1
|
Tung TT, Quoc Thang N, Cao Huy N, Bao Phuong P, Ngoc Minh D, Hai Nam N, Nielsen J. Identification of novel phenylalanine derivatives bearing a hydroxamic acid moiety as potent quorum sensing inhibitors. RSC Med Chem 2024; 15:1320-1328. [PMID: 38665836 PMCID: PMC11042162 DOI: 10.1039/d3md00670k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 04/28/2024] Open
Abstract
Phenylalanine derivatives are a well-known small moiety responsible for controlling the virulence factors of several bacteria. Herein, for the first time, we report novel structures of phenylalanine derivatives bearing a hydroxamic acid moiety which were designed, synthesized, and evaluated for use as quorum sensing inhibitors. Biological results reveal that six compounds showed good quorum sensing inhibitors properties with an IC50 ranging from 7.12 ± 2.11 μM-92.34 ± 2.09 μM (4NPO, a reference compound, IC50 = 29.13 ± 0.88 μM). In addition, three out of the six compounds (4a, 4c, 4h) showed strong anti-biofilm formation and CviR inhibitory activity when compared to that of 4NPO. These biological data were also confirmed by computational studies. In this series of compounds, 4h is the most promising compound for future drug development targeting quorum sensing. Our results concluded that the fragment-based drug design is a good approach for the discovery of novel quorum-sensing inhibitors in the future.
Collapse
Affiliation(s)
- Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University Hanoi 12116 Vietnam
| | - Nguyen Quoc Thang
- Hanoi University of Pharmacy 13-15 Le Thanh Tong Hanoi Vietnam
- Vinmec International Hospital Hanoi Vietnam
| | - Nguyen Cao Huy
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
| | - Pham Bao Phuong
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
| | - Dinh Ngoc Minh
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
| | - Nguyen Hai Nam
- Hanoi University of Pharmacy 13-15 Le Thanh Tong Hanoi Vietnam
| | - John Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen Denmark
| |
Collapse
|
2
|
Ghosh S, Sen S, Jash M, Ghosh S, Jana A, Roy R, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Synergistic Augmentation of Beta-Lactams: Exploring Quinoline-Derived Amphipathic Small Molecules as Antimicrobial Potentiators against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:1267-1285. [PMID: 38442370 DOI: 10.1021/acsinfecdis.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.
Collapse
Affiliation(s)
- Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
3
|
Shandil S, Yu TT, Sabir S, Black DS, Kumar N. Synthesis of Novel Quinazolinone Analogues for Quorum Sensing Inhibition. Antibiotics (Basel) 2023; 12:1227. [PMID: 37508323 PMCID: PMC10376653 DOI: 10.3390/antibiotics12071227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
As bacteria continue to develop resistance mechanisms against antimicrobials, an alternative method to tackle this global concern must be developed. As the pqs system is the most well-known and responsible for biofilm and pyocyanin production, quinazolinone inhibitors of the pqs system in P. aeruginosa were developed. Molecular docking following a rationalised medicinal chemistry approach was adopted to design these analogues. An analysis of docking data suggested that compound 6b could bind with the key residues in the ligand binding domain of PqsR in a similar fashion to the known antagonist M64. The modification of cyclic groups at the 3-position of the quinazolinone core, the introduction of a halogen at the aromatic core and the modification of the terminal group with aromatic and aliphatic chains were investigated to guide the synthesis of a library of 16 quinazolinone analogues. All quinazolinone analogues were tested in vitro for pqs inhibition, with the most active compounds 6b and 6e being tested for biofilm and growth inhibition in P. aeruginosa (PAO1). Compound 6b displayed the highest pqs inhibitory activity (73.4%, 72.1% and 53.7% at 100, 50 and 25 µM, respectively) with no bacterial growth inhibition. However, compounds 6b and 6e only inhibited biofilm formation by 10% and 5%, respectively.
