that DNA delivery is essentially negligible meaning that intracellular trafficking hampers efficient gene release. Subsequently, we demonstrate that cellular uptake and particularly the quantity of GFP-positive cells are substantially enhanced when the block copolymer polyplexes are produced and further supplemented by BPEI chains (branched polyethylenimine). The dynamic light scattering/electrophoretic light scattering/isothermal titration calorimetry data suggest that such a strategy allows the adsorption of BPEI onto the surface of the polyplexes, and this phenomenon is responsible for increasing the size and surface charge of the assemblies. Nevertheless, most of the BPEI chains remain freely diffusing in the systems. The biological assays confirmed that cellular uptake is enhanced in the presence of BPEI and principally, the free highly charged polymer chains play the central role in intracellular trafficking and gene transfection. These investigations pointed out that the transfection efficiency versus cytotoxicity issue can be balanced by a mixture of BPEI and less cytotoxic agents such as for instance the proposed block copolymers.
Collapse
Affiliation(s)
- Lindomar J C Albuquerque
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Carlos E de Castro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo , 04023-062 São Paulo, Brazil
| | - Maria C Carlan da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| | - Paulo I R Muraro
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Vanessa Schmidt
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Cristiano Giacomelli
- Departamento de Química, Universidade Federal de Santa Maria , 97105-900 Santa Maria, Brazil
| | - Fernando C Giacomelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC , 09210-580 Santo André, Brazil
| |
Collapse
|
29
|
Gorzkiewicz M, Klajnert-Maculewicz B. Dendrimers as nanocarriers for nucleoside analogues. Eur J Pharm Biopharm 2017; 114:43-56. [DOI: 10.1016/j.ejpb.2016.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
30
|
Studzian M, Szulc A, Janaszewska A, Appelhans D, Pułaski Ł, Klajnert-Maculewicz B. Mechanisms of Internalization of Maltose-Modified Poly(propyleneimine) Glycodendrimers into Leukemic Cell Lines. Biomacromolecules 2017; 18:1509-1520. [DOI: 10.1021/acs.biomac.7b00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Łukasz Pułaski
- Laboratory
of Transcriptional Regulation, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | | |
Collapse
|
31
|
Englert C, Pröhl M, Czaplewska JA, Fritzsche C, Preußger E, Schubert US, Traeger A, Gottschaldt M. d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting. Macromol Biosci 2017; 17. [PMID: 28371343 DOI: 10.1002/mabi.201600502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/03/2017] [Indexed: 01/27/2023]
Abstract
The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four-step synthesis of a thiol-group bearing d-fructose enables the decoration of a cationic polymer backbone with d-fructose via thiol-ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d-fructose decoration of 16% renders the polymers water-soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA-MB-231 breast cancer cells. Therefore, the introduction of d-fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent.
Collapse
Affiliation(s)
- Christoph Englert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Michael Pröhl
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Justyna A Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Carolin Fritzsche
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Elisabeth Preußger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
32
|
Wrobel D, Marcinkowska M, Janaszewska A, Appelhans D, Voit B, Klajnert-Maculewicz B, Bryszewska M, Štofik M, Herma R, Duchnowicz P, Maly J. Influence of core and maltose surface modification of PEIs on their interaction with plasma proteins—Human serum albumin and lysozyme. Colloids Surf B Biointerfaces 2017; 152:18-28. [DOI: 10.1016/j.colsurfb.2016.12.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/10/2016] [Accepted: 12/31/2016] [Indexed: 11/25/2022]
|
33
|
Zhou B, Zhao L, Shen M, Zhao J, Shi X. A multifunctional polyethylenimine-based nanoplatform for targeted anticancer drug delivery to tumors in vivo. J Mater Chem B 2017; 5:1542-1550. [PMID: 32263927 DOI: 10.1039/c6tb02620f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of cost-effective targeted drug delivery systems for cancer chemotherapy still remains a great challenging task. Here, we describe the synthesis and characterization of multifunctional polyethylenimine (PEI) as an effective vehicle to load an anticancer drug doxorubicin (DOX) for in vivo targeted cancer therapy. In this study, PEI was sequentially conjugated with polyethylene glycol (PEG) monomethyl ether, PEGylated folic acid (FA), and fluorescein isothiocyanate (FI). This was followed by the acetylation of the remaining PEI surface amines. The formed FA-targeted multifunctional PEI (FA-mPEI) was used as a vehicle to encapsulate DOX. We show that the formed FA-mPEI/DOX complexes with each PEI encapsulating 6.9 DOX molecules are water dispersible and can sustainably release DOX in a pH-dependent manner, showing a higher release rate under acidic pH conditions than under physiological pH conditions. Furthermore, the complexes display specific therapeutic efficacy to cancer cells in vitro and a subcutaneous tumor model in vivo, and have good organ compatibility. The designed multifunctional PEI may be used as an effective vehicle for targeted cancer chemotherapy.
