1
|
Nagase K, Takagi H, Nakada H, Ishikawa H, Nagata Y, Aomori T, Kanazawa H. Chromatography columns packed with thermoresponsive-cationic-polymer-modified beads for therapeutic drug monitoring. Sci Rep 2022; 12:12847. [PMID: 35896711 PMCID: PMC9329465 DOI: 10.1038/s41598-022-16928-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Therapeutic drug monitoring, which is used to determine appropriate drug doses, is critical in pharmacological therapy. In this study, we developed thermoresponsive chromatography columns with various cationic properties for effective therapeutic drug monitoring. Thermoresponsive cationic copolymer poly(N-isopropylacrylamide-co-n-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAAm-co-BMA-co-DMAPAAm))-modified silica beads, which were used as the chromatographic stationary phase, were prepared by modifying the radical initiator of the silica beads, followed by radical polymerization. Characterization of the prepared silica beads demonstrated that thermoresponsive polymers with various cationic properties successfully modified the beads. The elution behavior of several steroids in the prepared bead-packed columns at various temperatures indicated that the optimal column operating temperature was 30 °C. Appropriate measurement conditions for 13 drugs were investigated by varying the cationic properties of the columns and the pH of the mobile phase. Drug concentrations in serum samples were determined using the developed columns and mobile phases with a suitable pH. Voriconazole concentrations in human serum samples were determined using the developed columns with all-aqueous mobile phases. We anticipate that the developed chromatography columns can be used for therapeutic drug monitoring because drug concentrations can be measured using all-aqueous mobile phases that are suitable in clinical settings.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| | - Hikaru Takagi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideo Nakada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Haruki Ishikawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoshiko Nagata
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Tohru Aomori
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
2
|
Nagase K, Kitazawa S, Kogure T, Yamada S, Katayama K, Kanazawa H. Viral vector purification with thermoresponsive-anionic mixed polymer brush modified beads-packed column. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Nagase K, Matsumoto K, Kanazawa H. Temperature-responsive mixed-mode column for the modulation of multiple interactions. Sci Rep 2022; 12:4434. [PMID: 35292748 PMCID: PMC8924202 DOI: 10.1038/s41598-022-08475-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/08/2022] [Indexed: 01/13/2023] Open
Abstract
In this study, mixed-mode chromatography columns have been investigated using multiple analyte interactions. A mixed-mode chromatography column was developed using poly(N-isopropylacrylamide) (PNIPAAm) brush-modified silica beads and poly(3-acrylamidopropyl trimethylammonium chloride) (PAPTAC) brush-modified silica beads. PNIPAAm brush-modified silica beads and PAPTAC brush-modified silica beads were prepared by atom transfer radical polymerization. The beads were then packed into a stainless-steel column in arbitrary compositions. The elution studies evaluated the column performance on hydrophobic, electrostatic, and therapeutic drug samples using steroids, adenosine nucleotide, and antiepileptic drugs as analytes, respectively. Steroids exhibited an increased retention time when the column temperature was increased. The retention of adenosine nucleotides increased with the increasing composition of the PAPTAC-modified beads in the column. The antiepileptic drugs were separated using the prepared mixed-mode columns. An effective separation of antiepileptic drugs was observed on a 10:1 PNIPAAm:PAPTAC column because the balance between the hydrophobic and electrostatic interactions with antiepileptic drugs was optimized for the bead composition. Oligonucleotides were also separated using mixed-mode columns through multiple hydrophobic and electrostatic interactions. These results demonstrate that the developed mixed-mode column can modulate multiple hydrophobic and electrostatic interactions by changing the column temperature and composition of the packed PNIPAAm and PAPTAC beads.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan.
