1
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
2
|
Eke IE, Williams JT, Haiderer ER, Albrecht VJ, Murdoch HM, Abdalla BJ, Abramovitch RB. Discovery and characterization of antimycobacterial nitro-containing compounds with distinct mechanisms of action and in vivo efficacy. Antimicrob Agents Chemother 2023; 67:e0047423. [PMID: 37610224 PMCID: PMC10508139 DOI: 10.1128/aac.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Nitro-containing compounds have emerged as important agents in the control of tuberculosis (TB). From a whole-cell high-throughput screen for Mycobacterium tuberculosis (Mtb) growth inhibitors, 10 nitro-containing compounds were prioritized for characterization and mechanism of action studies. HC2209, HC2210, and HC2211 are nitrofuran-based prodrugs that need the cofactor F420 machinery for activation. Unlike pretomanid which depends only on deazaflavin-dependent nitroreductase (Ddn), these nitrofurans depend on Ddn and possibly another F420-dependent reductase for activation. These nitrofurans also differ from pretomanid in their potent activity against Mycobacterium abscessus. Four dinitrobenzamides (HC2217, HC2226, HC2238, and HC2239) and a nitrofuran (HC2250) are proposed to be inhibitors of decaprenyl-phosphoryl-ribose 2'-epimerase 1 (DprE1), based on isolation of resistant mutations in dprE1. Unlike other DprE1 inhibitors, HC2250 was found to be potent against non-replicating persistent bacteria, suggesting additional targets. Two of the compounds, HC2233 and HC2234, were found to have potent, sterilizing activity against replicating and non-replicating Mtb in vitro, but a proposed mechanism of action could not be defined. In a pilot in vivo efficacy study, HC2210 was orally bioavailable and efficacious in reducing bacterial load by ~1 log in a chronic murine TB infection model.
Collapse
Affiliation(s)
- Ifeanyichukwu E. Eke
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - John T. Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Elizabeth R. Haiderer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Veronica J. Albrecht
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Heather M. Murdoch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Bassel J. Abdalla
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B. Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Gries R, Dal Molin M, Chhen J, van Gumpel E, Dreyer V, Niemann S, Rybniker J. Characterization of Two Novel Inhibitors of the Mycobacterium tuberculosis Cytochrome bc1 Complex. Antimicrob Agents Chemother 2023; 67:e0025123. [PMID: 37358461 PMCID: PMC10353358 DOI: 10.1128/aac.00251-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Drug-resistant tuberculosis is a global health care threat calling for novel effective treatment options. Here, we report on two novel cytochrome bc1 inhibitors (MJ-22 and B6) targeting the Mycobacterium tuberculosis respiratory chain with excellent intracellular activities in human macrophages. Both hit compounds revealed very low mutation frequencies and distinct cross-resistance patterns with other advanced cytochrome bc1 inhibitors.
Collapse
Affiliation(s)
- Raphael Gries
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Michael Dal Molin
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jason Chhen
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Edeltraud van Gumpel
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Viola Dreyer
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
4
|
Ayon NJ. High-Throughput Screening of Natural Product and Synthetic Molecule Libraries for Antibacterial Drug Discovery. Metabolites 2023; 13:625. [PMID: 37233666 PMCID: PMC10220967 DOI: 10.3390/metabo13050625] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
Due to the continued emergence of resistance and a lack of new and promising antibiotics, bacterial infection has become a major public threat. High-throughput screening (HTS) allows rapid screening of a large collection of molecules for bioactivity testing and holds promise in antibacterial drug discovery. More than 50% of the antibiotics that are currently available on the market are derived from natural products. However, with the easily discoverable antibiotics being found, finding new antibiotics from natural sources has seen limited success. Finding new natural sources for antibacterial activity testing has also proven to be challenging. In addition to exploring new sources of natural products and synthetic biology, omics technology helped to study the biosynthetic machinery of existing natural sources enabling the construction of unnatural synthesizers of bioactive molecules and the identification of molecular targets of antibacterial agents. On the other hand, newer and smarter strategies have been continuously pursued to screen synthetic molecule libraries for new antibiotics and new druggable targets. Biomimetic conditions are explored to mimic the real infection model to better study the ligand-target interaction to enable the designing of more effective antibacterial drugs. This narrative review describes various traditional and contemporaneous approaches of high-throughput screening of natural products and synthetic molecule libraries for antibacterial drug discovery. It further discusses critical factors for HTS assay design, makes a general recommendation, and discusses possible alternatives to traditional HTS of natural products and synthetic molecule libraries for antibacterial drug discovery.
Collapse
Affiliation(s)
- Navid J Ayon
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
5
|
Kalia NP, Singh S, Hards K, Cheung CY, Sviriaeva E, Banaei-Esfahani A, Aebersold R, Berney M, Cook GM, Pethe K. M. tuberculosis relies on trace oxygen to maintain energy homeostasis and survive in hypoxic environments. Cell Rep 2023; 42:112444. [PMID: 37115669 DOI: 10.1016/j.celrep.2023.112444] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The bioenergetic mechanisms by which Mycobacterium tuberculosis survives hypoxia are poorly understood. Current models assume that the bacterium shifts to an alternate electron acceptor or fermentation to maintain membrane potential and ATP synthesis. Counterintuitively, we find here that oxygen itself is the principal terminal electron acceptor during hypoxic dormancy. M. tuberculosis can metabolize oxygen efficiently at least two orders of magnitude below the concentration predicted to occur in hypoxic lung granulomas. Despite a difference in apparent affinity for oxygen, both the cytochrome bcc:aa3 and cytochrome bd oxidase respiratory branches are required for hypoxic respiration. Simultaneous inhibition of both oxidases blocks oxygen consumption, reduces ATP levels, and kills M. tuberculosis under hypoxia. The capacity of mycobacteria to scavenge trace levels of oxygen, coupled with the absence of complex regulatory mechanisms to achieve hierarchal control of the terminal oxidases, may be a key determinant of long-term M. tuberculosis survival in hypoxic lung granulomas.
Collapse
Affiliation(s)
- Nitin Pal Kalia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER-H) Hyderabad, Hyderabad, Telangana 500037, India
| | - Samsher Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kiel Hards
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ekaterina Sviriaeva
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Amir Banaei-Esfahani
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8057 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8057 Zurich, Switzerland; Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 92019, New Zealand.
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; National Centre for Infectious Diseases, Singapore 308442, Singapore.
| |
Collapse
|
6
|
Janin YL. On drug discovery against infectious diseases and academic medicinal chemistry contributions. Beilstein J Org Chem 2022; 18:1355-1378. [PMID: 36247982 PMCID: PMC9531561 DOI: 10.3762/bjoc.18.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
This perspective is an attempt to document the problems that medicinal chemists are facing in drug discovery. It is also trying to identify relevant/possible, research areas in which academics can have an impact and should thus be the subject of grant calls. Accordingly, it describes how hit discovery happens, how compounds to be screened are selected from available chemicals and the possible reasons for the recurrent paucity of useful/exploitable results reported. This is followed by the successful hit to lead stories leading to recent and original antibacterials which are, or about to be, used in human medicine. Then, illustrated considerations and suggestions are made on the possible inputs of academic medicinal chemists. This starts with the observation that discovering a "good" hit in the course of a screening campaign still rely on a lot of luck - which is within the reach of academics -, that the hit to lead process requires a lot of chemistry and that if public-private partnerships can be important throughout these stages, they are absolute requirements for clinical trials. Concerning suggestions to improve the current hit success rate, one academic input in organic chemistry would be to identify new and pertinent chemical space, design synthetic accesses to reach these and prepare the corresponding chemical libraries. Concerning hit to lead programs on a given target, if no new hits are available, previously reported leads along with new structural data can be pertinent starting points to design, prepare and assay original analogues. In conclusion, this text is an actual plea illustrating that, in many countries, academic research in medicinal chemistry should be more funded, especially in the therapeutic area neglected by the industry. At the least, such funds would provide the intensive to secure series of hopefully relevant chemical entities which appears to often lack when considering the results of academic as well as industrial screening campaigns.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université, 75005 Paris, France
| |
Collapse
|
7
|
Abstract
Despite the ever-growing antibiotic resistance crisis, the rate at which new antimicrobials are being discovered and approved for human use has rapidly declined over the past 75 years. A barrier for advancing newly identified antibiotics beyond discovery is elucidating their mechanism(s) of action.