Collapse
Affiliation(s)
- Sahil Shandil
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shekh Sabir
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David StC Black
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria. mBio 2023; 14:e0336322. [PMID: 36602305 PMCID: PMC9973260 DOI: 10.1128/mbio.03363-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Collapse
|
5
|
Hamed MM, Abdelsamie AS, Rox K, Schütz C, Kany AM, Röhrig T, Schmelz S, Blankenfeldt W, Arce‐Rodriguez A, Borrero‐de Acuña JM, Jahn D, Rademacher J, Ringshausen FC, Cramer N, Tümmler B, Hirsch AKH, Hartmann RW, Empting M. Towards Translation of PqsR Inverse Agonists: From In Vitro Efficacy Optimization to In Vivo Proof-of-Principle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204443. [PMID: 36596691 PMCID: PMC9929129 DOI: 10.1002/advs.202204443] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic human pathogen, which is involved in a wide range of dangerous infections. It develops alarming resistances toward antibiotic treatment. Therefore, alternative strategies, which suppress pathogenicity or synergize with antibiotic treatments are in great need to combat these infections more effectively. One promising approach is to disarm the bacteria by interfering with their quorum sensing (QS) system, which regulates the release of various virulence factors as well as biofilm formation. Herein, this work reports the rational design, optimization, and in-depth profiling of a new class of Pseudomonas quinolone signaling receptor (PqsR) inverse agonists. The resulting frontrunner compound features a pyrimidine-based scaffold, high in vitro and in vivo efficacy, favorable pharmacokinetics as well as clean safety pharmacology characteristics, which provide the basis for potential pulmonary as well as systemic routes of administration. An X-ray crystal structure in complex with PqsR facilitated further structure-guided lead optimization. The compound demonstrates potent pyocyanin suppression, synergizes with aminoglycoside antibiotic tobramycin against PA biofilms, and is active against a panel of clinical isolates from bronchiectasis patients. Importantly, this in vitro effect translated into in vivo efficacy in a neutropenic thigh infection model in mice providing a proof-of-principle for adjunctive treatment scenarios.
Collapse
Affiliation(s)
- Mostafa M. Hamed
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Ahmed S. Abdelsamie
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of Chemistry of Natural and Microbial ProductsInstitute of Pharmaceutical and Drug Industries ResearchNational Research CentreEl‐Buhouth St.DokkiCairo12622Egypt
| | - Katharina Rox
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of Chemical Biology (CBIO)Helmholtz Centre for Infection Research (HZI)Inhoffenstr. 7 Braunschweig38124SaarbrückenGermany
| | - Christian Schütz
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Andreas M. Kany
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Teresa Röhrig
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
| | - Stefan Schmelz
- Department of Structure and Function of Proteins (SFPR)Helmholtz Centre for Infection Research (HZI)Inhoffenstr. 7 Braunschweig38124SaarbrückenGermany
| | - Wulf Blankenfeldt
- Department of Structure and Function of Proteins (SFPR)Helmholtz Centre for Infection Research (HZI)Inhoffenstr. 7 Braunschweig38124SaarbrückenGermany
- Institute for BiochemistryBiotechnology and BioinformaticsTechnische Universität BraunschweigBraunschweigGermany
| | | | - José Manuel Borrero‐de Acuña
- Institute of MicrobiologyTechnische Universität Braunschweig38106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität Braunschweig38106BraunschweigGermany
- Departamento de MicrobiologíaFacultad de BiologíaUniversidad de SevillaAv. de la Reina Mercedesno. 6SevillaCP 41012Spain
| | - Dieter Jahn
- Institute of MicrobiologyTechnische Universität Braunschweig38106BraunschweigGermany
- Braunschweig Integrated Centre of Systems Biology (BRICS)Technische Universität Braunschweig38106BraunschweigGermany
| | - Jessica Rademacher
- Department for Respiratory MedicineMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)German Center for Lung Research (DZL)30625HannoverGermany
| | - Felix C. Ringshausen
- Department for Respiratory MedicineMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)German Center for Lung Research (DZL)30625HannoverGermany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN‐ LUNG)FrankfurtGermany
| | - Nina Cramer
- Department for Pediatric PneumologyAllergology and NeonatologyMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
| | - Burkhard Tümmler
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH)German Center for Lung Research (DZL)30625HannoverGermany
- Department for Pediatric PneumologyAllergology and NeonatologyMedizinische Hochschule HannoverCarl‐Neuberg‐Str. 130625HannoverGermany
| | - Anna K. H. Hirsch
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of PharmacySaarland University Campus E8.166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of PharmacySaarland University Campus E8.166123SaarbrückenGermany
| | - Martin Empting
- Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) Campus E8.166123SaarbrückenGermany
- German Centre for Infection Research (DZIF)Partner Site Hannover‐Braunschweig Saarbrücken66123SaarbrückenGermany
- Department of PharmacySaarland University Campus E8.166123SaarbrückenGermany
| |
Collapse
|
6
|
Vieira TF, Magalhães RP, Simões M, Sousa SF. Drug Repurposing Targeting Pseudomonas aeruginosa MvfR Using Docking, Virtual Screening, Molecular Dynamics, and Free-Energy Calculations. Antibiotics (Basel) 2022; 11:185. [PMID: 35203788 PMCID: PMC8868191 DOI: 10.3390/antibiotics11020185] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for acute and chronic infections in planktonic state or in biofilms. The sessile structures are known to confer physical stability, increase virulence, and work as a protective armor against antimicrobial compounds. P. aeruginosa can control the expression of genes, population density, and biofilm formation through a process called quorum sensing (QS), a rather complex and hierarchical system of communication. A recent strategy to try and overcome bacterial resistance is to target QS proteins. In this study, a combined multi-level computational approach was applied to find possible inhibitors against P. aeruginosa QS regulator protein MvfR, also known as PqsR, using a database of approved FDA drugs, as a repurposing strategy. Fifteen compounds were identified as highly promising putative MvfR inhibitors. On those 15 MvfR ligand complexes, molecular dynamic simulations and MM/GBSA free-energy calculations were performed to confirm the docking predictions and elucidate on the mode of interaction. Ultimately, the five compounds that presented better binding free energies of association than the reference molecules (a known antagonist, M64 and a natural inducer, 2-nonyl-4-hydroxyquinoline) were highlighted as very promising MvfR inhibitors.
Collapse
Affiliation(s)
- Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Rita P. Magalhães
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
7
|
Duplantier M, Lohou E, Sonnet P. Quorum Sensing Inhibitors to Quench P. aeruginosa Pathogenicity. Pharmaceuticals (Basel) 2021; 14:1262. [PMID: 34959667 PMCID: PMC8707152 DOI: 10.3390/ph14121262] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence and the dissemination of multidrug-resistant bacteria constitute a major public health issue. Among incriminated Gram-negative bacteria, Pseudomonas aeruginosa has been designated by the WHO as a critical priority threat. During the infection process, this pathogen secretes various virulence factors in order to adhere and colonize host tissues. Furthermore, P. aeruginosa has the capacity to establish biofilms that reinforce its virulence and intrinsic drug resistance. The regulation of biofilm and virulence factor production of this micro-organism is controlled by a specific bacterial communication system named Quorum Sensing (QS). The development of anti-virulence agents targeting QS that could attenuate P. aeruginosa pathogenicity without affecting its growth seems to be a promising new therapeutic strategy. This could prevent the selective pressure put on bacteria by the conventional antibiotics that cause their death and promote resistant strain survival. This review describes the QS-controlled pathogenicity of P. aeruginosa and its different specific QS molecular pathways, as well as the recent advances in the development of innovative QS-quenching anti-virulence agents to fight anti-bioresistance.
Collapse
Affiliation(s)
| | | | - Pascal Sonnet
- AGIR, UR4294, UFR of Pharmacy, Jules Verne University of Picardie, 80037 Amiens, France; (M.D.); (E.L.)
| |
Collapse
|
8
|
Abstract
Microbes are hardly seen as planktonic species and are most commonly found as biofilm communities in cases of chronic infections. Biofilms are regarded as a biological condition, where a large group of microorganisms gets adhered to a biotic or abiotic surface. In this context, Pseudomonas aeruginosa, a Gram-negative nosocomial pathogen is the main causative organism responsible for life-threatening and persistent infections in individuals affected with cystic fibrosis and other lung ailments. The bacteria can form a strong biofilm structure when it adheres to a surface suitable for the development of a biofilm matrix. These bacterial biofilms pose higher natural resistance to conventional antibiotic therapy due to their multiple tolerance mechanisms. This prevailing condition has led to an increasing rate of treatment failures associated with P. aeruginosa biofilm infections. A better understanding of the effect of a diverse group of antibiotics on established biofilms would be necessary to avoid inappropriate treatment strategies. Hence, the search for other alternative strategies as effective biofilm treatment options has become a growing area of research. The current review aims to give an overview of the mechanisms governing biofilm formation and the different strategies employed so far in the control of biofilm infections caused by P. aeruginosa. Moreover, this review can also help researchers to search for new antibiofilm agents to tackle the effect of biofilm infections that are currently imprudent to conventional antibiotics.
