1
|
Bai J, Zhang M, Wang X, Zhang J, Yang Z, Fan L, An Y, Guan R. Combination of Micelle Collapse and CuNi Surface Dissolution for Electrodeposition of Magnetic Freestanding Chitosan Film. NANOMATERIALS 2022; 12:nano12152629. [PMID: 35957059 PMCID: PMC9370670 DOI: 10.3390/nano12152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/16/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Magnetic chitosan hydrogel has aroused immense attention in recent years due to their biomedical significance and magnetic responsiveness. Here, A new electrodeposition method is reported for the fabrication of a novel CuNi-based magnetic chitosan freestanding film (MCFF) in an acidic chitosan plating bath containing SDS-modified CuNi NPs. Contrary to chitosan’s anodic and cathodic deposition, which typically involves electrochemical oxidation, the synthetic process is triggered by coordination of chitosan with Cu and Ni ions in situ generated by the controlled surface dissolution of the suspended NPs with the acidic plating bath. The NPs provide not only the ions required for chitosan growth but also become entrapped during electrodeposition, thereby endowing the composite with magnetic properties. The obtained MCFF offers a wide range of features, including good mechanical strength, magnetic properties, homogeneity, and morphological transparency. Besides the fundamental interest of the synthesis itself, sufficient mechanical strength ensures that the hydrogel can be used by either peeling it off of the electrode or by directly building a complex hydrogel electrode. Its fast and easy magnetic steering, separation and recovery, large surface area, lack of secondary pollution, and strong chelating capability could lead to it finding applications as an electrochemical detector or adsorbent.
Collapse
Affiliation(s)
- Jingyuan Bai
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Meilin Zhang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Xuejiao Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
| | - Jin Zhang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
- Correspondence: (J.Z.); (R.G.)
| | - Zhou Yang
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Longyi Fan
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
| | - Yanan An
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Renguo Guan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; (J.B.); (M.Z.); (X.W.)
- Engineering Research Center of Continuous Extrusion, Ministry of Education, Dalian Jiaotong University, Dalian 116028, China; (Z.Y.); (L.F.)
- Correspondence: (J.Z.); (R.G.)
| |
Collapse
|
2
|
Moreno‐Serna V, Méndez‐López M, Vásquez‐Espinal A, Saldías C, Leiva Á. Chitosan/P3HT biohybrid films as polymer matrices for the in‐situ synthesis of CdSe quantum dots. Experimental and theoretical studies. J Appl Polym Sci 2020. [DOI: 10.1002/app.49075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Viviana Moreno‐Serna
- Departamento de Química Física, Facultad de Química y de FarmaciaPontificia Universidad Católica de Chile Macul Santiago Chile
| | | | - Alejandro Vásquez‐Espinal
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres BelloComputational and Theoretical Chemistry Group Santiago Chile
| | - Cesar Saldías
- Departamento de Química Física, Facultad de Química y de FarmaciaPontificia Universidad Católica de Chile Macul Santiago Chile
| | - Ángel Leiva
- Departamento de Química Física, Facultad de Química y de FarmaciaPontificia Universidad Católica de Chile Macul Santiago Chile
| |
Collapse
|
3
|
Li J, Wu S, Kim E, Yan K, Liu H, Liu C, Dong H, Qu X, Shi X, Shen J, Bentley WE, Payne GF. Electrobiofabrication: electrically based fabrication with biologically derived materials. Biofabrication 2019; 11:032002. [PMID: 30759423 PMCID: PMC7025432 DOI: 10.1088/1758-5090/ab06ea] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While conventional material fabrication methods focus on form and strength to achieve function, the fabrication of material systems for emerging life science applications will need to satisfy a more subtle set of requirements. A common goal for biofabrication is to recapitulate complex biological contexts (e.g. tissue) for applications that range from animal-on-a-chip to regenerative medicine. In these cases, the material systems will need to: (i) present appropriate surface functionalities over a hierarchy of length scales (e.g. molecular features that enable cell adhesion and topographical features that guide differentiation); (ii) provide a suite of mechanobiological cues that promote the emergence of native-like tissue form and function; and (iii) organize structure to control cellular ingress and molecular transport, to enable the development of an interconnected cellular community that is engaged in cell signaling. And these requirements are not likely to be static but will vary over time and space, which will require capabilities of the material systems to dynamically respond, adapt, heal and reconfigure. Here, we review recent advances in the use of electrically based fabrication methods to build material systems from biological macromolecules (e.g. chitosan, alginate, collagen and silk). Electrical signals are especially convenient for fabrication because they can be controllably imposed to promote the electrophoresis, alignment, self-assembly and functionalization of macromolecules to generate hierarchically organized material systems. Importantly, this electrically based fabrication with biologically derived materials (i.e. electrobiofabrication) is complementary to existing methods (photolithographic and printing), and enables access to the biotechnology toolbox (e.g. enzymatic-assembly and protein engineering, and gene expression) to offer exquisite control of structure and function. We envision that electrobiofabrication will emerge as an important platform technology for organizing soft matter into dynamic material systems that mimic biology's complexity of structure and versatility of function.