Collapse
|
8
|
Loponte HF, Oliveira IA, Rodrigues BC, Nunes-da-Fonseca R, Mohana-Borges R, Alisson-Silva F, Dias WB, Todeschini AR. Hyperglycemia alters N-glycans on colon cancer cells through increased production of activated monosaccharides. Glycoconj J 2022; 39:663-675. [PMID: 35380345 DOI: 10.1007/s10719-022-10057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 12/01/2022]
Abstract
Diabetes Mellitus (DM) is both, correlated and a known risk factor for colorectal cancer (CRC). Besides favoring the incidence of CRC, DM also accelerates its progression, worsening its prognosis. Previously, hyperglycemia, the DM hallmark, has been shown to lead to aberrant glycosylation of CRC cells, heightening their malignancy both in vivo and in vitro. Here we use mass spectrometry to elucidate the composition and putative structures of N-glycans expressed by MC38 cultured in normoglycemic (LG) and hyperglycemic-like conditions (HG). N-glycans, 67, were identified in MC38 cells cultured in LG and HG. The cells grown in HG showed a greater abundance of N-glycans when compared to LNG cells, without changes in the proportion of sialylated, fucosylated and mannosylated N-glycans. Among the identified N-glycans, 16 were differentially expressed, mostly mannosylated and fucosylated, with a minority of them being sialylated. Metabolomics analysis indicates that the alterations observed in the N-glycosylation may be mostly due to increase of the activated monosaccharides pool, through an increased glucose entrance into the cells. The alterations found here corroborate data from the literature regarding the progression of CRC, advocating for development or repositioning of effective treatments against CRC in diabetic patients.
Collapse
Affiliation(s)
- H F Loponte
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.,Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - I A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - B C Rodrigues
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, 27965‑550, Macaé, Brazil
| | - R Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade, Universidade Federal do Rio de Janeiro, 27965‑550, Macaé, Brazil
| | - R Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - F Alisson-Silva
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - W B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - A R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
On the Hunt for Next-Generation Antimicrobial Agents: An Online Symposium Organized Jointly by the French Society for Medicinal Chemistry (Société de Chimie Thérapeutique) and the French Microbiology Society (Société Française de Microbiologie) on 9–10 December 2021. Pharmaceuticals (Basel) 2022; 15:ph15040388. [PMID: 35455385 PMCID: PMC9029193 DOI: 10.3390/ph15040388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
The restrictions posed by the COVID-19 pandemic obliged the French Society for Medicinal Chemistry (Société de chimie thérapeutique) and the French Microbiology Society (Société Française de Microbiologie) to organize their joint autumn symposium (entitled “On the hunt for next-generation antimicrobial agents”) online on 9–10 December 2021. The meeting attracted more than 200 researchers from France and abroad with interests in drug discovery, antimicrobial resistance, medicinal chemistry, and related disciplines. This review summarizes the 13 invited keynote lectures. The symposium generated high-level scientific dialogue on the most recent advances in combating antimicrobial resistance. The University of Lille, the Institut Pasteur de Lille, the journal Pharmaceuticals, Oxeltis, and INCATE, sponsored the event.
Collapse
|
10
|
Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
11
|
Akao Y, Canan S, Cao Y, Condroski K, Engkvist O, Itono S, Kaki R, Kimura C, Kogej T, Nagaoka K, Naito A, Nakai H, Pairaudeau G, Radu C, Roberts I, Shimada M, Shum D, Watanabe NA, Xie H, Yonezawa S, Yoshida O, Yoshida R, Mowbray C, Perry B. Collaborative virtual screening to elaborate an imidazo[1,2- a]pyridine hit series for visceral leishmaniasis. RSC Med Chem 2021; 12:384-393. [PMID: 34041487 PMCID: PMC8130605 DOI: 10.1039/d0md00353k] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
An innovative pre-competitive virtual screening collaboration was engaged to validate and subsequently explore an imidazo[1,2-a]pyridine screening hit for visceral leishmaniasis. In silico probing of five proprietary pharmaceutical company libraries enabled rapid expansion of the hit chemotype, alleviating initial concerns about the core chemical structure while simultaneously improving antiparasitic activity and selectivity index relative to the background cell line. Subsequent hit optimization informed by the structure–activity relationship enabled by this virtual screening allowed thorough investigation of the pharmacophore, opening avenues for further improvement and optimization of the chemical series. Ligand-based similarity screening of proprietary pharmaceutical company libraries enables rapid hit to lead investigation of a chemotype with anti-leishmania activity.![]()
Collapse
Affiliation(s)
- Yuichiro Akao
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Stacie Canan
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Yafeng Cao
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Kevin Condroski
- Celgene Corporation, Celgene Global Health 10300 Campus Point Drive San Diego California 92121 USA
| | - Ola Engkvist
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Sachiko Itono
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - Rina Kaki
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Chiaki Kimura
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Thierry Kogej
- AstraZeneca Discovery Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Kazuya Nagaoka
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Akira Naito
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Hiromi Nakai
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | | | - Constantin Radu
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Ieuan Roberts
- AstraZeneca, Discovery Sciences, R&D AstraZeneca Cambridge UK
| | - Mitsuyuki Shimada
- Takeda Pharmaceutical Company Limited 26-1 Muraoka-Higashi 2-chrome Fujisawa Kanagawa 251-8555 Japan
| | - David Shum
- Institut Pasteur Korea 16, Daewangpangyo-ro 712 beon-gil, Bundang-gu Seongnam-si Gyeonggi-do 13488 Republic of Korea
| | - Nao-Aki Watanabe
- Eisai Co., Ltd 1-3,Tokodai 5-chome Tsukuba Ibaraki 300-2635 Japan
| | - Huanxu Xie
- WuXi AppTec Company Ltd. 666 Gaoxin Road, East Lake High-Tech Development Zone Wuhan 430075 People's Republic of China
| | - Shuji Yonezawa
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Osamu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Ryu Yoshida
- Shionogi & Co., Ltd 3-1-1, Futaba-cho Toyonaka-shi Osaka Japan
| | - Charles Mowbray
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| | - Benjamin Perry
- Drugs for Neglected Diseases initiative 15 Chemin Louis Dunant Geneva 1202 Switzerland
| |
Collapse
|
12
|
Hasenoehrl EJ, Wiggins TJ, Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2021; 10:611683. [PMID: 33505923 PMCID: PMC7831573 DOI: 10.3389/fcimb.2020.611683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022] Open
Abstract
Development of novel anti-tuberculosis combination regimens that increase efficacy and reduce treatment timelines will improve patient compliance, limit side-effects, reduce costs, and enhance cure rates. Such advancements would significantly improve the global TB burden and reduce drug resistance acquisition. Bioenergetics has received considerable attention in recent years as a fertile area for anti-tuberculosis drug discovery. Targeting the electron transport chain (ETC) and oxidative phosphorylation machinery promises not only to kill growing cells but also metabolically dormant bacilli that are inherently more drug tolerant. Over the last two decades, a broad array of drugs targeting various ETC components have been developed. Here, we provide a focused review of the current state of art of bioenergetic inhibitors of Mtb with an in-depth analysis of the metabolic and bioenergetic disruptions caused by specific target inhibition as well as their synergistic and antagonistic interactions with other drugs. This foundation is then used to explore the reigning theories on the mechanisms of antibiotic-induced cell death and we discuss how bioenergetic inhibitors in particular fail to be adequately described by these models. These discussions lead us to develop a clear roadmap for new lines of investigation to better understand the mechanisms of action of these drugs with complex mechanisms as well as how to leverage that knowledge for the development of novel, rationally-designed combination therapies to cure TB.