| | - Kosuke Matsumoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| |
Collapse
|
4
|
Nagase K. Thermoresponsive interfaces obtained using poly(N-isopropylacrylamide)-based copolymer for bioseparation and tissue engineering applications. Adv Colloid Interface Sci 2021; 295:102487. [PMID: 34314989 DOI: 10.1016/j.cis.2021.102487] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022]
Abstract
Poly(N-isopropylacrylamide) (PNIPAAm) is the most well-known and widely used stimuli-responsive polymer in the biomedical field owing to its ability to undergo temperature-dependent hydration and dehydration with temperature variations, causing hydrophilic and hydrophobic alterations. This temperature-dependent property of PNIPAAm provides functionality to interfaces containing PNIPAAm. Notably, the hydrophilic and hydrophobic alterations caused by the change in the temperature-responsive property of PNIPAAm-modified interfaces induce temperature-modulated interactions with biomolecules, proteins, and cells. This intrinsic property of PNIPAAm can be effectively used in various biomedical applications, particularly in bioseparation and tissue engineering applications, owing to the functionality of PNIPAAm-modified interfaces based on the temperature modulation of the interaction between PNIPAAm-modified interfaces and biomolecules and cells. This review focuses on PNIPAAm-modified interfaces in terms of preparation method, properties, and their applications. Advances in PNIPAAm-modified interfaces for existing and developing applications are also summarized.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| |
Collapse
|
5
|
Nagase K, Kanazawa H. Temperature-responsive chromatography for bioseparations: A review. Anal Chim Acta 2020; 1138:191-212. [DOI: 10.1016/j.aca.2020.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
|
6
|
Nagase K, Ishii S, Ikeda K, Yamada S, Ichikawa D, Akimoto AM, Hattori Y, Kanazawa H. Antibody drug separation using thermoresponsive anionic polymer brush modified beads with optimised electrostatic and hydrophobic interactions. Sci Rep 2020; 10:11896. [PMID: 32719404 PMCID: PMC7385495 DOI: 10.1038/s41598-020-68707-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Antibody drugs play an important role in biopharmaceuticals, because of the specificity for target biomolecules and reduction of side effects. Thus, separation and analysis techniques for these antibody drugs have increased in importance. In the present study, we develop functional chromatography matrices for antibody drug separation and analysis. Three types of polymers, poly(N-isopropylacrylamide (NIPAAm)-co-2-acrylamido-2-methylpropanesulfonic acid (AMPS)-co-N-phenyl acrylamide (PhAAm)), P(NIPAAm-co-AMPS-co-n-butyl methacrylate (BMA)), and P(NIPAAm-co-AMPS-co-tert-butylacrylamide (tBAAm)), were modified on silica beads through atom transfer radical polymerisation. Rituximab elution profiles were observed using the prepared beads-packed column. Rituximab adsorption at high temperature and elution at low temperature from the column were observed, as a result of the temperature-modulated electrostatic and hydrophobic interactions. Using the column, rituximab purification from contaminants was performed simply by changing the temperature. Additionally, three types of antibody drugs were separated using the column through temperature-modulated hydrophobic and electrostatic interactions. These results demonstrate that the temperature-responsive column can be applied for the separation and analysis of biopharmaceuticals through a simple control of the column temperature.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo, Minato, 105-8512, Japan.
| | - Saki Ishii
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo, Minato, 105-8512, Japan
| | - Koji Ikeda
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo, Minato, 105-8512, Japan
| | - Sota Yamada
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo, Minato, 105-8512, Japan
| | - Daiju Ichikawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo, Minato, 105-8512, Japan
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Yutaka Hattori
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo, Minato, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Tokyo, Minato, 105-8512, Japan
| |
Collapse
|
7
|
Baert M, Wicht K, Hou Z, Szucs R, Prez FD, Lynen F. Exploration of the Selectivity and Retention Behavior of Alternative Polyacrylamides in Temperature Responsive Liquid Chromatography. Anal Chem 2020; 92:9815-9822. [PMID: 32598128 DOI: 10.1021/acs.analchem.0c01321] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Temperature responsive liquid chromatography (TRLC) allows for separation of organic solutes in purely aqueous mobile phases whereby retention is controlled through temperature. The vast majority of the work has thus far been performed on poly[N-isopropylacrylamide] (PNIPAAm)-based columns, while the performance of other temperature responsive polymers has rarely been compared under identical conditions. Therefore, in this work, two novel TRLC phases based on poly[N-n-propylacrylamide] (PNNPAAm) and poly[N,N-diethylacrylamide] (PDEAAm) are reported and compared to the state of the art PNIPAAm based column. Optimal comparison is thereby obtained by the use of controlled radical polymerizations, identical molecular weights, and by maximizing carbon loads on the silica supporting material. Analysis of identical test mixtures of homologue series and pharmaceutical samples revealed that PNNPAAm performs in a similar way as PNIPAAm while offering enhanced retention and a shift of the useable temperature range toward lower temperatures. PDEAAm offers a range of novel possibilities as it depicts a different selectivity, allowing for enhanced resolution in TRLC in, for example, coupled column systems. Reduced plate heights of 3 could be obtained on the homemade columns, offering the promise for reasonable column efficiencies in TRLC despite the use of bulky polymers as stationary phases in HPLC.
