1
|
Pajčin I, Knežić T, Savic Azoulay I, Vlajkov V, Djisalov M, Janjušević L, Grahovac J, Gadjanski I. Bioengineering Outlook on Cultivated Meat Production. MICROMACHINES 2022; 13:402. [PMID: 35334693 PMCID: PMC8950996 DOI: 10.3390/mi13030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Cultured meat (also referred to as cultivated meat or cell-based meat)-CM-is fabricated through the process of cellular agriculture (CA), which entails application of bioengineering, i.e., tissue engineering (TE) principles to the production of food. The main TE principles include usage of cells, grown in a controlled environment provided by bioreactors and cultivation media supplemented with growth factors and other needed nutrients and signaling molecules, and seeded onto the immobilization elements-microcarriers and scaffolds that provide the adhesion surfaces necessary for anchor-dependent cells and offer 3D organization for multiple cell types. Theoretically, many solutions from regenerative medicine and biomedical engineering can be applied in CM-TE, i.e., CA. However, in practice, there are a number of specificities regarding fabrication of a CM product that needs to fulfill not only the majority of functional criteria of muscle and fat TE, but also has to possess the sensory and nutritional qualities of a traditional food component, i.e., the meat it aims to replace. This is the reason that bioengineering aimed at CM production needs to be regarded as a specific scientific discipline of a multidisciplinary nature, integrating principles from biomedical engineering as well as from food manufacturing, design and development, i.e., food engineering. An important requirement is also the need to use as little as possible of animal-derived components in the whole CM bioprocess. In this review, we aim to present the current knowledge on different bioengineering aspects, pertinent to different current scientific disciplines but all relevant for CM engineering, relevant for muscle TE, including different cell sources, bioreactor types, media requirements, bioprocess monitoring and kinetics and their modifications for use in CA, all in view of their potential for efficient CM bioprocess scale-up. We believe such a review will offer a good overview of different bioengineering strategies for CM production and will be useful to a range of interested stakeholders, from students just entering the CA field to experienced researchers looking for the latest innovations in the field.
Collapse
Affiliation(s)
- Ivana Pajčin
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ivana Savic Azoulay
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| | - Vanja Vlajkov
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| | - Jovana Grahovac
- Department of Biotechnology and Pharmaceutical Engineering, Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (V.V.); (J.G.)
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (M.D.); (L.J.)
| |
Collapse
|
2
|
|
3
|
Patil R, Walther J. Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:277-322. [PMID: 28265699 DOI: 10.1007/10_2016_58] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Collapse
Affiliation(s)
- Rohan Patil
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA
| | - Jason Walther
- Bioprocess Development, Sanofi, Framingham, MA, 01701, USA.
| |
Collapse
|
4
|
Janoschek S, Schulze M, Zijlstra G, Greller G, Matuszczyk J. A protocol to transfer a fed-batch platform process into semi-perfusion mode: The benefit of automated small-scale bioreactors compared to shake flasks as scale-down model. Biotechnol Prog 2019; 35:e2757. [PMID: 30479066 PMCID: PMC6667907 DOI: 10.1002/btpr.2757] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Indexed: 01/05/2023]
Abstract
Continuous processes such as perfusion processes can offer advantages compared to fed-batch or batch processes in bio-processing: improved product quality (e.g. for labile products), increased product yield, and cost savings. In this work, a semi-perfusion process was established in shake flasks and transferred to an automated small-scale bioreactor by daily media exchange via centrifugation based on an existing fed-batch process platform. At first the development of a suitable medium and feed composition, the glucose concentration required by the cells and the cell-specific perfusion rate were investigated in shake flasks as the conventional scale-down system. This lead to an optimized process with a threefold higher titer of 10 g/L monoclonal antibody compared to the standard fed-batch. To proof the suitability and benefit as a small-scale model, the established semi-perfusion process was transferred to an automated small-scale bioreactor with improved pH and dissolved oxygen control. The average specific productivity improved from 24.16 pg/(c*d) in the fed-batch process and 36.04 pg/c*d in the semi-perfusion shake flask to 38.88 pg/(c*d) in the semi-perfusion process performed in the controlled small-scale bioreactor, thus illustrating the benefits resulting from the applied semi-perfusion approach, especially in combination with controlled DO and pH settings. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2757, 2019.