Collapse
Affiliation(s)
- Jinyang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang Z, Wang Z, Mu H, Wang X, Li Y, Yan J, Wang Z. A novel approach to 1,2,3-triazole grafted chitosans via modified Wolff’s cyclocondensation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Liu Y, Li J, Tschirhart T, Terrell JL, Kim E, Tsao C, Kelly DL, Bentley WE, Payne GF. Connecting Biology to Electronics: Molecular Communication via Redox Modality. Adv Healthc Mater 2017; 6. [PMID: 29045017 DOI: 10.1002/adhm.201700789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/18/2017] [Indexed: 12/13/2022]
Abstract
Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jinyang Li
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Tanya Tschirhart
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Jessica L. Terrell
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Chen‐Yu Tsao
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Deanna L. Kelly
- Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD 21228 USA
| | - William E. Bentley
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering University of Maryland College Park MD 20742 USA
| |
Collapse
|
6
|
Maerten C, Jierry L, Schaaf P, Boulmedais F. Review of Electrochemically Triggered Macromolecular Film Buildup Processes and Their Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28117-28138. [PMID: 28762716 DOI: 10.1021/acsami.7b06319] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Macromolecular coatings play an important role in many technological areas, ranging from the car industry to biosensors. Among the different coating technologies, electrochemically triggered processes are extremely powerful because they allow in particular spatial confinement of the film buildup up to the micrometer scale on microelectrodes. Here, we review the latest advances in the field of electrochemically triggered macromolecular film buildup processes performed in aqueous solutions. All these processes will be discussed and related to their several applications such as corrosion prevention, biosensors, antimicrobial coatings, drug-release, barrier properties and cell encapsulation. Special emphasis will be put on applications in the rapidly growing field of biosensors. Using polymers or proteins, the electrochemical buildup of the films can result from a local change of macromolecules solubility, self-assembly of polyelectrolytes through electrostatic/ionic interactions or covalent cross-linking between different macromolecules. The assembly process can be in one step or performed step-by-step based on an electrical trigger affecting directly the interacting macromolecules or generating ionic species.