Collapse
Affiliation(s)
- Mathijs Baert
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Kristina Wicht
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Zhanyao Hou
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Roman Szucs
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Filip Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| | - Frederic Lynen
- Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium
| |
Collapse
|
8
|
Nagase K, Watanabe M, Zen F, Kanazawa H. Temperature-responsive mixed-mode column containing temperature-responsive polymer-modified beads and anionic polymer-modified beads. Anal Chim Acta 2019; 1079:220-229. [DOI: 10.1016/j.aca.2019.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/18/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
9
|
Sun W, Dai R, Li B, Dai G, Wang D, Yang D, Chu P, Deng Y, Luo A. Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis. Molecules 2019; 24:E2626. [PMID: 31330945 PMCID: PMC6680567 DOI: 10.3390/molecules24142626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
We have developed a methodology to capture acidic proteins, alkaline proteins, and glycoproteins separately in mouse serum using a combination of three functionalized temperature-responsive chromatographic stationary phases. The temperature-responsive polymer poly(N-isopropylacrylamide) was attached to the stationary phase, silica. The three temperature-responsive chromatographic stationary phase materials were prepared by reversible addition-fragmentation chain transfer polymerization. Alkaline, acidic, and boric acid functional groups were introduced to capture acidic proteins, alkaline proteins, and glycoproteins, respectively. The protein enrichment and release properties of the materials were examined using the acidic protein, bovine serum albumin; the alkaline protein, protamine; and the glycoprotein, horseradish peroxidase. Finally, the three materials were used to analyze mouse serum. Without switching the mobile phase, the capture and separation of mouse serum was achieved by the combination of three temperature-responsive chromatographic stationary phase materials. On the whole, 313 proteins were identified successfully. The number of different proteins identified using the new method was 1.46 times greater than the number of proteins that has been identified without applying this method. To our knowledge, this method is the first combinatorial use of three functionalized temperature-responsive chromatographic stationary phase silica materials to separate proteins in mouse serum.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guoxin Dai
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Di Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dandan Yang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pingping Chu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Aiqin Luo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
10
|
Nagase K, Okano T, Kanazawa H. Poly(N-isopropylacrylamide) based thermoresponsive polymer brushes for bioseparation, cellular tissue fabrication, and nano actuators. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
NAGASE K, OKANO T, KANAZAWA H. Design of Functional Thermoresponsive Polymer Brushes and Their Application to Bioseparation. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2017-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Teruo OKANO
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns
- Cell Sheet Tissue Engineering Center (CSTEC) and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah
| | | |
Collapse
|
12
|
Nagase K, Yamato M, Kanazawa H, Okano T. Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 2017; 153:27-48. [PMID: 29096399 DOI: 10.1016/j.biomaterials.2017.10.026] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/12/2017] [Accepted: 10/15/2017] [Indexed: 02/06/2023]
Abstract
Thermoresponsive surfaces, prepared by grafting of poly(N-isopropylacrylamide) (PIPAAm) or its copolymers, have been investigated for biomedical applications. Thermoresponsive cell culture dishes that show controlled cell adhesion and detachment following external temperature changes, represent a promising application of thermoresponsive surfaces. These dishes can be used to fabricate cell sheets, which are currently used as effective therapies for patients. Thermoresponsive microcarriers for large-scale cell cultivation have also been developed by taking advantage of the thermally modulated cell adhesion and detachment properties of thermoresponsive surfaces. Furthermore, thermoresponsive bioseparation systems using thermoresponsive surfaces for separating and purifying pharmaceutical proteins and therapeutic cells have been developed, with the separation systems able to maintain their activity and biological potency throughout the procedure. These applications of thermoresponsive surfaces have been improved with progress in preparation techniques of thermoresponsive surfaces, such as polymerization methods, and surface modification techniques. In the present review, the various types of PIPAAm-based thermoresponsive surfaces are summarized by describing their preparation methods, properties, and successful biomedical applications.