Collapse
Affiliation(s)
| | - Markus Schulze
- R&D BioProcessingSartorius Stedim Biotech GmbHGöttingenGermany
| | - Gerben Zijlstra
- Mab Segment MarketingSartorius Stedim Netherlands BVRotterdamNetherlands
| | - Gerhard Greller
- R&D BioProcessingSartorius Stedim Biotech GmbHGöttingenGermany
| | - Jens Matuszczyk
- R&D BioProcessingSartorius Stedim Biotech GmbHGöttingenGermany
| |
Collapse
|
5
|
McAtee Pereira AG, Walther JL, Hollenbach M, Young JD. 13 C Flux Analysis Reveals that Rebalancing Medium Amino Acid Composition can Reduce Ammonia Production while Preserving Central Carbon Metabolism of CHO Cell Cultures. Biotechnol J 2018; 13:e1700518. [PMID: 29405605 DOI: 10.1002/biot.201700518] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/10/2018] [Indexed: 11/10/2022]
Abstract
13 C metabolic flux analysis (MFA) provides a rigorous approach to quantify intracellular metabolism of industrial cell lines. In this study, 13 C MFA was used to characterize the metabolic response of Chinese hamster ovary (CHO) cells to a novel medium variant designed to reduce ammonia production. Ammonia inhibits growth and viability of CHO cell cultures, alters glycosylation of recombinant proteins, and enhances product degradation. Ammonia production was reduced by manipulating the amino acid composition of the culture medium; specifically, glutamine, glutamate, asparagine, aspartate, and serine levels were adjusted. Parallel 13 C flux analysis experiments determined that, while ammonia production decreased by roughly 40%, CHO cell metabolic phenotype, growth, viability, and monoclonal antibody (mAb) titer were not significantly altered by the changes in media composition. This study illustrates how 13 C flux analysis can be applied to assess the metabolic effects of media manipulations on mammalian cell cultures. The analysis revealed that adjusting the amino acid composition of CHO cell culture media can effectively reduce ammonia production while preserving fluxes throughout central carbon metabolism.
Collapse
Affiliation(s)
- Allison G McAtee Pereira
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jason L Walther
- Bioprocess Development, Sanofi, 02142, Boston, Massachusetts, USA
| | - Myles Hollenbach
- Bioprocess Development, Sanofi, 02142, Boston, Massachusetts, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, 37235, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Vogg S, Wolf MKF, Morbidelli M. Continuous and Integrated Expression and Purification of Recombinant Antibodies. Methods Mol Biol 2018; 1850:147-178. [PMID: 30242686 DOI: 10.1007/978-1-4939-8730-6_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This chapter introduces the necessary concepts to design continuous expression and purification processes for monoclonal antibodies. The operation of a perfusion bioreactor is discussed containing the preparation procedures, the seeding train and the preparation and control of a long-term production run. The downstream processes exploit the benefits of countercurrent chromatography. Their design from batch experiments is presented. The CaptureSMB process is introduced for continuous capturing while for polishing applications the design of the two-column MCSGP process is described. The chapter also puts these processes together in the context of their integration to an end-to-end production process.
Collapse
Affiliation(s)
- Sebastian Vogg
- ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | | | - Massimo Morbidelli
- ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland.
| |
Collapse
|
7
|
Lin HH, Lee TY, Liu TW, Tseng CP. High glucose enhances cAMP level and extracellular signal-regulated kinase phosphorylation in Chinese hamster ovary cell: Usage of Br-cAMP in foreign protein β-galactosidase expression. J Biosci Bioeng 2017; 124:108-114. [PMID: 28286121 DOI: 10.1016/j.jbiosc.2017.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/29/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
Glucose is a carbon source for Chinese hamster ovary (CHO) cell growth, while low growth rate is considered to enhance the production of recombinant proteins. The present study reveals that glucose concentrations higher than 1 g/L reduce the growth rate and substantially increase in cAMP (∼300%) at a high glucose concentration (10 g/L). High glucose also enhances the phosphorylation of extracellular signal-regulated kinase (ERK) and p27kip by Western blot analysis. To determine whether the phosphorylation of ERK is involved in the mechanism, a cyclic-AMP dependent protein kinase A (PKA) inhibitor (H-8) or MEK (MAPKK) inhibitor (PD98059) was added to block ERK phosphorylation. We show that both the high glucose-induced ERK phosphorylation and growth rate return to baseline levels. These results suggest that the cAMP/PKA and MAP signaling pathways are involved in the abovementioned mechanism. Interestingly, the direct addition of 8-bromo-cAMP (Br-cAMP), a membrane-permeable cAMP analog, can mimic the similar effects produced by high glucose. Subsequently Br-cAMP could induce β-galactosidase (β-Gal) recombinant protein expression by 1.6-fold. Furthermore, Br-cAMP can additionally enhance the β-Gal production (from 2.8- to 4.5-fold) when CHO cells were stimulated with glycerol, thymidine, dimethyl sulfoxide, pentanoic acid, or sodium butyrate. Thus, Br-cAMP may be used as an alternative agent in promoting foreign protein expression for CHO cells.
Collapse
Affiliation(s)
- Hsiao-Hsien Lin
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC
| | - Tsung-Yih Lee
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC
| | - Ting-Wei Liu
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC
| | - Ching-Ping Tseng
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 30068, Taiwan, ROC.