Collapse
Affiliation(s)
- Clément Maerten
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
- INSERM, Unité 1121 "Biomaterials and Bioengineering" , 11 rue Humann, F-67085 Strasbourg Cedex, France
- Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg (FMTS), and Fédération des Matériaux et Nanoscience d'Alsace (FMNA), Université de Strasbourg , 8 rue Sainte Elisabeth, F-67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study , 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| | - Fouzia Boulmedais
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22 , 23 rue du Loess, F-67034 Strasbourg Cedex, France
- University of Strasbourg Institute for Advanced Study , 5 allée du Général Rouvillois, F-67083 Strasbourg, France
| |
Collapse
|
7
|
Yar M, Shahzad S, Shahzadi L, Shahzad SA, Mahmood N, Chaudhry AA, Rehman IU, MacNeil S. Heparin binding chitosan derivatives for production of pro-angiogenic hydrogels for promoting tissue healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 74:347-356. [PMID: 28254303 DOI: 10.1016/j.msec.2016.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Our aim was to develop a biocompatible hydrogel that could be soaked in heparin and placed on wound beds to improve the vasculature of poorly vascularized wound beds. In the current study, a methodology was developed for the synthesis of a new chitosan derivative (CSD-1). Hydrogels were synthesized by blending CSD-1 for either 4 or 24h with polyvinyl alcohol (PVA). The physical/chemical interactions and the presence of specific functional groups were confirmed by Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H NMR). The porous nature of the hydrogels was confirmed by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) showed that these hydrogels have good thermal stability which was slightly increased as the blending time was increased. Hydrogels produced with 24h of blending supported cell attachment more and could be loaded with heparin to induce new blood vessel formation in a chick chorionic allantoic membrane assay.
Collapse
Affiliation(s)
- Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Sohail Shahzad
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan; Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Nasir Mahmood
- Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore, Pakistan; Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan; Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | - Sheila MacNeil
- Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.
| |
Collapse
|
8
|
Khan S, Narula AK. Bio-hybrid blended transparent and conductive films PEDOT:PSS:Chitosan exhibiting electro-active and antibacterial properties. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Peng X, Liu Y, Bentley WE, Payne GF. Electrochemical Fabrication of Functional Gelatin-Based Bioelectronic Interface. Biomacromolecules 2016; 17:558-63. [DOI: 10.1021/acs.biomac.5b01491] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xianghong Peng
- Institute
for Bioscience and Biotechnology Research, University of Maryland, College
Park, Maryland 20742, United States
- Key
Laboratory of Optoelectronic Chemical Materials and Devices, Ministry
of Education, Jianghan University, Wuhan 430056, People’s Republic of China
| | - Yi Liu
- Institute
for Bioscience and Biotechnology Research, University of Maryland, College
Park, Maryland 20742, United States
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland, College
Park, Maryland 20742, United States
- Fischell
Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland, College
Park, Maryland 20742, United States
- Fischell
Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Sun Y, He X, Ji J, Jia M, Wang Z, Sun X. A highly selective and sensitive electrochemical CS–MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection. Talanta 2015; 141:300-6. [DOI: 10.1016/j.talanta.2015.03.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/19/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|
11
|
Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1315-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives. Int J Biol Macromol 2014; 65:234-40. [DOI: 10.1016/j.ijbiomac.2014.01.050] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/20/2022]
|
13
|
Yan K, Ding F, Bentley WE, Deng H, Du Y, Payne GF, Shi XW. Coding for hydrogel organization through signal guided self-assembly. SOFT MATTER 2014; 10:465-9. [PMID: 24652449 DOI: 10.1039/c3sm52405a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Complex structured soft matter may have important applications in the field of tissue engineering and biomedicine. However, the discovery of facile methods to exquisitely manipulate the structure of soft matter remains a challenge. In this report, a multilayer hydrogel is fabricated from the stimuli-responsive aminopolysaccharide chitosan by using spatially localized and temporally controlled sequences of electrical signals. By programming the imposed cathodic input signals, chitosan hydrogels with varying layer number and thickness can be fabricated. The inputs of electrical signals induce the formation of hydrogel layers while short interruptions create interfaces between each layer. The thickness of each layer is controlled by the charge transfer (Q = ∫idt) during the individual deposition step and the number of multilayers is controlled by the number of interruptions. Scanning electron micrographs (SEMs) reveal organized fibrous structures within each layer that are demarcated by compact orthogonal interlayer structures. This work demonstrates for the first time that an imposed sequence of electrical inputs can trigger the self-assembly of multilayered hydrogels and thus suggests the broader potential for creating an electrical "code" to generate complex structures in soft matter.