Collapse
Affiliation(s)
- Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan.
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan; Cell Sheet Tissue Engineering Center (CSTEC) and Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 South 2000 East, Salt Lake City, Utah 84112, USA.
| |
Collapse
|
13
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Oz Y, Arslan M, Gevrek TN, Sanyal R, Sanyal A. Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19813-19826. [PMID: 27406320 DOI: 10.1021/acsami.6b04664] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of efficient and rapid protocols for diversification of functional magnetic nanoparticles (MNPs) would enable identification of promising candidates using high-throughput protocols for applications such as diagnostics and cure through early detection and localized delivery. Polymer brush coated magnetic nanoparticles find use in many such applications. A protocol that allows modular diversification of a pool of parent polymer coated nanoparticles will lead to a library of functional materials with improved uniformity. In the present study, polymer brush coated parent magnetic nanoparticles obtained using reversible addition-fragmentation chain transfer (RAFT) polymerization are modified to obtain nanoparticles with different "clickable" groups. In this design, trithiocarbonate group terminated polymer brushes are "grafted from" MNPs using a catechol group bearing initiator. A postpolymerization radical exchange reaction allows installation of "clickable" functional groups like azides and maleimides on the chain ends of the polymers. Thus, modified MNPs can be functionalized using alkyne-containing and thiol-containing moieties like peptides and dyes using the alkyne-azide cycloaddition and the thiol-ene conjugation, respectively. Using the approach outlined here, a cell surface receptor targeting cyclic peptide and a fluorescent dye are attached onto nanoparticle surface. This multifunctional construct allows selective recognition of cancer cells that overexpress integrin receptors. Furthermore, the approach outlined here is not limited to the installation of azide and maleimide functional groups but can be expanded to a variety of "clickable" groups to allow nanoparticle modification using a broad range of chemical conjugations.
Collapse
Affiliation(s)
- Yavuz Oz
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
| | - Mehmet Arslan
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
| | - Tugce N Gevrek
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University , Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University , Bebek, 34342 Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University , Istanbul, Turkey
| |
Collapse
|
15
|
Tan J, Bai Y, Zhang X, Huang C, Liu D, Zhang L. Low-Temperature Synthesis of Thermoresponsive Diblock Copolymer Nano-Objects via Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) using Thermoresponsive Macro-RAFT Agents. Macromol Rapid Commun 2016; 37:1434-40. [DOI: 10.1002/marc.201600299] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| | - Yuhao Bai
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Xuechao Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Chundong Huang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| |
Collapse
|
16
|
Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Thermoresponsive anionic block copolymer brushes with a strongly anionic bottom segment for effective interactions with biomolecules. RSC Adv 2016. [DOI: 10.1039/c6ra20944k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thermoresponsive anionic block copolymer brushes were prepared on silica bead surfaces by multistep surface-initiated atom-transfer radical polymerization. The anionic properties of the prepared brushes changed with temperature changes.
Collapse
Affiliation(s)
- Kenichi Nagase
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology
- Tokyo University of Science
- Tokyo 125-8585
- Japan
| | - Yoshikatsu Akiyama
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | | | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| |
Collapse
|
17
|
Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Protein separations via thermally responsive ionic block copolymer brush layers. RSC Adv 2016. [DOI: 10.1039/c6ra01061j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Thermoresponsive materials were prepared via multi-step surface-initiated ATRP. Because of the hydrophobic/hydrophilic transitions in the materials, proteins are adsorbed and eluted by simply changing the column temperature.
Collapse
Affiliation(s)
- Kenichi Nagase
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology
- Tokyo University of Science
- Tokyo 125-8585
- Japan
| | - Yoshikatsu Akiyama
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | | | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| |
Collapse
|
18
|
Nagase K, Okano T. Thermoresponsive-polymer-based materials for temperature-modulated bioanalysis and bioseparations. J Mater Chem B 2016; 4:6381-6397. [DOI: 10.1039/c6tb01003b] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, bioseparations using thermoresponsive polymers are summarized. Thermoresponsive chromatography for separating bioactive compounds and proteins, and cell separations using thermoresponsive polymers and their properties are reviewed.