Collapse
Affiliation(s)
- Erik J Hasenoehrl
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
13
|
Bahuguna A, Rawat S, Rawat DS. QcrB in Mycobacterium tuberculosis: The new drug target of antitubercular agents. Med Res Rev 2021; 41:2565-2581. [PMID: 33400275 DOI: 10.1002/med.21779] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/23/2020] [Accepted: 12/12/2020] [Indexed: 11/08/2022]
Abstract
Drug-resistance in mycobacterial infections is a major global health problem that leads to high mortality and socioeconomic pressure in developing countries around the world. From finding new targets to discovering novel chemical scaffolds, there is an urgent need for the development of better approaches for the cure of tuberculosis. Recently, energy metabolism in mycobacteria, particularly the oxidative phosphorylation pathway of cellular respiration, has emerged as a novel target pathway in drug discovery. New classes of antibacterials which target oxidative phosphorylation pathway either by interacting with a protein or any step in the pathway of oxidative phosphorylation can combat dormant mycobacterial infections leading to shortening of tuberculosis chemotherapy. Adenosine triphosphate synthase is one such recently discovered target of the newly approved antitubercular drug bedaquiline. Cytochrome bcc is another new target of the antitubercular drug candidate Q203, currently in phase II clinical trial. Research suggests that b subunit of cytochrome bcc, QcrB, is the target of Q203. The review article describes the structure, function, and importance of targeting QcrB throwing light on all chemical classes of QcrB inhibitors discovered to date. An understanding of the structure and function of validated targets and their inhibitors would enable the development of new chemical entities.
Collapse
Affiliation(s)
| | - Srishti Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
14
|
Wang Q, Boshoff HIM. Determining Minimum Inhibitory Concentrations in Liquid Cultures or on Solid Medium. Methods Mol Biol 2021; 2314:595-609. [PMID: 34235672 PMCID: PMC10500673 DOI: 10.1007/978-1-0716-1460-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antimicrobial susceptibility testing is the mainstay of tuberculosis drug development programs. In this chapter, we describe methods for determination of the minimum inhibitory concentration of compounds against Mycobacterium tuberculosis growing in liquid media as a function of carbon source, detergent, and environmental stress imposed by acidic pH as well as reactive nitrogen intermediates. Methods for determining the effect of bovine serum albumin in the growth medium on antimicrobial susceptibility are also described. Finally, we provide a method for antimicrobial susceptibility testing on agar medium.
Collapse
Affiliation(s)
- Qinglan Wang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis. Eur J Med Chem 2020; 212:113139. [PMID: 33422979 DOI: 10.1016/j.ejmech.2020.113139] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022]
Abstract
Causing approximately 10 million incident cases and 1.3-1.5 million deaths every year, Mycobacterium tuberculosis remains a global health problem. The risk is further exacerbated with latent tuberculosis (TB) infection, the HIV pandemic, and increasing anti-TB drug resistance. Therefore, unexplored chemical scaffolds directed towards new molecular targets are increasingly desired. In this context, mycobacterial energy metabolism, particularly the oxidative phosphorylation (OP) pathway, is gaining importance. Mycobacteria possess primary dehydrogenases to fuel electron transport; aa3-type cytochrome c oxidase and bd-type menaquinol oxidase to generate a protonmotive force; and ATP synthase, which is essential for both growing mycobacteria as well as dormant mycobacteria because ATP is produced under both aerobic and hypoxic conditions. Small organic molecules targeting OP are active against latent TB as well as resistant TB strains. FDA approval of the ATP synthase inhibitor bedaquiline and the discovery of clinical candidate Q203, which both interfere with the cytochrome bc1 complex, have already confirmed mycobacterial energy metabolism to be a valuable anti-TB drug target. This review highlights both preferable molecular targets within mycobacterial OP and promising small organic molecules targeting OP. Progressive research in the area of mycobacterial OP revealed several highly potent anti-TB compounds with nanomolar-range MICs as low as 0.004 μM against Mtb H37Rv. Therefore, we are convinced that targeting the OP pathway can combat resistant TB and latent TB, leading to more efficient anti-TB chemotherapy.
Collapse
|
16
|
Campaniço A, Harjivan SG, Warner DF, Moreira R, Lopes F. Addressing Latent Tuberculosis: New Advances in Mimicking the Disease, Discovering Key Targets, and Designing Hit Compounds. Int J Mol Sci 2020; 21:ijms21228854. [PMID: 33238468 PMCID: PMC7700174 DOI: 10.3390/ijms21228854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Despite being discovered and isolated more than one hundred years ago, tuberculosis (TB) remains a global public health concern arch. Our inability to eradicate this bacillus is strongly related with the growing resistance, low compliance to current drugs, and the capacity of the bacteria to coexist in a state of asymptomatic latency. This last state can be sustained for years or even decades, waiting for a breach in the immune system to become active again. Furthermore, most current therapies are not efficacious against this state, failing to completely clear the infection. Over the years, a series of experimental methods have been developed to mimic the latent state, currently used in drug discovery, both in vitro and in vivo. Most of these methods focus in one specific latency inducing factor, with only a few taking into consideration the complexity of the granuloma and the genomic and proteomic consequences of each physiological factor. A series of targets specifically involved in latency have been studied over the years with promising scaffolds being discovered and explored. Taking in account that solving the latency problem is one of the keys to eradicate the disease, herein we compile current therapies and diagnosis techniques, methods to mimic latency and new targets and compounds in the pipeline of drug discovery.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Shrika G. Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa;
- Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Welcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (A.C.); (S.G.H.); (R.M.)
- Correspondence:
| |
Collapse
|
17
|
Li P, Wang B, Li G, Fu L, Zhang D, Lin Z, Huang H, Lu Y. Design, synthesis and biological evaluation of diamino substituted cyclobut-3-ene-1,2-dione derivatives for the treatment of drug-resistant tuberculosis. Eur J Med Chem 2020; 206:112538. [DOI: 10.1016/j.ejmech.2020.112538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
|
18
|
Lopez Quezada L, Smith R, Lupoli TJ, Edoo Z, Li X, Gold B, Roberts J, Ling Y, Park SW, Nguyen Q, Schoenen FJ, Li K, Hugonnet JE, Arthur M, Sacchettini JC, Nathan C, Aubé J. Activity-Based Protein Profiling Reveals That Cephalosporins Selectively Active on Non-replicating Mycobacterium tuberculosis Bind Multiple Protein Families and Spare Peptidoglycan Transpeptidases. Front Microbiol 2020; 11:1248. [PMID: 32655524 PMCID: PMC7324553 DOI: 10.3389/fmicb.2020.01248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
As β-lactams are reconsidered for the treatment of tuberculosis (TB), their targets are assumed to be peptidoglycan transpeptidases, as verified by adduct formation and kinetic inhibition of Mycobacterium tuberculosis (Mtb) transpeptidases by carbapenems active against replicating Mtb. Here, we investigated the targets of recently described cephalosporins that are selectively active against non-replicating (NR) Mtb. NR-active cephalosporins failed to inhibit recombinant Mtb transpeptidases. Accordingly, we used alkyne analogs of NR-active cephalosporins to pull down potential targets through unbiased activity-based protein profiling and identified over 30 protein binders. None was a transpeptidase. Several of the target candidates are plausibly related to Mtb's survival in an NR state. However, biochemical tests and studies of loss of function mutants did not identify a unique target that accounts for the bactericidal activity of these beta-lactams against NR Mtb. Instead, NR-active cephalosporins appear to kill Mtb by collective action on multiple targets. These results highlight the ability of these β-lactams to target diverse classes of proteins.