Collapse
|
9
|
Yu T, Xianyu Y. Array-Based Biosensors for Bacteria Detection: From the Perspective of Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006230. [PMID: 33870615 DOI: 10.1002/smll.202006230] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/18/2020] [Indexed: 05/24/2023]
Abstract
Array-based biosensors have shown as effective and powerful tools to distinguish intricate mixtures with infinitesimal differences among analytes such as nucleic acids, proteins, microorganisms, and other biomolecules. In array-based bacterial sensing, the recognition of bacteria is the initial step that can crucially influence the analytical performance of a biosensor array. Bacteria recognition as well as the signal readout and mathematical analysis are indispensable to ensure the discrimination ability of array-based biosensors. Strategies for bacteria recognition mainly include the specific interaction between biomolecules and the corresponding receptors on bacteria, the noncovalent interaction between materials and bacteria, and the specific targeting of bacterial metabolites. In this review, recent advances in array-based bacteria sensors are discussed from the perspective of bacteria recognition relying on the characteristics of different bacteria. Principles of bacteria recognition and signal readout for bacteria detection are highlighted as well as the discussion on future trends in array-based biosensors.
Collapse
Affiliation(s)
- Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, Zhejiang, 315100, China
| |
Collapse
|
10
|
Baldelli V, D’Angelo F, Pavoncello V, Fiscarelli EV, Visca P, Rampioni G, Leoni L. Identification of FDA-approved antivirulence drugs targeting the Pseudomonas aeruginosa quorum sensing effector protein PqsE. Virulence 2020; 11:652-668. [PMID: 32423284 PMCID: PMC7549961 DOI: 10.1080/21505594.2020.1770508] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of the bacterial pathogen Pseudomonas aeruginosa to cause both chronic and acute infections mainly relies on its capacity to finely modulate the expression of virulence factors through a complex network of regulatory circuits, including the pqs quorum sensing (QS) system. While in most QS systems the signal molecule/receptor complexes act as global regulators that modulate the expression of QS-controlled genes, the main effector protein of the pqs system is PqsE. This protein is involved in the synthesis of the QS signal molecules 2-alkyl-4(1H)-quinolones (AQs), but it also modulates the expression of genes involved in virulence factors production and biofilm formation via AQ-independent pathway(s). P. aeruginosa pqsE mutants disclose attenuated virulence in plant and animal infection models, hence PqsE is considered a good target for the development of antivirulence drugs against P. aeruginosa. In this study, the negative regulation exerted by PqsE on its own transcription has been exploited to develop a screening system for the identification of PqsE inhibitors in a library of FDA-approved drugs. This led to the identification of nitrofurazone and erythromycin estolate, two antibiotic compounds that reduce the expression of PqsE-dependent virulence traits and biofilm formation in the model strain P. aeruginosa PAO1 at concentrations far below those affecting the bacterial growth rate. Notably, both drugs reduce the production of the PqsE-controlled virulence factor pyocyanin also in P. aeruginosa strains isolated from cystic fibrosis patients, and do not antagonize the activity of antibiotics commonly used to treat P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | | | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
11
|
Chen CH, Lu TK. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics (Basel) 2020; 9:antibiotics9010024. [PMID: 31941022 PMCID: PMC7168295 DOI: 10.3390/antibiotics9010024] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
More than 3000 antimicrobial peptides (AMPs) have been discovered, seven of which have been approved by the U.S. Food and Drug Administration (FDA). Now commercialized, these seven peptides have mostly been utilized for topical medications, though some have been injected into the body to treat severe bacterial infections. To understand the translational potential for AMPs, we analyzed FDA-approved drugs in the FDA drug database. We examined their physicochemical properties, secondary structures, and mechanisms of action, and compared them with the peptides in the AMP database. All FDA-approved AMPs were discovered in Gram-positive soil bacteria, and 98% of known AMPs also come from natural sources (skin secretions of frogs and toxins from different species). However, AMPs can have undesirable properties as drugs, including instability and toxicity. Thus, the design and construction of effective AMPs require an understanding of the mechanisms of known peptides and their effects on the human body. This review provides an overview to guide the development of AMPs that can potentially be used as antimicrobial drugs.
Collapse
Affiliation(s)
- Charles H. Chen
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| | - Timothy K. Lu
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA
- Correspondence: (C.H.C.); (T.K.L.)
| |
Collapse
|
12
|
Zender M, Witzgall F, Kiefer A, Kirsch B, Maurer CK, Kany AM, Xu N, Schmelz S, Börger C, Blankenfeldt W, Empting M. Flexible Fragment Growing Boosts Potency of Quorum-Sensing Inhibitors against Pseudomonas aeruginosa Virulence. ChemMedChem 2019; 15:188-194. [PMID: 31709767 PMCID: PMC7004148 DOI: 10.1002/cmdc.201900621] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/24/2022]
Abstract
Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-aminopyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa. We pursue an innovative treatment strategy by interfering with the Pseudomonas quinolone signal (PQS) quorum sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.