Collapse
Affiliation(s)
- Kun Yan
- School of Resource and Environmental Science, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ding F, Nie Z, Deng H, Xiao L, Du Y, Shi X. Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydr Polym 2013; 98:1547-52. [PMID: 24053838 DOI: 10.1016/j.carbpol.2013.07.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023]
Abstract
Despite much effort has been paid to develop aseptic implant devices, the infection associated with medical implant still remains a significant problem. Here, we report a potential coating material derived from a natural biopolymer chitosan. Firstly, chitosan functionalized with alkynyl moiety (ACS) was prepared by reaction between chitosan and 3-bromopropyne. The structure of the alkynyl chitosan was characterized by FT-IR, (1)H NMR, XRD, TGA and element analysis. The minimum inhibitory concentration (MIC) of ACS with a degree of substitution (DS) of 0.40 was 0.03% against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Subsequently, the alkynyl chitosan was co-deposited with chitosan on stainless steel wire to fabricate a composite hydrogel. The composite hydrogel exhibited better antibacterial activities than pure chitosan hydrogel.
Collapse
Affiliation(s)
- Fuyuan Ding
- School of Resource and Environmental Science and Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, China
| | | | | | | | | | | |
Collapse
|
15
|
Fusco S, Chatzipirpiridis G, Sivaraman KM, Ergeneman O, Nelson BJ, Pané S. Chitosan electrodeposition for microrobotic drug delivery. Adv Healthc Mater 2013; 2:1037-44. [PMID: 23355508 DOI: 10.1002/adhm.201200409] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Indexed: 11/05/2022]
Abstract
A method to functionalize steerable magnetic microdevices through the co-electrodeposition of drug loaded chitosan hydrogels is presented. The characteristics of the polymer matrix have been investigated in terms of fabrication, morphology, drug release and response to different environmental conditions. Modifications of the matrix behavior could be achieved by simple chemical post processing. The system is able to load and deliver 40-80 μg cm(-2) of a model drug (Brilliant Green) in a sustained manner with different profiles. Chitosan allows a pH responsive behavior with faster and more efficient release under slightly acidic conditions as can be present in tumor or inflamed tissue. A prototype of a microrobot functionalized with the hydrogel is presented and proposed for the treatment of posterior eye diseases.
Collapse
Affiliation(s)
- Stefano Fusco
- Institute of Robotics and Intelligent Systems, Tannenstrasse 3, ETH Zürich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
Suginta W, Khunkaewla P, Schulte A. Electrochemical Biosensor Applications of Polysaccharides Chitin and Chitosan. Chem Rev 2013; 113:5458-79. [DOI: 10.1021/cr300325r] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wipa Suginta
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Panida Khunkaewla
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| | - Albert Schulte
- Biochemistry and Electrochemistry
Research Unit, Schools
of Chemistry and Biochemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima
30000, Thailand
| |
Collapse
|
17
|
Ozdal D, Asir S, Bodapati JB, Icil H. Synthesis of a novel fluorescent amphiphilic chitosan biopolymer: photophysical and electrochemical behavior. Photochem Photobiol Sci 2013; 12:1927-38. [DOI: 10.1039/c3pp50122a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Liu Y, Javvaji V, Raghavan SR, Bentley WE, Payne GF. Glucose oxidase-mediated gelation: a simple test to detect glucose in food products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8963-8967. [PMID: 22906038 DOI: 10.1021/jf301376b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This paper reports a simple, rapid, and sugar-selective method to induce gelation from glucose-containing samples. This method employs glucose oxidase (GOx) to selectively "recognize" and oxidize glucose to generate gluconic acid, which acts to solubilize calcium carbonate and release calcium ions. The release of calcium ions triggers gelation of the calcium-responsive polysaccharide alginate to form a calcium-alginate hydrogel. Rheological measurements confirm that gel formation is triggered by glucose but not fructose or sucrose (consistent with GOx's selectivity). Vial inversion tests demonstrate that gel formation can be readily observed without the need for instrumentation. Proof-of-concept studies demonstrate that this gel-forming method can detect glucose in food/beverage products sweetened with glucose or high-fructose corn syrups. These results indicate that the enzyme-induced gelation of alginate may provide a simple means to test for sweeteners using components that are safe for use on-site or in the home.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research, University of Maryland , College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