Collapse
Affiliation(s)
- Landys Lopez Quezada
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Robert Smith
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
| | - Tania J. Lupoli
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Zainab Edoo
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - Xiaojun Li
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Ben Gold
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Julia Roberts
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Yan Ling
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Sae Woong Park
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Quyen Nguyen
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Frank J. Schoenen
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jean-Emmanuel Hugonnet
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - Michel Arthur
- Sorbonne Université, Sorbonne Paris Cité, Université de Paris, INSERM, Centre de Recherche des Cordeliers, CRC, Paris, France
| | - James C. Sacchettini
- Departments of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Carl Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, United States
| | - Jeffrey Aubé
- Chemical Methodologies & Library Development Center, The University of Kansas, Lawrence, KS, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
|
20
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
21
|
Oxidative Phosphorylation—an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072339] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New drugs with new mechanisms of action are urgently required to tackle the global tuberculosis epidemic. Following the FDA-approval of the ATP synthase inhibitor bedaquiline (Sirturo®), energy metabolism has become the subject of intense focus as a novel pathway to exploit for tuberculosis drug development. This enthusiasm stems from the fact that oxidative phosphorylation (OxPhos) and the maintenance of the transmembrane electrochemical gradient are essential for the viability of replicating and non-replicating Mycobacterium tuberculosis (M. tb), the etiological agent of human tuberculosis (TB). Therefore, new drugs targeting this pathway have the potential to shorten TB treatment, which is one of the major goals of TB drug discovery. This review summarises the latest and key findings regarding the OxPhos pathway in M. tb and provides an overview of the inhibitors targeting various components. We also discuss the potential of new regimens containing these inhibitors, the flexibility of this pathway and, consequently, the complexity in targeting it. Lastly, we discuss opportunities and future directions of this drug target space.
Collapse
|
22
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
23
|
Arora G, Gagandeep, Behura A, Gosain TP, Shaliwal RP, Kidwai S, Singh P, Kandi SK, Dhiman R, Rawat DS, Singh R. NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium tuberculosis by Induction of Autophagy. Front Microbiol 2020; 10:3051. [PMID: 32063889 PMCID: PMC6999026 DOI: 10.3389/fmicb.2019.03051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The increasing incident rates of drug-resistant tuberculosis (DR-TB) is a global health concern and has been further complicated by the emergence of extensive and total drug-resistant strains. Identification of new chemical entities which are compatible with first-line TB drugs, possess activity against DR-, and metabolically less active bacteria is required to tackle this epidemic. Here, we have performed phenotypic screening of a small molecule library against Mycobacterium bovis BCG and identified 24 scaffolds that exhibited MIC99 values of at least 2.5 μM. The most potent small molecule identified in our study was a nitroso containing pyrazole derivative, NSC 18725. We observed a significant reduction in viable bacilli load of starved Mycobacterium tuberculosis upon exposure to NSC 18725. The action of NSC 18725 was “synergistic” with isoniazid (INH) and “additive” with other drugs in our checkerboard assays. Structure-activity relationship (SAR) studies of the parent compound revealed that pyrazole derivatives without a functional group at fourth position lacked anti-mycobacterial activity in vitro. The derivative with para-chlorophenyl substitution at the first position of the pyrazole ring was the most active scaffold. We also demonstrate that NSC 18725 is able to induce autophagy in differentiated THP-1 macrophages. The induction of autophagy by NSC 18725 is the major mechanism for the killing of intracellular slow and fast-growing mycobacteria. Taken together, these observations support the identification of NSC 18725 as an antimycobacterial compound, which synergizes with INH, is active against non-replicative mycobacteria and induces autophagy in macrophages.
Collapse
Affiliation(s)
- Garima Arora
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Gagandeep
- Department of Chemistry, Faculty of Science, University of Delhi, New Delhi, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Ravi P Shaliwal
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Saqib Kidwai
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| | | | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Diwan S Rawat
- Department of Chemistry, Faculty of Science, University of Delhi, New Delhi, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
24
|
Zheng H, Williams JT, Aleiwi B, Ellsworth E, Abramovitch RB. Inhibiting Mycobacterium tuberculosis DosRST Signaling by Targeting Response Regulator DNA Binding and Sensor Kinase Heme. ACS Chem Biol 2020; 15:52-62. [PMID: 31556993 PMCID: PMC6970277 DOI: 10.1021/acschembio.8b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Mycobacterium
tuberculosis (Mtb) possesses a two-component
regulatory system, DosRST, that enables Mtb to sense host immune cues
and establish a state of nonreplicating persistence (NRP). NRP bacteria
are tolerant to several antimycobacterial drugs in vitro and are thought to play a role in the long course of tuberculosis
therapy. Previously, we reported the discovery of six novel chemical
inhibitors of DosRST, named HC101A–106A, from a whole cell,
reporter-based phenotypic high throughput screen. Here, we report
functional and mechanism of action studies of HC104A and HC106A. RNaseq
transcriptional profiling shows that the compounds downregulate genes
of the DosRST regulon. Both compounds reduce hypoxia-induced triacylglycerol
synthesis by ∼50%. HC106A inhibits Mtb survival during hypoxia-induced
NRP; however, HC104A did not inhibit survival during NRP. An electrophoretic
mobility assay shows that HC104A inhibits DosR DNA binding in a dose-dependent
manner, indicating that HC104A may function by directly targeting
DosR. In contrast, UV–visible spectroscopy studies suggest
HC106A directly targets the sensor kinase heme, via a mechanism that
is distinct from the oxidation and alkylation of heme previously observed
with artemisinin (HC101A). Synergistic interactions were observed
when DosRST inhibitors were examined in pairwise combinations with
the strongest potentiation observed between artemisinin paired with
HC102A, HC103A, or HC106A. Our data collectively show that the DosRST
pathway can be inhibited by multiple distinct mechanisms.
Collapse
|
25
|
Wang Y, Wu J, Zhang D, Chen F, Fan P, Zhong M, Xiao S, Chang Y, Gong X, Yang J, Zheng J. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. J Mater Chem B 2019; 7:5762-5774. [PMID: 31465075 DOI: 10.1039/c9tb01313j] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of smart materials and surfaces with multiple antibacterial actions is of great importance for both fundamental research and practical applications, but this has proved to be extremely challenging. In this work, we proposed to integrate salt-responsive polyDVBAPS (poly(3-(dimethyl(4-vinylbenzyl) ammonio)propyl sulfonate)), antifouling polyHEAA (poly(N-hydroxyethyl acrylamide)), and bactericidal TCS (triclosan) into single surfaces by polymerizing and grafting polyDVBAPS and polyHEAA onto the substrate in a different way to form two types of polyDVBAPS/poly(HEAA-g-TCS) and poly(DVBAPS-b-HEAA-g-TCS) brushes with different hierarchical structures, as confirmed by X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM), and ellipsometry. Both types of polymer brushes demonstrated their tri-functional antibacterial activity to resist bacterial attachment by polyHEAA, to release ∼90% of dead bacteria from the surface by polyDVBAPS, and to kill ∼90% of bacteria on the surface by TCS. Comparative studies also showed that removal of any component from polyDVBAPS/poly(HEAA-g-TCS) and poly(DVBAPS-b-HEAA-g-TCS) compromised the overall antibacterial performance, further supporting a synergistic effect of the three compatible components. More importantly, the presence of salt-responsive polyDVBAPS allowed both brushes to regenerate with almost unaffected antibacterial capacity for reuse in multiple kill-and-release cycles. The tri-functional antibacterial surfaces present a promising design strategy for further developing next-generation antibacterial materials and coatings for antibacterial applications.
Collapse
Affiliation(s)
- Yang Wang
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Jiahui Wu
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Dong Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Feng Chen
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Ping Fan
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Mingqiang Zhong
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Shengwei Xiao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Yung Chang
- Department of Chemical Engineering R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Jintao Yang
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
26
|
Mandal S, Njikan S, Kumar A, Early JV, Parish T. The relevance of persisters in tuberculosis drug discovery. MICROBIOLOGY-SGM 2019; 165:492-499. [PMID: 30775961 DOI: 10.1099/mic.0.000760] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial persisters are a subpopulation of cells that exhibit phenotypic resistance during exposure to a lethal dose of antibiotics. They are difficult to target and thought to contribute to the long treatment duration required for tuberculosis. Understanding the molecular and cellular biology of persisters is critical to finding new tuberculosis drugs that shorten treatment. This review focuses on mycobacterial persisters and describes the challenges they pose in tuberculosis therapy, their characteristics and formation, how persistence leads to resistance, and the current approaches being used to target persisters within mycobacterial drug discovery.