Collapse
Affiliation(s)
- Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China.
| | | | | | | | | |
Collapse
|
34
|
Acebo C, Lederer A, Appelhans D, Ramis X, Serra À. Synthesis of 1,2,3-triazole functionalized hyperbranched poly(ethyleneimine) and its use as multifunctional anionic macroinitiator for diglycidyl ether of bisphenol A curing. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Mees MA, Effenberg C, Appelhans D, Hoogenboom R. Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination. Biomacromolecules 2016; 17:4027-4036. [DOI: 10.1021/acs.biomac.6b01451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maarten A. Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Christiane Effenberg
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|
36
|
Szulc A, Pulaski L, Appelhans D, Voit B, Klajnert-Maculewicz B. Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance. Int J Pharm 2016; 513:572-583. [DOI: 10.1016/j.ijpharm.2016.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
|
37
|
Jatczak-Pawlik I, Gorzkiewicz M, Studzian M, Appelhans D, Voit B, Pulaski L, Klajnert-Maculewicz B. Sugar-Modified Poly(propylene imine) Dendrimers Stimulate the NF-κB Pathway in a Myeloid Cell Line. Pharm Res 2016; 34:136-147. [PMID: 27766462 PMCID: PMC5174147 DOI: 10.1007/s11095-016-2049-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/03/2016] [Indexed: 01/11/2023]
Abstract
Purpose Fourth-generation poly(propylene imine) dendrimers fully surface-modified by maltose (dense shell, PPI-m DS) were shown to be biocompatible in cellular models, which is important for their application in drug delivery. We decided to verify also their inherent bioactivity, including immunomodulatory activity, for potential clinical applications. We tested their effects on the THP-1 monocytic cell line model of innate immunity effectors. Methods To estimate the cytotoxicity of dendrimers the reasazurin assay was performed. The expression level of NF-κB targets: IGFBP3, TNFAIP3 and TNF was determined by quantitative real-time RT-PCR. Measurement of NF-κB p65 translocation from cytoplasm to nucleus was conducted with a high-content screening platform and binding of NF-κB to a consensus DNA probe was determined by electrophoretic mobility shift assay. The cytokine assay was performed to measure protein concentration of TNFalpha and IL-4. Results We found that PPI-m DS did not impact THP-1 viability and growth even at high concentrations (up to 100 μM). They also did not induce expression of genes for important signaling pathways: Jak/STAT, Keap1/Nrf2 and ER stress. However, high concentrations of 4th generation PPI-m DS (25–100 μM), but not their 3rd generation counterparts, induced nuclear translocation of p65 NF-κB protein and its DNA-binding activity, leading to NF-κB-dependent increased expression of mRNA for NF-κB targets: IGFBP3, TNFAIP3 and TNF. However, no increase in pro-inflammatory cytokine secretion was detected. Conclusion We conclude that maltose-modified PPI dendrimers of specific size could exert a modest immunomodulatory effect, which may be advantageous in clinical applications (e.g. adjuvant effect in anti-cancer vaccines).