19
|
Gordonov T, Liba B, Terrell JL, Cheng Y, Luo X, Payne GF, Bentley WE. Bridging the bio-electronic interface with biofabrication. J Vis Exp 2012:e4231. [PMID: 22710498 DOI: 10.3791/4231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Advancements in lab-on-a-chip technology promise to revolutionize both research and medicine through lower costs, better sensitivity, portability, and higher throughput. The incorporation of biological components onto biological microelectromechanical systems (bioMEMS) has shown great potential for achieving these goals. Microfabricated electronic chips allow for micrometer-scale features as well as an electrical connection for sensing and actuation. Functional biological components give the system the capacity for specific detection of analytes, enzymatic functions, and whole-cell capabilities. Standard microfabrication processes and bio-analytical techniques have been successfully utilized for decades in the computer and biological industries, respectively. Their combination and interfacing in a lab-on-a-chip environment, however, brings forth new challenges. There is a call for techniques that can build an interface between the electrode and biological component that is mild and is easy to fabricate and pattern. Biofabrication, described here, is one such approach that has shown great promise for its easy-to-assemble incorporation of biological components with versatility in the on-chip functions that are enabled. Biofabrication uses biological materials and biological mechanisms (self-assembly, enzymatic assembly) for bottom-up hierarchical assembly. While our labs have demonstrated these concepts in many formats, here we demonstrate the assembly process based on electrodeposition followed by multiple applications of signal-based interactions. The assembly process consists of the electrodeposition of biocompatible stimuli-responsive polymer films on electrodes and their subsequent functionalization with biological components such as DNA, enzymes, or live cells. Electrodeposition takes advantage of the pH gradient created at the surface of a biased electrode from the electrolysis of water. Chitosan and alginate are stimuli-responsive biological polymers that can be triggered to self-assemble into hydrogel films in response to imposed electrical signals. The thickness of these hydrogels is determined by the extent to which the pH gradient extends from the electrode. This can be modified using varying current densities and deposition times. This protocol will describe how chitosan films are deposited and functionalized by covalently attaching biological components to the abundant primary amine groups present on the film through either enzymatic or electrochemical methods. Alginate films and their entrapment of live cells will also be addressed. Finally, the utility of biofabrication is demonstrated through examples of signal-based interaction, including chemical-to-electrical, cell-to-cell, and also enzyme-to-cell signal transmission. Both the electrodeposition and functionalization can be performed under near-physiological conditions without the need for reagents and thus spare labile biological components from harsh conditions. Additionally, both chitosan and alginate have long been used for biologically-relevant purposes. Overall, biofabrication, a rapid technique that can be simply performed on a benchtop, can be used for creating micron scale patterns of functional biological components on electrodes and can be used for a variety of lab-on-a-chip applications.
Collapse
Affiliation(s)
- Tanya Gordonov
- Fischell Department of Bioengineering, University of Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Tao H, Kaplan DL, Omenetto FG. Silk materials--a road to sustainable high technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2824-37. [PMID: 22553118 DOI: 10.1002/adma.201104477] [Citation(s) in RCA: 285] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/21/2012] [Indexed: 05/18/2023]
Abstract
This review addresses the use of silk protein as a sustainable material in optics and photonics, electronics and optoelectronic applications. These options represent additional developments for this technology platform that compound the broad utility and impact of this material for medical needs that have been recently described in the literature. The favorable properties of the material certainly make a favorable case for the use of silk, yet serve as a broad inspiration to further develop biological foundries for both the synthesis and processing of Nature's materials for technological applications.