Collapse
Affiliation(s)
- Kenichi Nagase
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| |
Collapse
|
19
|
Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Thermoresponsive hydrophobic copolymer brushes modified porous monolithic silica for high-resolution bioseparation. RSC Adv 2015. [DOI: 10.1039/c5ra11038f] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thermoresponsive-hydrophobic copolymer brushes were prepared on porous monolithic silica rods through surface initiated ATRP. The monolithic silica can separate biomolecules with high resolution and in short analysis times.
Collapse
Affiliation(s)
- Kenichi Nagase
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | - Akihiko Kikuchi
- Department of Materials Science and Technology
- Tokyo University of Science
- Tokyo 125-8585
- Japan
| | - Yoshikatsu Akiyama
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| | | | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science
- Tokyo Women's Medical University
- TWIns
- Tokyo 162-8666
- Japan
| |
Collapse
|
20
|
Christau S, Möller T, Yenice Z, Genzer J, von Klitzing R. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13033-13041. [PMID: 25275215 DOI: 10.1021/la503432x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of the brush grafting density on the loading of 13 nm gold nanoparticles (AuNPs) into stimuli-responsive poly(N,N-(dimethylamino ethyl) methacrylate) (PDMAEMA) brushes anchored to flat impenetrable substrates is reported. Atom-transfer radical polymerization (ATRP) is used to grow polymer brushes via a "grafting from" approach from a 2-bromo-2-methyl-N-(3-(triethoxysilyl) propyl) propanamide (BTPAm)-covered silicon substrate. The grafting density is varied by using mixtures of initiator and a "dummy" molecule that is not able to initiate polymerization. A systematic study is carried out by varying the brush grafting density while keeping all of the other parameters constant. X-ray reflectivity is a suitable tool for investigating the spatial structure of the hybrid, and it is combined with scanning electron microscopy and UV/vis spectroscopy to study the particle loading and interpenetration of the particles within the polymer brush matrix. The particle uptake increases with decreasing grafting density and is highest for an intermediate grafting density because more space between the polymer chains is available. For very low grafting densities of PDMAEMA brushes, the particle uptake decreases because of a lack of the polymer matrix for the attachment of particles. The structure of the surface-grafted polymer chains changes after particle attachment. More water is incorporated into the brush matrix after particle immobilization, which leads to a swelling of the polymer chains in the hybrid material. Water can be removed from the brush by decreasing the relative humidity, which leads to brush shrinking and forces the AuNPs to get closer to each other.
Collapse
Affiliation(s)
- Stephanie Christau
- Stranski Laboratorium für Physikalische Chemie, Technische Universität Berlin , Str. des 17. Juni 124, 10623 Berlin, Germany
| | | | | | | | | |
Collapse
|
21
|
Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Thermoresponsive Anionic Copolymer Brushes Containing Strong Acid Moieties for Effective Separation of Basic Biomolecules and Proteins. Biomacromolecules 2014; 15:3846-58. [DOI: 10.1021/bm5012163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenichi Nagase
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Jun Kobayashi
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Akihiko Kikuchi
- Department
of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yoshikatsu Akiyama
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Hideko Kanazawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Teruo Okano
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
22
|
Ayano E, Kanazawa H. Temperature-responsive smart packing materials utilizing multi-functional polymers. ANAL SCI 2014; 30:167-73. [PMID: 24420259 DOI: 10.2116/analsci.30.167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Polymers that respond to small changes in environmental stimuli with large, sometimes discontinuous changes in their physical state or properties, are often called "smart" polymers. Poly(N-isopropylacrylamide), PNIPAAm, is one of the most representative smart polymer that exhibits a thermally reversible soluble-insoluble change in the vicinity of its lower critical solution temperature (LCST) at 32°C in aqueous solution. Temperature-responsive chromatography for the separation of biomolecules utilizing the poly(N-isopropylacrylamide) (PNIPAAm)-modified stationary phase is performed with an aqueous mobile phase without using an organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. The separation of the biomolecules, such as nucleotides, was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase. Additionally, we also prepared functional copolymers composed of N-isopropylacrylamide (NIPAAm) and amino acid derivative or naphthyl alanine derivative, which have temperature-responsiveness and molecular recognition. These separation systems would have potential applications in the separation of biomolecules.