Collapse
Affiliation(s)
- Izabela Jatczak-Pawlik
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland.
| | - Michal Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Maciej Studzian
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Laboratory of Transcriptional Regulation, Institute of Medical Biology PAS, 106 Lodowa St., 93-232, Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069, Dresden, Germany
| |
Collapse
|
38
|
Li A, Zhou B, Alves CS, Xu B, Guo R, Shi X, Cao X. Mechanistic Studies of Enhanced PCR Using PEGylated PEI-Entrapped Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25808-25817. [PMID: 27599792 DOI: 10.1021/acsami.6b09310] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The polymerase chain reaction (PCR) is considered an excellent technique and is widely used in both molecular biology research and various clinical applications. However, the presence of byproducts and low output are limitations generally associated with this technique. Recently, the use of nanoparticles (NPs) has been shown to be very effective at enhancing PCR. Although mechanisms underlying this process have been suggested, most of them are mainly based on PCR results under certain situations without abundant systematic experimental strategy. In order to overcome these challenges, we synthesized a series of polyethylene glycol (PEG)-modified polyethylenimine (PEI)-entrapped gold nanoparticles (PEG-Au PENPs), each having different gold contents. The role of the synthesized NPs in improving the PCR technique was then systematically evaluated using the error-prone two-round PCR and GC-rich PCR (74% GC content). Our results suggest a possible mechanism of PCR enhancement. In the error-prone two-round PCR system, the improvement of the specificity and efficiency of the technique using the PEG-Au PENPs mainly depends on surface-charge-mediated electrostatic interactions. In the GC-rich PCR system, thermal conduction may be the dominant factor. These important findings offer a breakthrough in understanding the mechanisms involved in improving PCR amplification, as well as in the application of nanomaterials in different fields, particularly in biology and medicine.
Collapse
Affiliation(s)
- Aijun Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Benqing Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Carla S Alves
- CQM-Centro de Quimica da Madeira, Universidade da Madeira , Campus da Penteada, 9020-105 Funchal, Portugal
| | - Bei Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Rui Guo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| | - Xiangyang Shi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
- CQM-Centro de Quimica da Madeira, Universidade da Madeira , Campus da Penteada, 9020-105 Funchal, Portugal
| | - Xueyan Cao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University , Shanghai 201620, People's Republic of China
| |
Collapse
|
39
|
Zhou B, Xiong Z, Zhu J, Shen M, Tang G, Peng C, Shi X. PEGylated polyethylenimine-entrapped gold nanoparticles loaded with gadolinium for dual-mode CT/MR imaging applications. Nanomedicine (Lond) 2016; 11:1639-52. [DOI: 10.2217/nnm-2016-0093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aim: To synthesize and characterize cost-efficient polyethylenimine-entrapped gold nanoparticles loaded with gadolinium (Gd@Au PENPs) for dual-mode computed tomography (CT)/magnetic resonance (MR) imaging applications. Materials & methods: PEGylated PEI modified with gadolinium (Gd) chelator (DOTA) was used as a template to synthesize the Gd@Au PENPs and the particles were well characterized in terms of their physicochemical properties, cytotoxicity and performances in CT and MR imaging in vitro and in vivo. Results: The formed Gd@Au PENPs with low cytotoxicity can be used as a highly efficient contrast agent for dual-mode CT/MR imaging of blood pool and major organs of animals. Conclusion: The designed Gd@Au PENPs may be used as a versatile nanoplatform for dual-mode CT/MR imaging of different biological systems.