Collapse
Affiliation(s)
- Soma Mandal
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Samuel Njikan
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Anuradha Kumar
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Julie V Early
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Ave. E, Suite 400, Seattle, WA 98102, USA
| |
Collapse
|
27
|
Veale CGL. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease. ChemMedChem 2019; 14:386-453. [PMID: 30614200 DOI: 10.1002/cmdc.201800755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 12/13/2022]
Abstract
The Pathogen Box is a 400-strong collection of drug-like compounds, selected for their potential against several of the world's most important neglected tropical diseases, including trypanosomiasis, leishmaniasis, cryptosporidiosis, toxoplasmosis, filariasis, schistosomiasis, dengue virus and trichuriasis, in addition to malaria and tuberculosis. This library represents an ensemble of numerous successful drug discovery programmes from around the globe, aimed at providing a powerful resource to stimulate open source drug discovery for diseases threatening the most vulnerable communities in the world. This review seeks to provide an in-depth analysis of the literature pertaining to the compounds in the Pathogen Box, including structure-activity relationship highlights, mechanisms of action, related compounds with reported activity against different diseases, and, where appropriate, discussion on the known and putative targets of compounds, thereby providing context and increasing the accessibility of the Pathogen Box to the drug discovery community.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
28
|
Ollinger J, Kumar A, Roberts DM, Bailey MA, Casey A, Parish T. A high-throughput whole cell screen to identify inhibitors of Mycobacterium tuberculosis. PLoS One 2019; 14:e0205479. [PMID: 30650074 PMCID: PMC6334966 DOI: 10.1371/journal.pone.0205479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
Tuberculosis is a disease of global importance for which novel drugs are urgently required. We developed a whole-cell phenotypic screen which can be used to identify inhibitors of Mycobacterium tuberculosis growth. We used recombinant strains of virulent M. tuberculosis which express far-red fluorescent reporters and used fluorescence to monitor growth in vitro. We optimized our high throughput assays using both 96-well and 384-well plates; both formats gave assays which met stringent reproducibility and robustness tests. We screened a compound set of 1105 chemically diverse compounds previously shown to be active against M. tuberculosis and identified primary hits which showed ≥ 90% growth inhibition. We ranked hits and identified three chemical classes of interest-the phenoxyalkylbenzamidazoles, the benzothiophene 1-1 dioxides, and the piperidinamines. These new compound classes may serve as starting points for the development of new series of inhibitors that prevent the growth of M. tuberculosis. This assay can be used for further screening, or could easily be adapted to other strains of M. tuberculosis.
Collapse
Affiliation(s)
- Juliane Ollinger
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Anuradha Kumar
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - David M. Roberts
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Mai A. Bailey
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Allen Casey
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Tanya Parish
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Cleghorn LAT, Ray PC, Odingo J, Kumar A, Wescott H, Korkegian A, Masquelin T, Lopez Moure A, Wilson C, Davis S, Huggett M, Turner P, Smith A, Epemolu O, Zuccotto F, Riley J, Scullion P, Shishikura Y, Ferguson L, Rullas J, Guijarro L, Read KD, Green SR, Hipskind P, Parish T, Wyatt PG. Identification of Morpholino Thiophenes as Novel Mycobacterium tuberculosis Inhibitors, Targeting QcrB. J Med Chem 2018; 61:6592-6608. [PMID: 29944372 PMCID: PMC6089501 DOI: 10.1021/acs.jmedchem.8b00172] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
With the emergence of multidrug-resistant strains of Mycobacterium tuberculosis there is a pressing need for new oral drugs with novel mechanisms of action. Herein, we describe the identification of a novel morpholino-thiophenes (MOT) series following phenotypic screening of the Eli Lilly corporate library against M. tuberculosis strain H37Rv. The design, synthesis, and structure-activity relationships of a range of analogues around the confirmed actives are described. Optimized leads with potent whole cell activity against H37Rv, no cytotoxicity flags, and in vivo efficacy in an acute murine model of infection are described. Mode-of-action studies suggest that the novel scaffold targets QcrB, a subunit of the menaquinol cytochrome c oxidoreductase, part of the bc1-aa3-type cytochrome c oxidase complex that is responsible for driving oxygen-dependent respiration.
Collapse
Affiliation(s)
- Laura A T Cleghorn
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Peter C Ray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Joshua Odingo
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Anuradha Kumar
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Heather Wescott
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Aaron Korkegian
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Thierry Masquelin
- Eli Lilly and Company, Discovery Chemistry Research, Lilly Corporate Centre , MC/87/02/203, G17, Indianapolis , Indiana 46285 , United States
| | - Abraham Lopez Moure
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Caroline Wilson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Susan Davis
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Margaret Huggett
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Penelope Turner
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Alasdair Smith
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Ola Epemolu
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Fabio Zuccotto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Paul Scullion
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Yoko Shishikura
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Liam Ferguson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Joaquin Rullas
- Diseases of the Developing World , GlaxoSmithKline , Calle Severo Ochoa 2 , 28760 Tres Cantos , Madrid Spain
| | - Laura Guijarro
- Diseases of the Developing World , GlaxoSmithKline , Calle Severo Ochoa 2 , 28760 Tres Cantos , Madrid Spain
| | - Kevin D Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Simon R Green
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| | - Phil Hipskind
- Eli Lilly and Company, Discovery Chemistry Research, Lilly Corporate Centre , MC/87/02/203, G17, Indianapolis , Indiana 46285 , United States
| | - Tanya Parish
- TB Discovery Research , Infectious Disease Research Institute (IDRI) , 1616 Eastlake Avenue East, Suite 400 , Seattle , Washington 98102 , United States
| | - Paul G Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, College of Life Sciences , University of Dundee , Dundee DD1 5EH , United Kingdom
| |
Collapse
|
30
|
Lee BS, Pethe K. Therapeutic potential of promiscuous targets in Mycobacterium tuberculosis. Curr Opin Pharmacol 2018; 42:22-26. [PMID: 30015177 DOI: 10.1016/j.coph.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/20/2018] [Indexed: 11/16/2022]
Abstract
In the field of tuberculosis drug development, the term 'promiscuous' was coined to collectively describe targets that repeatedly show up in whole-cell screenings. With the current climate leaning towards the exclusion of these targets in future drug screens, this review discusses and clarifies misconceptions surrounding this classification, the prospects of developing compounds targeting promiscuous targets, and their potential impact on tuberculosis drug development. The dominance of these targets in cell-based screens reflect not only bias introduced by experimental setup, but also some of the pathogen's greatest vulnerabilities. Coupled with favourable predictions of their in vivo efficacies and synergism with other TB drugs, these targets open opportunities to be explored for the development of rational drug combination for tuberculosis.
Collapse
Affiliation(s)
- Bei Shi Lee
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kevin Pethe
- School of Biological Sciences, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore.
| |
Collapse
|
31
|
Bartee D, Freel Meyers CL. Targeting the Unique Mechanism of Bacterial 1-Deoxy-d-xylulose-5-phosphate Synthase. Biochemistry 2018; 57:4349-4356. [PMID: 29944345 DOI: 10.1021/acs.biochem.8b00548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial metabolite 1-deoxy-d-xyulose 5-phosphate (DXP) is essential in bacterial central metabolism feeding into isoprenoid, thiamin diphosphate (ThDP), and pyridoxal phosphate de novo biosynthesis. Halting its production through the inhibition of DXP synthase is an attractive strategy for the development of novel antibiotics. Recent work has revealed that DXP synthase utilizes a unique random sequential mechanism that requires formation of a ternary complex among pyruvate-derived C2α-lactylthiamin diphosphate (LThDP), d-glyceraldehyde 3-phosphate (d-GAP), and enzyme, setting it apart from all other known ThDP-dependent enzymes. Herein, we describe the development of bisubstrate inhibitors bearing an acetylphosphonate (AP) pyruvate mimic and a distal negative charge mimicking the phosphoryl group of d-GAP, designed to target the unique form of DXP synthase that binds LThDP and d-GAP in a ternary complex. A d-phenylalanine-derived triazole acetylphosphonate (d-PheTrAP) emerged as the most potent inhibitor in this series, displaying slow, tight-binding inhibition with a Ki* of 90 ± 10 nM, forward ( k1) and reverse ( k2) isomerization rates of 1.1 and 0.14 min-1, respectively, and exquisite selectivity (>15000-fold) for DXP synthase over mammalian pyruvate dehydrogenase. d-PheTrAP is the most potent, selective DXP synthase inhibitor described to date and represents the first inhibitor class designed specifically to exploit the unique E-LThDP-GAP ternary complex in ThDP enzymology.