Collapse
Affiliation(s)
- Eri Ayano
- Faculty of Pharmacy, Keio University
| | | |
Collapse
|
23
|
Terefe NS, Glagovskaia O, De Silva K, Stockmann R. Application of stimuli responsive polymers for sustainable ion exchange chromatography. FOOD AND BIOPRODUCTS PROCESSING 2014. [DOI: 10.1016/j.fbp.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Monolithic Silica Rods Grafted with Thermoresponsive Anionic Polymer Brushes for High-Speed Separation of Basic Biomolecules and Peptides. Biomacromolecules 2014; 15:1204-15. [DOI: 10.1021/bm401779r] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenichi Nagase
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| | - Jun Kobayashi
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| | - Akihiko Kikuchi
- Department
of Materials Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan
| | - Yoshikatsu Akiyama
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| | - Hideko Kanazawa
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | - Teruo Okano
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, TWIns, 8-1 Kawadacho, Shinjuku,
Tokyo 162-8666, Japan
| |
Collapse
|
25
|
Nagase K, Geven M, Kimura S, Kobayashi J, Kikuchi A, Akiyama Y, Grijpma DW, Kanazawa H, Okano T. Thermoresponsive copolymer brushes possessing quaternary amine groups for strong anion-exchange chromatographic matrices. Biomacromolecules 2014; 15:1031-43. [PMID: 24467304 DOI: 10.1021/bm401918a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A thermoresponsive copolymer incorporating a quaternary amine group, poly(N-isopropylacrylamide-co-3-acrylamidopropyl trimethylammonium chloride (APTAC)-co-tert-butylacrylamide), was conjugated to the surface of silica beads through surface-initiated atom transfer radical polymerization. Prepared copolymer- and copolymer brush-modified beads were characterized by CHN elemental analysis, X-ray photoelectron spectroscopy, gel permeation chromatography, and observation of phase transition profiles. Phase transition profiles of the prepared copolymer indicated that 5 mol % APTAC is suitable for enabling thermally modulated property changes in the copolymer. Chromatographic elution behaviors of adenosine nucleotides and proteins were observed using prepared beads as chromatography matrices. Higher retention time of adenosine nucleotides and strong protein adsorption behavior were observed compared with those on beads with tertiary amine groups, because of the strong basic properties. Therefore, copolymer brush modified beads will be useful as thermoresponsive ion-exchange chromatographic matrices.
Collapse
Affiliation(s)
- Kenichi Nagase
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University , TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nagase K, Hatakeyama Y, Shimizu T, Matsuura K, Yamato M, Takeda N, Okano T. Hydrophobized Thermoresponsive Copolymer Brushes for Cell Separation by Multistep Temperature Change. Biomacromolecules 2013; 14:3423-33. [DOI: 10.1021/bm4006722] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kenichi Nagase
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Yuri Hatakeyama
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
- Department
of Life Science and Medical Bioscience, School of Advanced
Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Tatsuya Shimizu
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Katsuhisa Matsuura
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Masayuki Yamato
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | - Naoya Takeda
- Department
of Life Science and Medical Bioscience, School of Advanced
Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsucho, Shinjuku, Tokyo 162-8480, Japan
| | - Teruo Okano
- Institute
of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University (TWIns), 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| |
Collapse
|
27
|
Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement. J Chromatogr A 2013; 1285:97-109. [DOI: 10.1016/j.chroma.2013.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/22/2022]
|
28
|