Collapse
Affiliation(s)
- Benqing Zhou
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Zuogang Xiong
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, People's Republic of China
| | - Jianzhi Zhu
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, People's Republic of China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, People's Republic of China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers & Polymer Materials, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
40
|
Zhou B, Yang J, Peng C, Zhu J, Tang Y, Zhu X, Shen M, Zhang G, Shi X. PEGylated polyethylenimine-entrapped gold nanoparticles modified with folic acid for targeted tumor CT imaging. Colloids Surf B Biointerfaces 2016; 140:489-496. [DOI: 10.1016/j.colsurfb.2016.01.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/13/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
41
|
Wang L, Wu W, Wang J, Wang J, Tong X, Hu Q, Qi L. Highly efficient Gab2 siRNA delivery to ovarian cancer cells mediated by chitosan–polyethyleneimine nanoparticles. J Mater Chem B 2016; 4:273-281. [PMID: 32263369 DOI: 10.1039/c5tb01238d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Malignant bowel obstruction (MBO) is a serious complication which causes high death rate and low quality of life (QOL) for patients diagnosed at an advanced stage of ovarian cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Obstetrics and Gynaecology
- Tongji Hospital of Tongji University
- Tongji University School of Medicine
- Shanghai 200065
- China
| | - Weimin Wu
- Department of Obstetrics and Gynaecology
- Tongji Hospital of Tongji University
- Tongji University School of Medicine
- Shanghai 200065
- China
| | - Jingshuai Wang
- Department of Obstetrics and Gynaecology
- Tongji Hospital of Tongji University
- Tongji University School of Medicine
- Shanghai 200065
- China
| | - Jianjun Wang
- Department of Obstetrics and Gynaecology
- Tongji Hospital of Tongji University
- Tongji University School of Medicine
- Shanghai 200065
- China
| | - Xiaowen Tong
- Department of Obstetrics and Gynaecology
- Tongji Hospital of Tongji University
- Tongji University School of Medicine
- Shanghai 200065
- China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Lifeng Qi
- East Hospital
- Institute for Biomedical Engineering and Nano Science
- Tongji University School of Medicine
- Shanghai 200092
- China
| |
Collapse
|
42
|
Rumschöttel J, Kosmella S, Prietzel C, Appelhans D, Koetz J. Change in size, morphology and stability of DNA polyplexes with hyperbranched poly(ethyleneimines) containing bulky maltose units. Colloids Surf B Biointerfaces 2015; 138:78-85. [PMID: 26674835 DOI: 10.1016/j.colsurfb.2015.11.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
Abstract
Polyplexes between Salmon DNA and non-modified hyperbranched poly(ethyleneimines) of varying molar mass, i.e., PEI(5 k) with 5000 g/mol and PEI(25 k) with 25,000 g/mol, and modified PEI(5 k) with maltose units (PEI-Mal) were investigated in dependence on the molar N/P ratio by using dynamic light scattering (DLS), zeta potential measurements, micro differential scanning calorimetry (μ-DSC), scanning-transmission electron microscopy (STEM), and cryo-scanning electron microscopy (cryo-SEM). A reloading of the polyplexes can be observed by adding the unmodified PEI samples of different molar mass. In excess of PEI a morphological transition from core-shell particles (at N/P 8) to loosely packed onion-like polyplexes (at N/P 40) is observed. The shift of the DSC melting peak from 88 °C to 76 °C indicates a destabilization of the DNA double helix due to the complexation with the unmodified PEI. Experiments with the maltose-modified PEI show a reloading already at a lower N/P ratio. Due to the presence of the sugar units in the periphery of the polycation electrostatic interactions between DNA become weaker, but cooperative H-bonding forces are reinforced. The resulting less-toxic, more compact polyplexes in excess of the PEI-Mal with two melting points and well distributed DNA segments are of special interest for extended gene delivery experiments.
Collapse
Affiliation(s)
- Jens Rumschöttel
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Sabine Kosmella
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Claudia Prietzel
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Joachim Koetz
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
43
|
Amino acid modified hyperbranched poly(ethylene imine) with disaccharide decoration as anionic core–shell architecture: Influence of the pH and molecular architecture on solution behaviour. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.10.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Interactions of dendritic glycopolymer with erythrocytes, red blood cell ghosts and membrane enzymes. Int J Pharm 2015; 496:475-88. [DOI: 10.1016/j.ijpharm.2015.10.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/14/2022]
|
45
|
Szulc A, Signorelli M, Schiraldi A, Appelhans D, Voit B, Bryszewska M, Klajnert-Maculewicz B, Fessas D. Maltose modified poly(propylene imine) dendrimers as potential carriers of nucleoside analog 5'-triphosphates. Int J Pharm 2015; 495:940-7. [PMID: 26456295 DOI: 10.1016/j.ijpharm.2015.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 01/15/2023]
Abstract
Poly(propylene imine) (PPI) dendrimers contained surface maltose modification are proposed as drug carriers for nucleoside analog (NA) 5'-triphosphates. The aim of this study was to investigate the interactions between PPI dendrimers of 3rd (G3) or 4th (G4) generation and cytidine-5'-triphosphate (CTP) by Isothermal Titration Calorimetry method. CTP was used as a model molecule of pyrimidine nucleoside analog-cytarabine (ara-CTP) commonly used in leukemia treatment. Complexes of PPI dendrimers with NAs may help to overcome severe limitations of NAs associated with their low solubility and stability or resistance in cancer cells. In the present work, we evaluated stoichiometry and a mechanism of forming complexes between dendrimers and the nucleotide. Moreover, we examined the efficiency of complex formation in relation to dendrimer generations, a type of dendrimer modification with maltose residues and a type of solvent. It was observed that PPI dendrimers create complexes with CTP with high efficiency that makes them promising candidates for a drug delivery system.