Collapse
Affiliation(s)
- Hu Tao
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
21
|
Functional polymers in protein detection platforms: optical, electrochemical, electrical, mass-sensitive, and magnetic biosensors. SENSORS 2012; 11:3327-55. [PMID: 21691441 PMCID: PMC3117287 DOI: 10.3390/s110303327] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered.
Collapse
|
22
|
Cheng Y, Luo X, Payne GF, Rubloff GW. Biofabrication: programmable assembly of polysaccharide hydrogels in microfluidics as biocompatible scaffolds. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm16215f] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Ren Y, Liu J, Feng F, Chen T, Fang Y. Room Temperature Synthesis of Gold Nanokites in Polyvinyl Alcohol-Sodium Dodecyl Sulfate Aggregations Aqueous Solution. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201180340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Tang J, Hu R, Wu ZS, Shen GL, Yu RQ. A highly sensitive electrochemical immunosensor based on coral-shaped AuNPs with CHITs inorganic–organic hybrid film. Talanta 2011; 85:117-22. [DOI: 10.1016/j.talanta.2011.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 11/29/2022]
|
25
|
Ren Y, Xu C, Wu M, Niu M, Fang Y. Controlled synthesis of gold nanoflowers assisted by poly(vinyl pyrrolidone)–sodium dodecyl sulfate aggregations. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.02.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
|
27
|
Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. J R Soc Interface 2010; 7 Suppl 5:S581-613. [PMID: 20504802 PMCID: PMC2952181 DOI: 10.1098/rsif.2010.0156.focus] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/05/2010] [Indexed: 12/24/2022] Open
Abstract
Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer-ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields.
Collapse
Affiliation(s)
- A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
28
|
Liu Y, Kim E, Ghodssi R, Rubloff GW, Culver JN, Bentley WE, Payne GF. Biofabrication to build the biology–device interface. Biofabrication 2010; 2:022002. [DOI: 10.1088/1758-5082/2/2/022002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Wang S, Lei Y, Zhang Y, Tang J, Shen G, Yu R. Hydroxyapatite nanoarray-based cyanide biosensor. Anal Biochem 2010; 398:191-7. [DOI: 10.1016/j.ab.2009.11.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 10/31/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
30
|
Wang B, Tian C, Wang L, Wang R, Fu H. Chitosan: a green carbon source for the synthesis of graphitic nanocarbon, tungsten carbide and graphitic nanocarbon/tungsten carbide composites. NANOTECHNOLOGY 2010; 21:025606. [PMID: 19955617 DOI: 10.1088/0957-4484/21/2/025606] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this paper, a simple approach was proposed to fabricate graphitic carbon nanocapsules, tungsten carbide and tungsten carbides/graphitic carbon composites by using chitosan, a green and renewable biopolymer, as a carbon source. The route includes, first, fabrication of the precursors that consist of chitosan coordinated with a certain metal ion (or metal complex anion) followed by carbonizing the precursors under N(2) atmosphere. The composition of the final products could be regulated by changing the type and ratio of the metal source (cations or complex anions) combined with the chitosan in the precursors. The experimental results showed that uniform carbon nanocapsules could be obtained when Ni(2+) was introducing in the precursors, while incorporating [PW(12)O(40)](3-) (PW(12)) with chitosan led to the formation of WC nanoparticles. As the Ni(2+) and PW(12) are simultaneously coordinated with chitosan, the composites of tungsten carbide/graphitic carbon were successfully produced. Transmission electron microscopy (TEM) analysis revealed that the graphitic carbon nanocapsules are about 45 nm in diameter; uniform WC nanoparticles with a average size of 40 nm are observed. Moreover, the particle size of WC in the tungsten carbide/graphitic carbon composite is about 10 nm, which is smaller than that of the pure WC particles. Furthermore, the performance of the sample-loaded Pt nanoparticles for methanol electro-oxidation was studied in detail. The results indicated that the samples could act as good carriers for Pt in the methanol electro-oxidation reaction with high effectivity and improved stability.
Collapse
Affiliation(s)
- Baoli Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin, People's Republic of China
| | | | | | | | | |
Collapse
|