| |
Collapse
|
8
|
Valeric acid supplementation combined to mild hypothermia increases productivity in CHO cell cultivations. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Xu S, Chen H. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. J Biotechnol 2016; 231:149-159. [DOI: 10.1016/j.jbiotec.2016.06.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 01/02/2023]
|
10
|
Edros R, McDonnell S, Al-Rubeai M. The relationship between mTOR signalling pathway and recombinant antibody productivity in CHO cell lines. BMC Biotechnol 2014; 14:15. [PMID: 24533650 PMCID: PMC3937030 DOI: 10.1186/1472-6750-14-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
Background High recombinant protein productivity in mammalian cell lines is often associated with phenotypic changes in protein content, energy metabolism, and cell growth, but the key determinants that regulate productivity are still not clearly understood. The mammalian target of rapamycin (mTOR) signalling pathway has emerged as a central regulator for many cellular processes including cell growth, apoptosis, metabolism, and protein synthesis. This role of this pathway changes in response to diverse environmental cues and allows the upstream proteins that respond directly to extracellular signals (such as nutrient availability, energy status, and physical stresses) to communicate with downstream effectors which, in turn, regulate various essential cellular processes. Results In this study, we have performed a transcriptomic analysis using a pathway-focused polymerase chain reaction (PCR) array to compare the expression of 84 target genes related to the mTOR signalling in two recombinant CHO cell lines with a 17.4-fold difference in specific monoclonal antibody productivity (qp). Eight differentially expressed genes that exhibited more than a 1.5-fold change were identified. Pik3cd (encoding the Class 1A catalytic subunit of phosphatidylinositol 3-kinase [PI3K]) was the most differentially expressed gene having a 71.3-fold higher level of expression in the high producer cell line than in the low producer. The difference in the gene’s transcription levels was confirmed at the protein level by examining expression of p110δ. Conclusion Expression of p110δ correlated with specific productivity (qp) across six different CHO cell lines, with a range of expression levels from 3 to 51 pg/cell/day, suggesting that p110δ may be a key factor in regulating productivity in recombinant cell lines.
Collapse
Affiliation(s)
| | | | - Mohamed Al-Rubeai
- School of Chemical and Bioprocess Engineering and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Seth G, Hamilton RW, Stapp TR, Zheng L, Meier A, Petty K, Leung S, Chary S. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Biotechnol Bioeng 2013; 110:1376-85. [DOI: 10.1002/bit.24808] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/06/2012] [Accepted: 12/03/2012] [Indexed: 11/10/2022]
|
12
|
Dowd JE, Jubb A, Kwok KE, Piret JM. Optimization and control of perfusion cultures using a viable cell probe and cell specific perfusion rates. Cytotechnology 2011; 42:35-45. [PMID: 19002926 DOI: 10.1023/a:1026192228471] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Consistent perfusion culture production requires reliable cell retention and control of feed rates. An on-line cell probe based on capacitance was used to assay viable biomass concentrations. A constant cell specific perfusion rate controlled medium feed rates with a bioreactor cell concentration of approximately 5 x 10(6) cells mL(-1). Perfusion feeding was automatically adjusted based on the cell concentration signal from the on-line biomass sensor. Cell specific perfusion rates were varied over a range of 0.05 to 0.4 nL cell(-1) day(-1). Pseudo-steady-state bioreactor indices (concentrations, cellular rates and yields) were correlated to cell specific perfusion rates investigated to maximize recombinant protein production from a Chinese hamster ovary cell line. The tissue-type plasminogen activator concentration was maximized ( approximately 40 mg L(-1)) at 0.2 nL cell(-1) day(-1). The volumetric protein productivity ( approximately 60 mg L(-1) day(-1) was maximized above 0.3 nL cell(-1) day(-1). The use of cell specific perfusion rates provided a straightforward basis for controlling, modeling and optimizing perfusion cultures.
Collapse
Affiliation(s)
- Jason E Dowd
- Biotechnology Laboratory, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
13
|
Hu S, Deng L, Wang H, Zhuang Y, Chu J, Zhang S, Li Z, Guo M. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells. Cytotechnology 2011; 63:247-58. [PMID: 21298341 PMCID: PMC3081043 DOI: 10.1007/s10616-011-9336-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/11/2011] [Indexed: 12/23/2022] Open
Abstract
The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.
Collapse
Affiliation(s)
- Suwen Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Lei Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Huamao Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, 200032 Shanghai, People’s Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Siliang Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| | - Zhonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiaotong University, 200032 Shanghai, People’s Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, P.O. box 329, 130 Meilong Rd., 200237 Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Goudar CT, Biener R, Konstantinov KB, Piret JM. Error propagation from prime variables into specific rates and metabolic fluxes for mammalian cells in perfusion culture. Biotechnol Prog 2009; 25:986-98. [PMID: 19551875 DOI: 10.1002/btpr.155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Error propagation from prime variables into specific rates and metabolic fluxes was quantified for high-concentration CHO cell perfusion cultivation. Prime variable errors were first determined from repeated measurements and ranged from 4.8 to 12.2%. Errors in nutrient uptake and metabolite/product formation rates for 5-15% error in prime variables ranged from 8-22%. The specific growth rate, however, was characterized by higher uncertainty as 15% errors in the bioreactor and harvest cell concentration resulted in 37.8% error. Metabolic fluxes were estimated for 12 experimental conditions, each of 10 day duration, during 120-day perfusion cultivation and were used to determine error propagation from specific rates into metabolic fluxes. Errors of the greater metabolic fluxes (those related to glycolysis, lactate production, TCA cycle and oxidative phosphorylation) were similar in magnitude to those of the related greater specific rates (glucose, lactate, oxygen and CO(2) rates) and were insensitive to errors of the lesser specific rates (amino acid catabolism and biosynthesis rates). Errors of the lesser metabolic fluxes (those related to amino acid metabolism), however, were extremely sensitive to errors of the greater specific rates to the extent that they were no longer representative of cellular metabolism and were much less affected by errors in the lesser specific rates. We show that the relationship between specific rate and metabolic flux error could be accurately described by normalized sensitivity coefficients, which were readily calculated once metabolic fluxes were estimated. Their ease of calculation, along with their ability to accurately describe the specific rate-metabolic flux error relationship, makes them a necessary component of metabolic flux analysis.