Collapse
Affiliation(s)
- Michael Zender
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Florian Witzgall
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Alexander Kiefer
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Benjamin Kirsch
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine K Maurer
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Ningna Xu
- Lehrstuhl für Biochemie, Universität Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stefan Schmelz
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Carsten Börger
- PharmBioTec GmbH, Science Park 1, 66123, Saarbrücken, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany.,Biotechnology and Bioinformatics, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Martin Empting
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
13
|
Mellini M, Di Muzio E, D’Angelo F, Baldelli V, Ferrillo S, Visca P, Leoni L, Polticelli F, Rampioni G. In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Front Microbiol 2019; 10:2355. [PMID: 31649658 PMCID: PMC6796623 DOI: 10.3389/fmicb.2019.02355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of antibiotic resistant bacterial pathogens is increasing at an unprecedented pace, calling for the development of new therapeutic options. Small molecules interfering with virulence processes rather than growth hold promise as an alternative to conventional antibiotics. Anti-virulence agents are expected to decrease bacterial virulence and to pose reduced selective pressure for the emergence of resistance. In the opportunistic pathogen Pseudomonas aeruginosa the expression of key virulence traits is controlled by quorum sensing (QS), an intercellular communication process that coordinates gene expression at the population level. Hence, QS inhibitors represent promising anti-virulence agents against P. aeruginosa. Virtual screenings allow fast and cost-effective selection of target ligands among vast libraries of molecules, thus accelerating the time and limiting the cost of conventional drug-discovery processes, while the drug-repurposing approach is based on the identification of off-target activity of FDA-approved drugs, likely endowed with low cytotoxicity and favorable pharmacological properties. This study aims at combining the advantages of virtual screening and drug-repurposing approaches to identify new QS inhibitors targeting the pqs QS system of P. aeruginosa. An in silico library of 1,467 FDA-approved drugs has been screened by molecular docking, and 5 hits showing the highest predicted binding affinity for the pqs QS receptor PqsR (also known as MvfR) have been selected. In vitro experiments have been performed by engineering ad hoc biosensor strains, which were used to verify the ability of hit compounds to decrease PqsR activity in P. aeruginosa. Phenotypic analyses confirmed the impact of the most promising hit, the antipsychotic drug pimozide, on the expression of P. aeruginosa PqsR-controlled virulence traits. Overall, this study highlights the potential of virtual screening campaigns of FDA-approved drugs to rapidly select new inhibitors of important bacterial functions.
Collapse
Affiliation(s)
- Marta Mellini
- Department of Science, University Roma Tre, Rome, Italy
| | | | | | | | | | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | - Fabio Polticelli
- Department of Science, University Roma Tre, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | | |
Collapse
|
14
|
Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. Eur J Med Chem 2019; 172:26-35. [PMID: 30939351 DOI: 10.1016/j.ejmech.2019.03.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/31/2023]
Abstract
Nowadays, due to spreading antibiotic resistance among clinically relevant pathogens, the requirement of novel therapeutic approaches is felt more than ever. One of the alternative strategies is anti-virulence therapy without affecting bacterial growth or viability. In Pseudomonas aeruginosa, an opportunistic human pathogen that exhibits intrinsic multi-drug resistance, both virulence factors' production and biofilm formation depends on its quorum sensing (QS) network. Therefore, targeting the key proteins involved in QS system is an attractive method to overcome P. aeruginosa pathogenicity and resistance. The transcriptional regulator PqsR, also called MvfR, is one of these major proteins which employs 3,4-dihydroxy-2-heptylquinoline (PQS) and 4-hydroxy-2-heptylquinoline (HHQ) as signaling molecules. Reviewing the advances in development of small molecules inhibit this protein, assist to open a new window to smart molecule design that may revolutionize treatment of P. aeruginosa infections.