Nagase K, Kobayashi J, Kikuchi A, Akiyama Y, Kanazawa H, Okano T. Thermally modulated cationic copolymer brush on monolithic silica rods for high-speed separation of acidic biomolecules. ACS APPLIED MATERIALS & INTERFACES 2013; 5:1442-1452. [PMID: 23394252 DOI: 10.1021/am302889j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Poly(N-isopropylacrylamide (IPAAm)-co-2-(dimethylamino)ethylmethacrylate(DMAEMA)-co-tert-butylacrylamide (tBAAm)), a thermoresponsive-cationic-copolymer, brush-grafted monolithic-silica column was prepared through surface-initiated atom transfer radical polymerization (ATRP) for effective thermoresponsive anion-exchange chromatography matrices. ATRP-initiator was grafted on monolithic silica-rod surfaces by flowing a toluene solution containing ATRP initiator into monolithic silica-rod columns. IPAAm, DMAEMA, and tBAAm monomers and CuCl/CuCl₂/Me₆TREN, an ATRP catalytic system, were dissolved in 2-propanol, and the reaction solution was pumped into the preprepared initiator modified columns at 25 °C for 16 h. The constructed copolymer-brush structure on monolithic silica-rod surface was confirmed by X-ray photoelectron spectroscopy (XPS), elemental analysis, scanning electron microscopy (SEM) observation, and gel permeation chromatography (GPC) measurement of grafted copolymer. The prepared monolithic silica-rod columns were also characterized by chromatographic analysis. The cationic copolymer brush modified monolithic silica-rod columns were able to separate adenosine nucleotides with a shorter analysis time (4 min) than thermoresponsive copolymer brush-modified silica-bead-packed columns, because of the reduced diffusion path length of monolithic supporting materials. These results indicated that thermoresponsive cationic copolymer brush grafted monolithic silica-rod column prepared by ATRP was a promising tool for analyzing acidic-bioactive compounds with a remarkably short analysis time.
Collapse
Affiliation(s)
- Kenichi Nagase
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku, Tokyo 162-8666, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Modified polyglycidol based nanolayers of switchable philicity and their interactions with skin cells. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2012.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Wu J, Gao L, Gao D. Multistage magnetic separation of microspheres enabled by temperature-responsive polymers. ACS APPLIED MATERIALS & INTERFACES 2012; 4:3041-3046. [PMID: 22568650 DOI: 10.1021/am3004076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A simple and rapid method for separation of cells is to functionalize magnetic particles with a receptor that selectively captures the target and then pull the magnetic particles out of the mixture upon applying a magnetic field. The separation efficiency of magnetic separation, however, is typically limited by the nonspecific interaction between the magnetic particles and nontarget species. We here present a multistage separation process that is able to effectively circumvent the problem caused by the nonspecific interactions by introducing multiple capture-and-release cycles to the magnetic separation process. The multiple capture-and-release cycles are enabled by attaching a temperature-responsive polymer to both the magnetic particles and the targets. Through temperature cycling, we demonstrate that target microspheres can be separated from nontarget microspheres in multiple separation stages. The overall enrichment factor significantly increases with the number of separation stages and reaches as high as 1.87 × 10(5) after 5 cycles.
Collapse
Affiliation(s)
- Jiamin Wu
- Department of Chemical and Petroleum Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | |
Collapse
|
31
|
McKee JR, Ladmiral V, Niskanen J, Tenhu H, Armes SP. Synthesis of Sterically-Stabilized Polystyrene Latexes Using Well-Defined Thermoresponsive Poly(N-isopropylacrylamide) Macromonomers. Macromolecules 2011. [DOI: 10.1021/ma2016584] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. R. McKee
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, U.K
- Department of Chemistry, University of Helsinki, PB 55, FIN-00014 HY Helsinki, Finland
| | - V. Ladmiral
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, U.K
| | - J. Niskanen
- Department of Chemistry, University of Helsinki, PB 55, FIN-00014 HY Helsinki, Finland
| | - H. Tenhu
- Department of Chemistry, University of Helsinki, PB 55, FIN-00014 HY Helsinki, Finland
| | - S. P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, U.K
| |
Collapse
|
32
|
Kanazawa H, Okano T. Temperature-responsive chromatography for the separation of biomolecules. J Chromatogr A 2011; 1218:8738-47. [PMID: 21570080 DOI: 10.1016/j.chroma.2011.04.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/14/2022]
Abstract
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here.
Collapse
Affiliation(s)
- Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Tokyo 105-8512, Japan
| | | |
Collapse
|
33
|
Dai R, Chen L, Liu Z, Wang H, Hu D, Deng Y. Preparation and characterization of temperature-responsive chromatographic column containing poly(N-isopropylacrylamide) and poly([2-(methacryloyloxy)- ethyl]trimetylammonium chloride). J Appl Polym Sci 2011. [DOI: 10.1002/app.33830] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|