Collapse
Affiliation(s)
- Chetan T Goudar
- Cell Culture Development, Global Biologics Development, Bayer HealthCare, 800 Dwight Way, Berkeley, CA 94710, USA.
| | | | | | | |
Collapse
|
15
|
Chun BH, Bang WG, Park YK, Woo SK. Stable expression of recombinant human coagulation factor XIII in protein-free suspension culture of Chinese hamster ovary cells. Cytotechnology 2008; 37:179-87. [PMID: 19002921 DOI: 10.1023/a:1020555918441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The recombinant a and bsubunits for human coagulation factor XIII were transfected into Chinese hamster ovary (CHO) cells. CHO cells were amplified and selected with methotrexate in adherent cultures containing serum, and CHO 1-62 cells were later selected in protein-free medium. To develop a recombinant factor XIII production process in a suspension culture, we have investigated the growth characteristics of CHO cells and the maintenance of factor XIII expression in the culture medium. Suspension adaptation of CHO cells was performed in protein-free medium, GC-CHO-PI, by two methods, such as serum weaning and direct switching from serum containing media to protein-free media. Although the growth of CHO cells in suspension culture was affected initially by serum depletion, cell specific productivity of factor XIII showed only minor changes by the direct switching to protein-free medium during a suspension culture. As for the long-term stability of factor XIII, CHO 1-62 cells showed a stable expression of factor XIII in protein-free condition for 1000 h. These results indicate that the CHO 1-62cells can be adapted to express recombinant human factor XIII in a stable maimer in suspension culture using a protein-free medium. Our results demonstrate that enhanced cell growth in a continuous manner is achievable for factor XIII production in a protein-free medium when a perfusion bioreactor culture system with a spin filter is employed.
Collapse
Affiliation(s)
- B H Chun
- Korea Green Cross Corp, 227 Kugal-Ri, Keeheung-Eup, 449-900, Yongin, Korea
| | | | | | | |
Collapse
|
16
|
Goh LT, Yap MGS. Determination of interferon-gamma in Chinese hamster ovary cell culture supernatant by coupled-column liquid chromatography. J Sep Sci 2008; 28:2104-10. [PMID: 16318206 DOI: 10.1002/jssc.200500045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A robust tandem HPLC method coupling size-exclusion (Shodex Asahipak GS-320HQ) and reversed phase (Vydac 218TP54) columns with ultraviolet detection was developed for quantitative determination of interferon-gamma (IFN-gamma) in Chinese hamster ovary cell culture supernatant. The 2D-HPLC system was linked up by a 6-port 2-position low hold-up volume switch valve. Compared to a commercial ELISA kit for IFN-gamma, the coupled column LC approach was able to detect and quantify soluble IFN-gamma, regardless of the glycoprotein's molecular/conformational variability and sample background. Each LC-LC analysis took 90 minutes inclusive of column regeneration. The relative standard deviation of measurements (n = 5) was less than 3%. The limit of detection (LOD) was determined to be 0.35 microg IFN-gamma.
Collapse
Affiliation(s)
- Lin-Tang Goh
- Bioprocessing Technology Institute, Centros, Singapore.
| | | |
Collapse
|
17
|
Goudar CT, Matanguihan R, Long E, Cruz C, Zhang C, Piret JM, Konstantinov KB. Decreased pCO2 accumulation by eliminating bicarbonate addition to high cell-density cultures. Biotechnol Bioeng 2007; 96:1107-17. [PMID: 17171711 DOI: 10.1002/bit.21116] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
High-density perfusion cultivation of mammalian cells can result in elevated bioreactor CO(2) partial pressure (pCO(2)), a condition that can negatively influence growth, metabolism, productivity, and protein glycosylation. For BHK cells in a perfusion culture at 20 x 10(6) cells/mL, the bioreactor pCO(2) exceeded 225 mm Hg with approximate contributions of 25% from cellular respiration, 35% from medium NaHCO(3), and 40% from NaHCO(3) added for pH control. Recognizing the limitations to the practicality of gas sparging for CO(2) removal in perfusion systems, a strategy based on CO(2) reduction at the source was investigated. The NaHCO(3) in the medium was replaced with a MOPS-Histidine buffer, while Na(2)CO(3) replaced NaHCO(3) for pH control. These changes resulted in 63-70% pCO(2) reductions in multiple 15 L perfusion bioreactors, and were reproducible at the manufacturing-scale. Bioreactor pCO(2) values after these modifications were in the 68-85 mm Hg range, pCO(2) reductions consistent with those theoretically expected. Low bioreactor pCO(2) was accompanied by both 68-123% increased growth rates and 58-92% increased specific productivity. Bioreactor pCO(2) reduction and the resulting positive implications for cell growth and productivity were brought about by process changes that were readily implemented and robust. This philosophy of pCO(2) reduction at the source through medium and base modification should be readily applicable to large-scale fed-batch cultivation of mammalian cells.