Collapse
|
15
|
D'Angelo F, Baldelli V, Halliday N, Pantalone P, Polticelli F, Fiscarelli E, Williams P, Visca P, Leoni L, Rampioni G. Identification of FDA-Approved Drugs as Antivirulence Agents Targeting the pqs Quorum-Sensing System of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:e01296-18. [PMID: 30201815 PMCID: PMC6201120 DOI: 10.1128/aac.01296-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/01/2018] [Indexed: 12/11/2022] Open
Abstract
The long-term use of antibiotics has led to the emergence of multidrug-resistant bacteria. A promising strategy to combat bacterial infections aims at hampering their adaptability to the host environment without affecting growth. In this context, the intercellular communication system quorum sensing (QS), which controls virulence factor production and biofilm formation in diverse human pathogens, is considered an ideal target. Here, we describe the identification of new inhibitors of the pqs QS system of the human pathogen Pseudomonas aeruginosa by screening a library of 1,600 U.S. Food and Drug Administration-approved drugs. Phenotypic characterization of ad hoc engineered strains and in silico molecular docking demonstrated that the antifungal drugs clotrimazole and miconazole, as well as an antibacterial compound active against Gram-positive pathogens, clofoctol, inhibit the pqs system, probably by targeting the transcriptional regulator PqsR. The most active inhibitor, clofoctol, specifically inhibited the expression of pqs-controlled virulence traits in P. aeruginosa, such as pyocyanin production, swarming motility, biofilm formation, and expression of genes involved in siderophore production. Moreover, clofoctol protected Galleria mellonella larvae from P. aeruginosa infection and inhibited the pqs QS system in P. aeruginosa isolates from cystic fibrosis patients. Notably, clofoctol is already approved for clinical treatment of pulmonary infections caused by Gram-positive bacterial pathogens; hence, this drug has considerable clinical potential as an antivirulence agent for the treatment of P. aeruginosa lung infections.
Collapse
Affiliation(s)
| | | | - Nigel Halliday
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Pantalone
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fabio Polticelli
- Department of Science, University Roma Tre, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
| | - Ersilia Fiscarelli
- Laboratory of Cystic Fibrosis Microbiology, Bambino Gesú Hospital, Rome, Italy
| | - Paul Williams
- Centre for Biomolecular Sciences and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Paolo Visca
- Department of Science, University Roma Tre, Rome, Italy
| | - Livia Leoni
- Department of Science, University Roma Tre, Rome, Italy
| | | |
Collapse
|
16
|
Schütz C, Empting M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J Org Chem 2018; 14:2627-2645. [PMID: 30410625 PMCID: PMC6204780 DOI: 10.3762/bjoc.14.241] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa causes severe nosocomial infections. It uses quorum sensing (QS) to regulate and coordinate population-wide group behaviours in the infection process like concerted secretion of virulence factors. One very important signalling network is the Pseudomonas quinolone signal (PQS) QS. With the aim to devise novel and innovative anti-infectives, inhibitors have been designed to address the various potential drug targets present within pqs QS. These range from enzymes within the biosynthesis cascade of the signal molecules PqsABCDE to the receptor of these autoinducers PqsR (MvfR). This review shortly introduces P. aeruginosa and its pathogenicity traits regulated by the pqs system and highlights the published drug discovery efforts providing insights into the compound binding modes if available. Furthermore, suitability of the individual targets for pathoblocker design is discussed.
Collapse
Affiliation(s)
- Christian Schütz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany
| |
Collapse
|
17
|
Soukarieh F, Williams P, Stocks MJ, Cámara M. Pseudomonas aeruginosa Quorum Sensing Systems as Drug Discovery Targets: Current Position and Future Perspectives. J Med Chem 2018; 61:10385-10402. [PMID: 29999316 DOI: 10.1021/acs.jmedchem.8b00540] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance (AMR) is a serious threat to public health globally, manifested by the frequent emergence of multidrug resistant pathogens that render current chemotherapy inadequate. Health organizations worldwide have recognized the severity of this crisis and implemented action plans to contain its adverse consequences and prolong the utility of conventional antibiotics. Hence, there is a pressing need for new classes of antibacterial agents with novel modes of action. Quorum sensing (QS), a communication system employed by bacterial populations to coordinate virulence gene expression, is a potential target that has been intensively investigated over the past decade. This Perspective will focus on recent advances in targeting the three main quorum sensing systems ( las, rhl, and pqs) of a major opportunistic human pathogen, Pseudomonas aeruginosa, and will specifically evaluate the medicinal chemistry strategies devised to develop QS inhibitors from a drug discovery perspective.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Michael J Stocks
- School of Pharmacy, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences , University of Nottingham , Nottingham , NG7 2RD , U.K
| |
Collapse
|
18
|
Kamal AAM, Petrera L, Eberhard J, Hartmann RW. Structure-functionality relationship and pharmacological profiles of Pseudomonas aeruginosa alkylquinolone quorum sensing modulators. Org Biomol Chem 2018; 15:4620-4630. [PMID: 28513746 DOI: 10.1039/c7ob00263g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An important paradigm in anti-infective research is the antivirulence concept. Pathoblockers are compounds which disarm bacteria of their arsenal of virulence factors. PqsR is a transcriptional regulator controlling the production of such factors in Pseudomonas aeruginosa, most prominently pyocyanin. In this work, a series of tool compounds based on the structure of the natural ligand 2-heptyl-4-quinolone (HHQ) were used for probing the structure-functionality relationship. Four different profiles are identified namely agonists, antagonists, inverse agonists and biphasic modulators. Molecular docking studies revealed that each class of the PqsR modulators showed distinctive interactions in the PqsR binding domain. It was found that the substituents in position 3 of the quinolone core act as a switch between the different profiles, according to their ability to donate or accept a hydrogen bond, or form a hydrophobic interaction. Finally, it was shown that only inverse agonists were able to strongly inhibit pyocyanin production.