Collapse
Affiliation(s)
- David Bartee
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| | - Caren L Freel Meyers
- Department of Pharmacology and Molecular Sciences , The Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
32
|
HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter. Antimicrob Agents Chemother 2018; 62:AAC.02459-17. [PMID: 29661875 DOI: 10.1128/aac.02459-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, is a deadly disease that requires a long course of treatment. The emergence of drug-resistant strains has driven efforts to discover new small molecules that can kill the bacterium. Here, we report characterizations of the compound HC2091, which kills M. tuberculosis in a time- and dose-dependent manner in vitro and inhibits M. tuberculosis growth in macrophages. Whole-genome sequencing of spontaneous HC2091-resistant mutants identified single-nucleotide variants in the mmpL3 mycolic acid transporter gene. HC2091-resistant mutants do not exhibit cross-resistance with the well-characterized Mycobacterium membrane protein large 3 (MmpL3) inhibitor SQ109, suggesting a distinct mechanism of interaction with MmpL3. Additionally, HC2091 does not modulate bacterial membrane potential or kill nonreplicating M. tuberculosis, thus acting differently from other known MmpL3 inhibitors. RNA sequencing (RNA-seq) transcriptional profiling and lipid profiling of M. tuberculosis treated with HC2091 or SQ109 show that the two compounds target a similar pathway. HC2091 has a chemical structure dissimilar to those of previously described MmpL3 inhibitors, supporting the notion that HC2091 is a new class of MmpL3 inhibitor.
Collapse
|
33
|
Abstract
After decades of relative inactivity, a large increase in efforts to discover antitubercular therapeutics has brought insights into the biology of Mycobacterium tuberculosis (Mtb) and promising new drugs such as bedaquiline, which inhibits ATP synthase, and the nitroimidazoles delamanid and pretomanid, which inhibit both mycolic acid synthesis and energy production. Despite these advances, the drug discovery pipeline remains underpopulated. The field desperately needs compounds with novel mechanisms of action capable of inhibiting multi- and extensively drug -resistant Mtb (M/XDR-TB) and, potentially, nonreplicating Mtb with the hope of shortening the duration of required therapy. New knowledge about Mtb, along with new methods and technologies, has driven exploration into novel target areas, such as energy production and central metabolism, that diverge from the classical targets in macromolecular synthesis. Here, we review new small molecule drug candidates that act on these novel targets to highlight the methods and perspectives advancing the field. These new targets bring with them the aspiration of shortening treatment duration as well as a pipeline of effective regimens against XDR-TB, positioning Mtb drug discovery to become a model for anti-infective discovery.
Collapse
Affiliation(s)
- Samantha Wellington
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
34
|
Iqbal IK, Bajeli S, Akela AK, Kumar A. Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery. Pathogens 2018; 7:E24. [PMID: 29473841 PMCID: PMC5874750 DOI: 10.3390/pathogens7010024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) exhibits remarkable metabolic flexibility that enables it to survive a plethora of host environments during its life cycle. With the advent of bedaquiline for treatment of multidrug-resistant tuberculosis, oxidative phosphorylation has been validated as an important target and a vulnerable component of mycobacterial metabolism. Exploiting the dependence of Mtb on oxidative phosphorylation for energy production, several components of this pathway have been targeted for the development of new antimycobacterial agents. This includes targeting NADH dehydrogenase by phenothiazine derivatives, menaquinone biosynthesis by DG70 and other compounds, terminal oxidase by imidazopyridine amides and ATP synthase by diarylquinolines. Importantly, oxidative phosphorylation also plays a critical role in the survival of persisters. Thus, inhibitors of oxidative phosphorylation can synergize with frontline TB drugs to shorten the course of treatment. In this review, we discuss the oxidative phosphorylation pathway and development of its inhibitors in detail.
Collapse
Affiliation(s)
- Iram Khan Iqbal
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Sapna Bajeli
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ajit Kumar Akela
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India.
| |
Collapse
|
35
|
Abstract
![]()
Current tuberculosis
(TB) drug development efforts are not sufficient
to end the global TB epidemic. Recent efforts have focused on the
development of whole-cell screening assays because biochemical, target-based
inhibitor screens during the last two decades have not delivered new
TB drugs. Mycobacterium tuberculosis (Mtb), the causative
agent of TB, encounters diverse microenvironments and can be found
in a variety of metabolic states in the human host. Due to the complexity
and heterogeneity of Mtb infection, no single model can fully recapitulate
the in vivo conditions in which Mtb is found in TB patients, and there
is no single “standard” screening condition to generate
hit compounds for TB drug development. However, current screening
assays have become more sophisticated as researchers attempt to mirror
the complexity of TB disease in the laboratory. In this review, we
describe efforts using surrogates and engineered strains of Mtb to
focus screens on specific targets. We explain model culture systems
ranging from carbon starvation to hypoxia, and combinations thereof,
designed to represent the microenvironment which Mtb encounters in
the human body. We outline ongoing efforts to model Mtb infection
in the lung granuloma. We assess these different models, their ability
to generate hit compounds, and needs for further TB drug development,
to provide direction for future TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
36
|
Ekins S, Clark AM, Dole K, Gregory K, Mcnutt AM, Spektor AC, Weatherall C, Litterman NK, Bunin BA. Data Mining and Computational Modeling of High-Throughput Screening Datasets. Methods Mol Biol 2018; 1755:197-221. [PMID: 29671272 DOI: 10.1007/978-1-4939-7724-6_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We are now seeing the benefit of investments made over the last decade in high-throughput screening (HTS) that is resulting in large structure activity datasets entering public and open databases such as ChEMBL and PubChem. The growth of academic HTS screening centers and the increasing move to academia for early stage drug discovery suggests a great need for the informatics tools and methods to mine such data and learn from it. Collaborative Drug Discovery, Inc. (CDD) has developed a number of tools for storing, mining, securely and selectively sharing, as well as learning from such HTS data. We present a new web based data mining and visualization module directly within the CDD Vault platform for high-throughput drug discovery data that makes use of a novel technology stack following modern reactive design principles. We also describe CDD Models within the CDD Vault platform that enables researchers to share models, share predictions from models, and create models from distributed, heterogeneous data. Our system is built on top of the Collaborative Drug Discovery Vault Activity and Registration data repository ecosystem which allows users to manipulate and visualize thousands of molecules in real time. This can be performed in any browser on any platform. In this chapter we present examples of its use with public datasets in CDD Vault. Such approaches can complement other cheminformatics tools, whether open source or commercial, in providing approaches for data mining and modeling of HTS data.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC, 27606, USA.
| | - Alex M Clark
- Collaborative Drug Discovery, Inc., Burlingame, CA, USA
- Molecular Materials Informatics, Inc., Montreal, QC, Canada
| | - Krishna Dole
- Collaborative Drug Discovery, Inc., Burlingame, CA, USA
| | | | | | | | | | | | - Barry A Bunin
- Collaborative Drug Discovery, Inc., Burlingame, CA, USA
| |
Collapse
|
37
|
Hards K, Cook GM. Targeting bacterial energetics to produce new antimicrobials. Drug Resist Updat 2018; 36:1-12. [DOI: 10.1016/j.drup.2017.11.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
|
38
|
Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Microbiol Spectr 2017; 5. [PMID: 28597820 DOI: 10.1128/microbiolspec.tbtb2-0014-2016] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The emergence and spread of drug-resistant pathogens, and our inability to develop new antimicrobials to combat resistance, have inspired scientists to seek out new targets for drug development. The Mycobacterium tuberculosis complex is a group of obligately aerobic bacteria that have specialized for inhabiting a wide range of intracellular and extracellular environments. Two fundamental features in this adaptation are the flexible utilization of energy sources and continued metabolism in the absence of growth. M. tuberculosis is an obligately aerobic heterotroph that depends on oxidative phosphorylation for growth and survival. However, several studies are redefining the metabolic breadth of the genus. Alternative electron donors and acceptors may provide the maintenance energy for the pathogen to maintain viability in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal oxidases. However, it may also open up opportunities to develop novel antimycobacterials targeting persister cells. In this review, we discuss the progress in understanding the role of energetic targets in mycobacterial physiology and pathogenesis and the opportunities for drug discovery.