Collapse
Affiliation(s)
- Chetan T Goudar
- Research and Development, Process Sciences, Bayer HealthCare, Pharmaceutical Division, 800 Dwight Way, Berkeley, California 94710, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Deschênes JS, Desbiens A, Perrier M, Kamen A. Use of cell bleed in a high cell density perfusion culture and multivariable control of biomass and metabolite concentrations. ASIA-PAC J CHEM ENG 2007. [DOI: 10.1002/apj.10] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Deschênes JS, Desbiens A, Perrier M, Kamen A. Multivariable Nonlinear Control of Biomass and Metabolite Concentrations in a High-Cell-Density Perfusion Bioreactor. Ind Eng Chem Res 2006. [DOI: 10.1021/ie060582e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jean-Sébastien Deschênes
- Laboratoire d'Observation et d'Optimisation des Procédés (LOOP), Département de génie électrique et de génie informatique, Université Laval, Québec, Canada, G1K 7P4
| | - André Desbiens
- Laboratoire d'Observation et d'Optimisation des Procédés (LOOP), Département de génie électrique et de génie informatique, Université Laval, Québec, Canada, G1K 7P4
| | - Michel Perrier
- Department of Chemical Engineering, École Polytechnique, Montréal, Canada, H3T 1J4
| | - Amine Kamen
- NRC Biotechnology Research Institute (Bioprocess Sector), Montréal, Canada, H4P 2R2
| |
Collapse
|
20
|
Feng Q, Mi L, Li L, Liu R, Xie L, Tang H, Chen Z. Application of “oxygen uptake rate-amino acids” associated mode in controlled-fed perfusion culture. J Biotechnol 2006; 122:422-30. [PMID: 16274826 DOI: 10.1016/j.jbiotec.2005.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/01/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
Controlled-fed perfusion, a new operation mode, which combines the advantages of fed-batch and perfusion, has been reported to enhance monoclonal antibody productivity. The aim of the present study was to further enrich this mode by an "oxygen uptake rate-amino acids (OUR-AA)" strategy in which the feeding of amino acids was controlled according to the variation of OUR during perfusion. And the effects of this strategy on bioreactor productivity and product quality were evaluated. Experimental results indicated that by using this "OUR-AA" approach in controlled-fed perfusion mode a high viable cell density of more than 1.9 x 10(7)cells/ml was achieved and the productivity of mAb reached 325 mg/l/d, which was significantly increased by nearly twofold over those of the perfusion and fed-batch process. The residual concentrations of selected amino acids were controlled at a relative steady level by OUR during the culture. The immunoreactivity and the purity of the antibody were well preserved as the culture process was evolving from flask to the controlled-fed perfusion mode. The primary application of "OUR-AA" approach in controlled-fed perfusion mode may present a novel control strategy to enhance the culture performance and to display the potential of this approach in automatic control field.
Collapse
Affiliation(s)
- Qiang Feng
- Cell Engineering Research Center, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, 17 Changle West Road, Xi'an 710032, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Meuwly F, Papp F, Ruffieux PA, Bernard AR, Kadouri A, von Stockar U. Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors. J Biotechnol 2006; 122:122-9. [PMID: 16153735 DOI: 10.1016/j.jbiotec.2005.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 07/20/2005] [Accepted: 08/04/2005] [Indexed: 11/20/2022]
Abstract
For animal cell cultures growing in packed-bed bioreactors where cell number cannot be determined directly, there is a clear need to use indirect methods that are not based on cell counts in order to monitor and control the process. One option is to use the glucose consumption rate (GCR) of the culture as an indirect measure to monitor the process in bioreactors. This study was done on a packed-bed bioreactor process using recombinant CHO cells cultured on Fibra-Cel disk carriers in perfusion mode at high cell densities. A key step in the process is the switch of the process from the cell growth phase to the production phase triggered by a reduction of the temperature. In this system, we have used a GCR value of 300 g of glucose per kilogram of disks per day as a criterion for the switch. This paper will present results obtained in routine operations for the monitoring and control of an industrial process at pilot-scale. The process operated with this GCR-based strategy yielded consistent, reproducible process performance across numerous bioreactor runs performed on multiple production sites.