Collapse
Affiliation(s)
- Ahmed A M Kamal
- Helmholtz-Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
19
|
The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists. Sci Rep 2018; 8:2102. [PMID: 29391435 PMCID: PMC5795001 DOI: 10.1038/s41598-018-20283-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/15/2018] [Indexed: 11/10/2022] Open
Abstract
Chemotaxis toward organic acids has been associated with colonization fitness and virulence and the opportunistic pathogen Pseudomonas aeruginosa exhibits taxis toward several tricarboxylic acid intermediates. In this study, we used high-throughput ligand screening and isothermal titration calorimetry to demonstrate that the ligand binding domain (LBD) of the chemoreceptor PA2652 directly recognizes five C4-dicarboxylic acids with KD values ranging from 23 µM to 1.24 mM. In vivo experimentation showed that three of the identified ligands act as chemoattractants whereas two of them behave as antagonists by inhibiting the downstream chemotaxis signalling cascade. In vitro and in vivo competition assays showed that antagonists compete with chemoattractants for binding to PA2652-LBD, thereby decreasing the affinity for chemoattractants and the subsequent chemotactic response. Two chemosensory pathways encoded in the genome of P. aeruginosa, che and che2, have been associated to chemotaxis but we found that only the che pathway is involved in PA2652-mediated taxis. The receptor PA2652 is predicted to contain a sCACHE LBD and analytical ultracentrifugation analyses showed that PA2652-LBD is dimeric in the presence and the absence of ligands. Our results indicate the feasibility of using antagonists to interfere specifically with chemotaxis, which may be an alternative strategy to fight bacterial pathogens.
Collapse
|
20
|
Soukarieh F, Vico Oton E, Dubern JF, Gomes J, Halliday N, de Pilar Crespo M, Ramírez-Prada J, Insuasty B, Abonia R, Quiroga J, Heeb S, Williams P, Stocks MJ, Cámara M. In Silico and in Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa. Molecules 2018; 23:E257. [PMID: 29382099 PMCID: PMC6017655 DOI: 10.3390/molecules23020257] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/20/2018] [Accepted: 01/20/2018] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis, wound and nosocomial infections, posing a serious burden to public health, due to its antibiotic resistance. The P. aeruginosa Pseudomonas Quinolone System (pqs) quorum sensing system, driven by the activation of the transcriptional regulator, PqsR (MvfR) by alkylquinolone (AQ) signal molecules, is a key player in the regulation of virulence and a potential target for the development of novel antibacterial agents. In this study, we performed in silico docking analysis, coupled with screening using a P. aeruginosa mCTX::PpqsA-lux chromosomal promoter fusion, to identify a series of new PqsR antagonists. The hit compounds inhibited pyocyanin and alkylquinolone signal molecule production in P. aeruginosa PAO1-L and PA14 strains. The inhibitor Ia, which showed the highest activity in PA14, reduced biofilm formation in PAO1-L and PA14, increasing their sensitivity to tobramycin. Furthermore, the hepatic and plasma stabilities for these compounds were determined in both rat and human in vitro microsomal assays, to gain a further understanding of their therapeutic potential. This work has uncovered a new class of P. aeruginosa PqsR antagonists with potential for hit to lead optimisation in the search for quorum sensing inhibitors for future anti-infective drug discovery programs.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| | - Eduard Vico Oton
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| | - Jean-Frédéric Dubern
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| | - Janice Gomes
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| | - Nigel Halliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| | - Maria de Pilar Crespo
- Department of Microbiology, Universidad del Valle and Departamento of Biomedical Sciences, Universidad Santiago de Cali, Cali AA 760035, Colombia;
| | - Jonathan Ramírez-Prada
- Department of Chemistry, Universidad del Valle, Cali AA 25360, Colombia; (J.R.-P.); (B.I.); (R.A.); (J.Q.)