Collapse
|
39
|
Bown L, Srivastava SK, Piercey BM, McIsaac CK, Tahlan K. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance. J Membr Biol 2017; 251:105-117. [DOI: 10.1007/s00232-017-9997-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
|
40
|
Holbrook SYL, Garneau-Tsodikova S. What is medicinal chemistry? - Demystifying a rapidly evolving discipline! MEDCHEMCOMM 2017; 8:1739-1741. [PMID: 30108885 PMCID: PMC6084239 DOI: 10.1039/c7md90030a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 11/21/2022]
Abstract
Medicinal chemistry is a scientific discipline that has progressed rapidly over the last few decades. Facilitated by the technological advancement, the early understanding of medicinal chemistry as "synthesizing bioactive molecules" has become the connecting bridge of a variety of related scientific disciplines. This opinion article will guide you through a brief evolution of this discipline and discuss what medicinal chemistry has evolved to be in this era.
Collapse
Affiliation(s)
- Selina Y L Holbrook
- University of Kentucky , 789 South Limestone Street , Lexington , KY , 40536-0596 USA .
| | | |
Collapse
|
41
|
Moraski GC, Bristol R, Seeger N, Boshoff HI, Tsang PSY, Miller MJ. Preparation and Evaluation of Potent Pentafluorosulfanyl-Substituted Anti-Tuberculosis Compounds. ChemMedChem 2017; 12:1108-1115. [PMID: 28654200 PMCID: PMC5603227 DOI: 10.1002/cmdc.201700170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/13/2017] [Indexed: 01/10/2023]
Abstract
The global fight to stop tuberculosis (TB) remains a great challenge, particularly with the increase in drug-resistant strains and a lack of funding to support the development of new treatments. To bolster a precarious drug pipeline, we prepared a focused panel of eight pentafluorosulfanyl (SF5 ) compounds which were screened for their activity against Mycobacterium tuberculosis (Mtb) H37Rv in three different assay conditions and media. All eight compounds had sub-micromolar potency, and four displayed MICs <100 nm. Seven compounds were evaluated against non-replicating and mono-drug-resistant Mtb, and for their ability to inhibit Mtb within the macrophage. The greatest potency was observed against intracellular Mtb (MIC <10 nm for three compounds), which is often the most challenging to target. In general, the SF5 -bearing compounds were very similar to their CF3 counterparts, with the major differences observed being their in vitro ADME properties. Two SF5 -bearing compounds were found to have greater protein binding than their corresponding CF3 counterparts, but were also less metabolized in human microsomes, resulting in longer half-lives.
Collapse
Affiliation(s)
- Garrett C Moraski
- Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Ryan Bristol
- Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Natalie Seeger
- Department of Chemistry and Biochemistry, 103 Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 33 North Drive, Bethesda, MD, 20892, USA
| | - Patricia Siu-Yee Tsang
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases (LCID), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 33 North Drive, Bethesda, MD, 20892, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, 347 Nieuwland Hall of Science, Notre Dame, IN, 46556, USA
| |
Collapse
|
42
|
Zheng X, Av-Gay Y. System for Efficacy and Cytotoxicity Screening of Inhibitors Targeting Intracellular Mycobacterium tuberculosis. J Vis Exp 2017. [PMID: 28448028 DOI: 10.3791/55273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is a leading cause of morbidity and mortality worldwide. With the increased spread of multi drug-resistant TB (MDR-TB), there is a real urgency to develop new therapeutic strategies against M. tuberculosis infections. Traditionally, compounds are evaluated based on their antibacterial activity under in vitro growth conditions in broth; however, results are often misleading for intracellular pathogens like M. tuberculosis since in-broth phenotypic screening conditions are significantly different from the actual disease conditions within the human body. Screening for inhibitors that work inside macrophages has been traditionally difficult due to the complexity, variability in infection, and slow replication rate of M. tuberculosis. In this study, we report a new approach to rapidly assess the effectiveness of compounds on the viability of M. tuberculosis in a macrophage infection model. Using a combination of a cytotoxicity assay and an in-broth M. tuberculosis viability assay, we were able to create a screening system that generates a comprehensive analysis of compounds of interest. This system is capable of producing quantitative data at a low cost that is within reach of most labs and yet is highly scalable to fit large industrial settings.
Collapse
Affiliation(s)
- Xingji Zheng
- Department of Medicine, University of British Columbia;
| | - Yossef Av-Gay
- Department of Medicine, University of British Columbia
| |
Collapse
|
43
|
Tao Y, Wang Y, Huang S, Zhu P, Huang WE, Ling J, Xu J. Metabolic-Activity-Based Assessment of Antimicrobial Effects by D2O-Labeled Single-Cell Raman Microspectroscopy. Anal Chem 2017; 89:4108-4115. [DOI: 10.1021/acs.analchem.6b05051] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yifan Tao
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yun Wang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi Huang
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Zhu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei E Huang
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Junqi Ling
- Operative
Dentistry and Endodontics, Guanghua School of Stomatology, Affiliated
Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong 510055, China
| | - Jian Xu
- Single-Cell
Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory
of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
44
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
45
|
Tantry SJ, Markad SD, Shinde V, Bhat J, Balakrishnan G, Gupta AK, Ambady A, Raichurkar A, Kedari C, Sharma S, Mudugal NV, Narayan A, Naveen Kumar CN, Nanduri R, Bharath S, Reddy J, Panduga V, Prabhakar KR, Kandaswamy K, Saralaya R, Kaur P, Dinesh N, Guptha S, Rich K, Murray D, Plant H, Preston M, Ashton H, Plant D, Walsh J, Alcock P, Naylor K, Collier M, Whiteaker J, McLaughlin RE, Mallya M, Panda M, Rudrapatna S, Ramachandran V, Shandil R, Sambandamurthy VK, Mdluli K, Cooper CB, Rubin H, Yano T, Iyer P, Narayanan S, Kavanagh S, Mukherjee K, Balasubramanian V, Hosagrahara VP, Solapure S, Ravishankar S, Hameed P S. Discovery of Imidazo[1,2-a]pyridine Ethers and Squaramides as Selective and Potent Inhibitors of Mycobacterial Adenosine Triphosphate (ATP) Synthesis. J Med Chem 2017; 60:1379-1399. [PMID: 28075132 DOI: 10.1021/acs.jmedchem.6b01358] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The approval of bedaquiline to treat tuberculosis has validated adenosine triphosphate (ATP) synthase as an attractive target to kill Mycobacterium tuberculosis (Mtb). Herein, we report the discovery of two diverse lead series imidazo[1,2-a]pyridine ethers (IPE) and squaramides (SQA) as inhibitors of mycobacterial ATP synthesis. Through medicinal chemistry exploration, we established a robust structure-activity relationship of these two scaffolds, resulting in nanomolar potencies in an ATP synthesis inhibition assay. A biochemical deconvolution cascade suggested cytochrome c oxidase as the potential target of IPE class of molecules, whereas characterization of spontaneous resistant mutants of SQAs unambiguously identified ATP synthase as its molecular target. Absence of cross resistance against bedaquiline resistant mutants suggested a different binding site for SQAs on ATP synthase. Furthermore, SQAs were found to be noncytotoxic and demonstrated efficacy in a mouse model of tuberculosis infection.