Collapse
Affiliation(s)
- F Meuwly
- Serono Biotech Center, Laboratoires Serono SA, Zone Industrielle B, Fenil-sur-Corsier, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Konstantinov K, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D. The “Push-to-Low” Approach for Optimization of High-Density Perfusion Cultures of Animal Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 101:75-98. [PMID: 16989258 DOI: 10.1007/10_016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High product titer is considered a strategic advantage of fed-batch over perfusion cultivation mode. The titer difference has been experimentally demonstrated and reported in the literature. However, the related theoretical aspects and strategies for optimization of perfusion processes with respect to their fed-batch counterparts have not been thoroughly explored. The present paper introduces a unified framework for comparison of fed-batch and perfusion cultures, and proposes directions for improvement of the latter. The comparison is based on the concept of "equivalent specific perfusion rate", a variable that conveniently bridges various cultivation modes. The analysis shows that development of economically competitive perfusion processes for production of stable proteins depends on our ability to dramatically reduce the dilution rate while keeping high cell density, i.e., operating at low specific perfusion rates. Under these conditions, titer increases significantly, approaching the range of fed-batch titers. However, as dilution rate is decreased, a limit is reached below which performance declines due to poor growth and viability, specific productivity, or product instability. To overcome these limitations, a strategy referred to as "push-to-low" optimization has been developed. This approach involves an iterative stepwise decrease of the specific perfusion rate, and is most suitable for production of stable proteins where increased residence time does not compromise apparent specific productivity or product quality. The push-to-low approach was successfully applied to the production of monoclonal antibody against tumor necrosis factor (TNF). The experimental results followed closely the theoretical prediction, providing a multifold increase in titer. Despite the medium improvement, reduction of the specific growth rate along with increased apoptosis was observed at low specific perfusion rates. This phenomenon could not be explained with limitation or inhibition by the known nutrients and metabolites. Even further improvement would be possible if the cause of apoptosis were understood. In general, a strategic target in the optimization of perfusion processes should be the decrease of the cell-specific perfusion rate to below 0.05 nL/cell/day, resulting in high, batch-like titers. The potential for high titer, combined with high volumetric productivity, stable performance over many months, and superior product/harvest quality, make perfusion processes an attractive alternative to fed-batch production, even in the case of stable proteins.
Collapse
Affiliation(s)
- Konstantin Konstantinov
- Bayer HealthCare, Biological Products Division, 800 Dwight Way, P.O.Box 1986, Berkeley, CA 94710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Oliveira R, Clemente JJ, Cunha AE, Carrondo MJT. Adaptive dissolved oxygen control through the glycerol feeding in a recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation. J Biotechnol 2005; 116:35-50. [PMID: 15652428 DOI: 10.1016/j.jbiotec.2004.09.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/17/2004] [Accepted: 09/24/2004] [Indexed: 11/29/2022]
Abstract
In high cell density cultivation processes the productivity is frequently constrained by the bioreactor maximum oxygen transfer capacity. The productivity can often be increased by operating the process at low dissolved oxygen concentrations close to the limitation level. This may be accomplished with a closed-loop controller that regulates the dissolved oxygen concentration by manipulating the dominant carbon source feeding rate. In this work we study this control problem in a pilot 50l bioreactor with a high cell density recombinant P. pastoris cultivation in complex media. The study focuses on the design of accurate stable adaptive controllers, with guaranteed exponential convergence and its relation with the calibration of controller parameters. Two adaptive control strategies were tested in the pilot bioreactor: a model reference adaptive controller with a linear reference model and an integral feedback controller with adaptive gain. The latter alternative proved to be more robust to errors in the measurements of the off-gas composition. Concerning the instrumentation, algorithms were derived assuming that both the dissolved oxygen tension and off-gas composition are measured on-line, but also the case of only dissolved oxygen being measured is addressed. It was verified that the measurement of off-gas composition might not improve the controller performance due to measurement and process time delays.
Collapse
Affiliation(s)
- R Oliveira
- CQFB/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, P-2829-516 Caparica, Portugal.
| | | | | | | |
Collapse
|
24
|
Bilitewski U. Chapter 11 Biosensors for bioprocess monitoring. BIOSENSORS AND MODERN BIOSPECIFIC ANALYTICAL TECHNIQUES 2005. [DOI: 10.1016/s0166-526x(05)44011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
25
|
Link T, Bäckström M, Graham R, Essers R, Zörner K, Gätgens J, Burchell J, Taylor-Papadimitriou J, Hansson GC, Noll T. Bioprocess development for the production of a recombinant MUC1 fusion protein expressed by CHO-K1 cells in protein-free medium. J Biotechnol 2004; 110:51-62. [PMID: 15099905 DOI: 10.1016/j.jbiotec.2003.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 11/20/2003] [Accepted: 12/19/2003] [Indexed: 11/19/2022]
Abstract
The mucin MUC1 is a candidate for use in specific immunotherapy against breast cancer, but this requires the large-scale production of a MUC1 antigen. In this study, a bioprocess for the expression of a recombinant MUC1 fusion protein with a cancer associated glycosylation in CHO-K1 cells has been developed. Cells permanently expressing parts of the extracellular portion of MUC1 fused to IgG Fc were directly transferred from adherent growth in serum-containing medium to suspension culture in the protein-free ProCHO4-CDM culture medium. Using the Cellferm-pro system, optimal culture parameter as pH and pO(2) were determined in parallel spinner flask batch cultures. A pH of 6.8-7.0 and a pO(2) of 40% of air saturation was found to give best cell growth and productivity of secreted recombinant protein. Specific productivity strongly depended the pO(2) and correlated with the online monitored oxygen uptake rate (OUR) of the cells, which indicates a positive influence of the rate of oxidative phosphorylation on productivity. The optimised conditions were applied to continuous perfusion culture which gave very high cell densities and space time yields of the recombinant MUC1 fusion protein, allowing production at gram scale. The product degradation was much lower in supernatants from continuous perfusion culture compared to batch mode. Antibodies reacting with cancer associated MUC1 glycoforms strongly bound to the fusion protein, indicating that the desired glycoforms were obtained and suggesting that the recombinant MUC1 protein could be tested for use in immunotherapy.