Collapse
Affiliation(s)
- Aleksandra Szulc
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland.
| | - Marco Signorelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| | - Alberto Schiraldi
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236 Lodz, Poland
| | - Dimitrios Fessas
- Department of Food Environmental and Nutritional Sciences, University of Milan, Celoria St. 2, 20133 Milan, Italy
| |
Collapse
|
46
|
Effects of dendritic core-shell glycoarchitectures on primary mesenchymal stem cells and osteoblasts obtained from different human donors. J Nanobiotechnology 2015; 13:65. [PMID: 26449656 PMCID: PMC4597403 DOI: 10.1186/s12951-015-0128-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/24/2015] [Indexed: 11/10/2022] Open
Abstract
The biological impact of novel nano-scaled drug delivery vehicles in highly topical therapies of bone diseases have to be investigated in vitro before starting in vivo trials. Highly desired features for these materials are a good cellular uptake, large transport capacity for drugs and a good bio-compatibility. Essentially the latter has to be addressed as first point on the agenda. We present a study on the biological interaction of maltose-modified poly(ethyleneimine) (PEI-Mal) on primary human mesenchymal stem cell, harvested from reaming debris (rdMSC) and osteoblasts obtained from four different male donors. PEI-Mal-nanoparticles with two different molecular weights of the PEI core (5000 g/mol for PEI-5k-Mal-B and 25,000 g/mol for PEI-25k-Mal-B) have been administered to both cell lines. As well dose as incubation-time dependent effects and interactions have been researched for concentrations between 1 μg/ml to 1 mg/ml and periods of 24 h up to 28 days. Studies conducted by different methods of microscopy as light microscopy, fluorescence microscopy, transmission-electron-microscopy and quantitative assays (LDH and DC-protein) indicate as well a good cellular uptake of the nanoparticles as a particle- and concentration-dependent impact on the cellular macro- and micro-structure of the rdMSC samples. In all experiments PEI-5k-Mal-B exhibits a superior biocompatibility compared to PEI-25k-Mal-B. At higher concentrations PEI-25k-Mal-B is toxic and induces a directly observable mitochondrial damage. The alkaline phosphatase assay (ALP), has been conducted to check on the possible influence of nanoparticles on the differentiation capabilities of rdMSC to osteoblasts. In addition the production of mineralized matrix has been shown by von-Kossa stained samples. No influence of the nanoparticles on the ALP per cell has been detected. Additionally, for all experiments, results are strongly influenced by a large donor-to-donor variability of the four different rdMSC samples. To summarize, while featuring a good cellular uptake, PEI-5k-Mal-B induces only minimal adverse effects and features clearly superior biocompatibility compared to the larger PEI-25k-Mal-B.
Collapse
|
47
|
Bellettini IC, Witt MA, Borsali R, Minatti E, Rubira AF, Muniz EC. PS-b-PAA nanovesicles coated by modified PEIs bearing hydrophobic and hydrophilic groups. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Fernández-Francos X, Ramis X. Structural analysis of the curing of epoxy thermosets crosslinked with hyperbranched poly(ethyleneimine)s. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Effect of dendritic polymers on a simple model biological membrane. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0825-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Dzema DV, Kartsova LA, Kapizova DA. Hyperbranched polymers based on polyethyleneimine with terminal oligosaccharide groups as new chiral selectors in high-performance thin-layer chromatography. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815080080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|