Collapse
Affiliation(s)
- Subramanyam J Tantry
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Shankar D Markad
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vikas Shinde
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Jyothi Bhat
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Gayathri Balakrishnan
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Amit K Gupta
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Anisha Ambady
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Anandkumar Raichurkar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Chaitanyakumar Kedari
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Sreevalli Sharma
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Naina V Mudugal
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Ashwini Narayan
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - C N Naveen Kumar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Robert Nanduri
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Sowmya Bharath
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Jitendar Reddy
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vijender Panduga
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - K R Prabhakar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Karthikeyan Kandaswamy
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Ramanatha Saralaya
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Parvinder Kaur
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Neela Dinesh
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Supreeth Guptha
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Kirsty Rich
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - David Murray
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Helen Plant
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Marian Preston
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Helen Ashton
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Darren Plant
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Jarrod Walsh
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Peter Alcock
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Kathryn Naylor
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Matthew Collier
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - James Whiteaker
- Infection Innovative Medicines, AstraZeneca , 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Robert E McLaughlin
- Infection Innovative Medicines, AstraZeneca , 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Meenakshi Mallya
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Manoranjan Panda
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Suresh Rudrapatna
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vasanthi Ramachandran
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Radha Shandil
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vasan K Sambandamurthy
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Khisi Mdluli
- Global Alliance for TB Drug Development , 40 Wall Street, 24th Floor, New York, New York 10005, United States
| | - Christopher B Cooper
- Global Alliance for TB Drug Development , 40 Wall Street, 24th Floor, New York, New York 10005, United States
| | - Harvey Rubin
- University of Pennsylvania , 111 Clinical Research Building, 415 Curie Boulevard, Philadelphia Pennsylvania 19104, United States
| | - Takahiro Yano
- University of Pennsylvania , 111 Clinical Research Building, 415 Curie Boulevard, Philadelphia Pennsylvania 19104, United States
| | - Pravin Iyer
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Shridhar Narayanan
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Stefan Kavanagh
- AstraZeneca , Alderley Park, Mereside, Macclesfield, Cheshire U.K. SK10 4TG
| | - Kakoli Mukherjee
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - V Balasubramanian
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Vinayak P Hosagrahara
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Suresh Solapure
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Sudha Ravishankar
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| | - Shahul Hameed P
- Innovative Medicines, AstraZeneca India Pvt. Ltd. , Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
46
|
Ekins S, Godbole AA, Kéri G, Orfi L, Pato J, Bhat RS, Verma R, Bradley EK, Nagaraja V. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I. Tuberculosis (Edinb) 2017; 103:52-60. [PMID: 28237034 DOI: 10.1016/j.tube.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
There is a shortage of compounds that are directed towards new targets apart from those targeted by the FDA approved drugs used against Mycobacterium tuberculosis. Topoisomerase I (Mttopo I) is an essential mycobacterial enzyme and a promising target in this regard. However, it suffers from a shortage of known inhibitors. We have previously used computational approaches such as homology modeling and docking to propose 38 FDA approved drugs for testing and identified several active molecules. To follow on from this, we now describe the in vitro testing of a library of 639 compounds. These data were used to create machine learning models for Mttopo I which were further validated. The combined Mttopo I Bayesian model had a 5 fold cross validation receiver operator characteristic of 0.74 and sensitivity, specificity and concordance values above 0.76 and was used to select commercially available compounds for testing in vitro. The recently described crystal structure of Mttopo I was also compared with the previously described homology model and then used to dock the Mttopo I actives norclomipramine and imipramine. In summary, we describe our efforts to identify small molecule inhibitors of Mttopo I using a combination of machine learning modeling and docking studies in conjunction with screening of the selected molecules for enzyme inhibition. We demonstrate the experimental inhibition of Mttopo I by small molecule inhibitors and show that the enzyme can be readily targeted for lead molecule development.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA 94403, USA; Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA.
| | - Adwait Anand Godbole
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - György Kéri
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary; Semmelweis Univ, Dept Med Chem, MTA SE Pathobiochem Res Grp, H-1092, Budapest, Hungary
| | - Lászlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary; Semmelweis Univ, Dept Med Chem, MTA SE Pathobiochem Res Grp, H-1092, Budapest, Hungary
| | - János Pato
- Vichem Chemie Research Ltd., Herman Ottó u. 15, H-1022, Budapest, Hungary
| | - Rajeshwari Subray Bhat
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Rinkee Verma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
47
|
Hartman TE, Wang Z, Jansen RS, Gardete S, Rhee KY. Metabolic Perspectives on Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0026-2016. [PMID: 28155811 PMCID: PMC5302851 DOI: 10.1128/microbiolspec.tbtb2-0026-2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has only recently begun to emerge. Here, we provide a focused review of metabolic characteristics associated with Mycobacterium tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. Existing knowledge, however, derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe current knowledge of M. tuberculosis metabolism in the context of persistence, where quiescence is often a key distinguishing characteristic. Such a perspective may help ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic.
Collapse
Affiliation(s)
- Travis E. Hartman
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Zhe Wang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Robert S. Jansen
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Susana Gardete
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| | - Kyu Y. Rhee
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
- Department of Microbiology & Immunology, Division of Infectious Diseases, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
48
|
Gold B, Nathan C. Targeting Phenotypically Tolerant Mycobacterium tuberculosis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0031-2016. [PMID: 28233509 PMCID: PMC5367488 DOI: 10.1128/microbiolspec.tbtb2-0031-2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/08/2023] Open
Abstract
While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in clinical settings. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of posttreatment relapse. Some promising drugs to treat tuberculosis, such as rifampin and bedaquiline, only kill nonreplicating M. tuberculosisin vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high-throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores.
Collapse
Affiliation(s)
- Ben Gold
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| | - Carl Nathan
- Department of Microbiology & Immunology, Weill Cornell Medical College, New York, NY, 10065
| |
Collapse
|
49
|
Zheng H, Colvin CJ, Johnson BK, Kirchhoff PD, Wilson M, Jorgensen-Muga K, Larsen SD, Abramovitch RB. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 2016; 13:218-225. [PMID: 27992879 DOI: 10.1038/nchembio.2259] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/30/2016] [Indexed: 11/09/2022]
Abstract
The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a ∼540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme-artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.
Collapse
Affiliation(s)
- Huiqing Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher J Colvin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin K Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Paul D Kirchhoff
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Wilson
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
50
|
Gold B, Roberts J, Ling Y, Lopez Quezada L, Glasheen J, Ballinger E, Somersan-Karakaya S, Warrier T, Nathan C. Visualization of the Charcoal Agar Resazurin Assay for Semi-quantitative, Medium-throughput Enumeration of Mycobacteria. J Vis Exp 2016. [PMID: 28060290 PMCID: PMC5226417 DOI: 10.3791/54690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is an urgent need to discover and progress anti-infectives that shorten the duration of tuberculosis (TB) treatment. Mycobacterium tuberculosis, the etiological agent of TB, is refractory to rapid and lasting chemotherapy due to the presence of bacilli exhibiting phenotypic drug resistance. The charcoal agar resazurin assay (CARA) was developed as a tool to characterize active molecules discovered by high-throughput screening campaigns against replicating and non-replicating M. tuberculosis. Inclusion of activated charcoal in bacteriologic agar medium helps mitigate the impact of compound carry-over, and eliminates the requirement to pre-dilute cells prior to spotting on CARA microplates. After a 7-10 day incubation period at 37 °C, the reduction of resazurin by mycobacterial microcolonies growing on the surface of CARA microplate wells permits semi-quantitative assessment of bacterial numbers via fluorometry. The CARA detects approximately a 2-3 log10 difference in bacterial numbers and predicts a minimal bactericidal concentration leading to ≥99% bacterial kill (MBC≥99). The CARA helps determine whether a molecule is active on bacilli that are replicating, non-replicating, or both. Pilot experiments using the CARA facilitate the identification of which concentration of test agent and time of compound exposure require further evaluation by colony forming unit (CFU) assays. In addition, the CARA can predict if replicating actives are bactericidal or bacteriostatic.
Collapse
Affiliation(s)
- Ben Gold
- Departments of Microbiology & Immunology, Weill Cornell Medical College;
| | - Julia Roberts
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Yan Ling
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Jou Glasheen
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Elaine Ballinger
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | | | - Thulasi Warrier
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| | - Carl Nathan
- Departments of Microbiology & Immunology, Weill Cornell Medical College
| |
Collapse
|