Collapse
Affiliation(s)
- T Link
- Institut für Biotechnologie 2, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Protein production by large-scale mammalian cell culture. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Abstract
Electrochemical sensors for pH and dissolved oxygen remain the most commonly used in bioprocess monitoring, but continued research has resulted in improved optical sensors. Optical sensors for dissolved oxygen and dissolved carbon dioxide are now commercially available. Advances in optics and electronics are further driving down the costs of these sensors. In the near future, bioprocess optimization will change paradigms as massively parallel, fully instrumented bioreactors become available and high-throughput bioprocessing becomes a reality.
Collapse
Affiliation(s)
- Peter Harms
- Department of Chemical and Biochemical Engineering, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
28
|
Rhiel M, Ducommun P, Bolzonella I, Marison I, von Stockar U. Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements. Biotechnol Bioeng 2002; 77:174-85. [PMID: 11753924 DOI: 10.1002/bit.10134] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glucose and lactate profiles in Chinese hamster ovary cell cultures were accurately monitored in real time and in situ during three bioreactor batch cultures lasting 11,15, and 15 days performed within a 60-day period. Monitoring was accomplished using in situ-collected mid-infrared spectra analyzed with a priori one-time established partial least-squares regression models. The robustness of the technique was demonstrated by application of these models without modification after 2.3 years. Neither recalibration nor instrument maintenance was required during the 2.3-year period, except for the daily filling of liquid nitrogen for detector cooling during operation. The lactate calibration model yielded accurate absolute concentration estimations during each of the batch cultures with standard errors of estimate from 1 to 3 mM. The a priori-established glucose calibration model yielded concentration estimations with an off-set, which was constant throughout a culture. Adjustment of the off-set before inoculation resulted in accurate concentration estimations with Standard errors of estimate of approximately 1 mM for each of the bioreactor cultures. Sensitivity in detecting differences of 0.5 mM and selectivity against variation of one metabolite while the other was kept constant was demonstrated during standard additions of either glucose or lactate. The sensor system proved to be reliable, simple, accurate, sterile, and capable of long-term automatic operation and is considered to be mature enough to be routinely applied for in situ (on-line) cell culture monitoring.
Collapse
Affiliation(s)
- Martin Rhiel
- Laboratory of Chemical and Biochemical Engineering (LGCB), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Carvalhal AV, Moreira JL, Carrondo MJ. Strategies to modulate BHK cell proliferation by the regulation of IRF-1 expression. J Biotechnol 2001; 92:47-59. [PMID: 11604172 DOI: 10.1016/s0168-1656(01)00365-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of the constitutively expressed interferon-regulatory-factor-1/estrogen receptor fusion protein (IRF-1-hER) in BHK cells was accomplished through the addition of estradiol to the culture medium, which enabled IRF-1 to gain its transcriptional activator function and inhibit cell growth. With the addition of 100 nM estradiol at the beginning of the exponential phase of a cell suspension culture, IRF-1 activation led to a rapid cell growth inhibition but also to a significant decrease in cell viability. To apply this concept in industry, a reduction of the time span of estradiol exposure is required. Cycles of estradiol addition and removal were performed in 2-l stirred tank bioreactors operated under perfusion, where an initial step addition of 100 nM estradiol was performed, followed, after 48-72 h, by a slow dilution with estradiol-free fresh medium (perfusion rate varying between 0.7 and 1.4 per day). Cell growth inhibition was successfully achieved for three consecutive cycles. Diluting the estradiol by perfusing medium without estradiol to concentrations lower than 10 nM led to cell growth and viability recovery independently of the perfusion rate used. These observations permitted the definition of operational strategies for regulated IRF-1 BHK cell growth by pulse estradiol addition, followed by a period of 48 h in the presence of estradiol and by fast perfusion to estradiol concentrations lower than 10 nM. Cell growth response to IRF-1 activation and following estradiol removal by perfusion was also evaluated with an IRF-1-hER regulated clone expressing constitutively Factor VII, where the time of estradiol exposure and perfusion rate were varied. This clone presented a stronger response to IRF-1 activation without an increase in Factor VII specific productivity after cell growth inhibition; this clearly indicates that the stationary phase obtained is clone dependent. This work proves that it is possible to modulate the IRF-1 effect for cell growth control by the manipulation of cycles of addition and removal of estradiol, potentially representing a new generation of culture procedures for controlled growth production purposes.
Collapse
Affiliation(s)
- A V Carvalhal
- Instituto de Biologia Experimental e Tecnológica/Instituto de Tecnologia Química e Biológica IBET/ITQB, Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
30
|
Yang JD, Angelillo Y, Chaudhry M, Goldenberg C, Goldenberg DM. Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000705)69:1<74::aid-bit9>3.0.co;2-k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Gambhir A, Zhang C, Europa A, Hu WS. Analysis of the use of fortified medium in continuous culture of mammalian cells. Cytotechnology 1999; 31:243-54. [PMID: 19003148 PMCID: PMC3449539 DOI: 10.1023/a:1008026613975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Continuous culture is frequently used in the cultivation of mammalian cells for the manufacturing of recombinant protein pharmaceuticals. In such operations a large volume of medium is turned over each day, especially in the case where cell recycle, or perfusion cultivation, is practiced. In principle, the volumetric throughput of medium can be reduced by using a more concentrated feed while maintaining the same nutrient provision rate. Overall, the medium components are divided into two categories: 'consumable nutrients' and 'unconsumable inorganic bulk salts'. In such fortified medium, the concentrations of consumable nutrients, but not bulk salts, are increased. With a stoichiometrically-balanced medium, the large amount of nutrients fed into the culture is largely consumed by cells to give rise to residual concentrations of these nutrients in their optimal range. However, unless care is taken to initiate the continuous culture, overshoot of nutrients may occur during the transient period. The high nutrient concentration during overshoot may be inhibitory by itself, or the resulting high osmolality may retard the growth. Using a mathematical model that incorporates the growth inhibitory effect of high osmolality we demonstrate such a potentially catastrophic effect of nutrient and osmolality overshoot by simulation. To avoid overshoot a controlled nutrient feeding scheme should be devised at the initiation of continuous culture.
Collapse
Affiliation(s)
- Anshu Gambhir
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN, 55455-0132 U.S.A
| | - Chun Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN, 55455-0132 U.S.A
| | - Anna Europa
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN, 55455-0132 U.S.A
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue S.E., Minneapolis, MN, 55455-0132 U.S.A
| |
Collapse
|
32
|
Goldman MH, James DC, Rendall M, Ison AP, Hoare M, Bull AT. Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluidized-bed and stirred-tank batch culture of CHO cells. Biotechnol Bioeng 1998; 60:596-607. [PMID: 10099468 DOI: 10.1002/(sici)1097-0290(19981205)60:5<596::aid-bit10>3.0.co;2-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chinese hamster ovary cells producing recombinant human interferon-gamma were cultivated for 500 h attached to macroporous microcarriers in a perfused, fluidized-bed bioreactor, reaching a maximum cell density in excess of 3 x 10(7) cells (mL microcarrier)-1 at a specific growth rate (mu) of 0.010 h-1. During establishment of the culture, the N-glycosylation of secreted recombinant IFN-gamma was monitored by capillary electrophoresis of intact IFN-gamma proteins and by HPLC analysis of released N-glycans. Rapid analysis of IFN-gamma by micellar electrokinetic capillary chromatography resolved the three glycosylation site occupancy variants of recombinant IFN-gamma (two Asn sites occupied, one Asn site occupied and nonglycosylated) in under 10 min per sample; the relative proportions of these variants remained constant during culture. Analysis of IFN-gamma by capillary isoelectric focusing resolved at least 11 differently sialylated glycoforms over a pI range of 3.4 to 6.4, enabling rapid quantitation of this important source of microheterogeneity. During perfusion culture the relative proportion of acidic IFN-gamma proteins increased after 210 h of culture, indicative of an increase in N-glycan sialylation. This was confirmed by cation-exchange HPLC analysis of released, fluorophore-labeled N-glycans, which showed an increase in the proportion of tri- and tetrasialylated N-glycans associated with IFN-gamma during culture, with a concomitant decrease in the proportion of monosialylated and neutral N-glycans. Comparative analyses of IFN-gamma produced by CHO cells in stirred-tank culture showed that N-glycan sialylation was stable until late in culture, when a decline in sialylation coincided with the onset of cell death and lysis. This study demonstrates that different modes of capillary electrophoresis can be employed to rapidly and quantitatively monitor the main sources of glycoprotein variation, and that the culture system and operation may influence the glycosylation of a recombinant glycoprotein.
Collapse
Affiliation(s)
- M H Goldman
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom
| | | | | | | | | | | |
Collapse
|
33
|
Kong D, Gentz R, Zhang J. Development of a versatile computer integrated control system for bioprocess controls. Cytotechnology 1998; 26:227-36. [PMID: 22358619 DOI: 10.1023/a:1007948313304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A general approach is described for the implementation of a networked multi-unit computer integrated control system. The use of data acquisition hardware and graphical programming tools alleviates tedious programming and maintains potency and flexibility. One application of the control system, the control of a mammalian cell perfusion culture based on a key nutrient glucose concentration, was demonstrated. The control system offers customized user interface for all process control parameters and allows the flexibility for continued improvement and implementation of new tailored functions. The temperature, pH, dissolved oxygen and glucose level were accurately controlled.
Collapse
Affiliation(s)
- D Kong
- Human Genome Sciences Inc., 9410 Key West Ave., Rockville, MD, 20850, U.S.A
| | | | | |
Collapse
|
34
|
Abstract
Mammalian cell culture continues to draw major research efforts. A great deal of progress has recently been made in cellular physiology, especially in factors adversely affecting cell growth or viability. Through molecular genetic manipulation, cells are more readily cultivated in a medium free of animal proteins. Achieving a high cell concentration and high viability continue to be common themes in engineering research. The need to implement a control policy for fed-batch and perfusion cultures has prompted increased efforts in process monitoring and control. Integrating these advances will be beneficial for ensuring product quality and process consistency.
Collapse
Affiliation(s)
- W S Hu
- Chemical Engineering and Materials Science Department, University of Minnesota, 421 Washington Avenue South East, Minneapolis, MN 55455, USA
| | | |
Collapse
|