| | - Braulio Insuasty
- Department of Chemistry, Universidad del Valle, Cali AA 25360, Colombia; (J.R.-P.); (B.I.); (R.A.); (J.Q.)
| | - Rodrigo Abonia
- Department of Chemistry, Universidad del Valle, Cali AA 25360, Colombia; (J.R.-P.); (B.I.); (R.A.); (J.Q.)
| | - Jairo Quiroga
- Department of Chemistry, Universidad del Valle, Cali AA 25360, Colombia; (J.R.-P.); (B.I.); (R.A.); (J.Q.)
| | - Stephan Heeb
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| | - Michael J. Stocks
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (F.S.); (E.V.O.); (J.-F.D.); (J.G.); (N.H.); (S.H.); (P.W.)
| |
Collapse
|
21
|
Apoptotic Protease Activating Factor-1 Inhibitor Mitigates Myocardial Ischemia Injury via Disturbing Procaspase-9 Recruitment by Apaf-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9747296. [PMID: 29279737 PMCID: PMC5723966 DOI: 10.1155/2017/9747296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/18/2017] [Accepted: 08/23/2017] [Indexed: 01/01/2023]
Abstract
(2S,3S,4S,5R,6R)-6-(4-((4-guanidinobutoxy)carbonyl)-2,6-dihydroxyphenoxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (ZYZ-488) was discovered as a novel inhibitor of apoptotic protease activating factor-1 (Apaf-1). In present work, a surface plasmon resonance (SPR) assay confirms the direct binding between ZYZ-488 and Apaf-1 and this interaction was found to be able to block the recruitment of procaspase-9 by Apaf-1. This study also shows that the treatment of MI (myocardial infarction) mice with this novel Apaf-1 inhibitor remarkably reduces the infarct size, improves cardiac functions, and attenuates the histopathology changes caused by MI. Meanwhile, here it is shown that ZYZ-488 decreases myocardial enzyme release, inhibits cardiomyocyte apoptosis, and suppresses the activation of the downstream cascade of caspases. Moreover, in silico prediction validated the drug-like properties of ZYZ-488. In conclusion, our findings present the first piece of evidence indicating the interaction between Apaf-1 and procaspase-9 as a novel therapeutic target in myocardial infarction and suggesting ZYZ-488 as a promising therapeutic option for myocardial infarction disease.
Collapse
|
22
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemical and Biological Aspects of Nutritional Immunity-Perspectives for New Anti-Infectives that Target Iron Uptake Systems. Angew Chem Int Ed Engl 2017; 56:14360-14382. [PMID: 28439959 DOI: 10.1002/anie.201701586] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Upon bacterial infection, one of the defense mechanisms of the host is the withdrawal of essential metal ions, in particular iron, which leads to "nutritional immunity". However, bacteria have evolved strategies to overcome iron starvation, for example, by stealing iron from the host or other bacteria through specific iron chelators with high binding affinity. Fortunately, these complex interactions between the host and pathogen that lead to metal homeostasis provide several opportunities for interception and, thus, allow the development of novel antibacterial compounds. This Review focuses on iron, discusses recent highlights, and gives some future perspectives which are relevant in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Joshua A V Blodgett
- Department of Biology, Washington University, St. Louis, MO, 63130-4899, USA
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 7, 0569, Stuttgart, Germany
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
23
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemische und biologische Aspekte von “Nutritional Immunity” - Perspektiven für neue Antiinfektiva mit Fokus auf bakterielle Eisenaufnahmesysteme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening; Helmholtz-Zentrum für Infektionsforschung; Inhoffenstraße 7 38124 Braunschweig Deutschland
| | | | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; I-20133 Milano Italien
| | - Sabine Laschat
- Institut für Organische Chemie; Universität Stuttgart; Pfaffenwaldring 55, 7 0569 Stuttgart Deutschland
| | - Anne Routledge
- Department of Chemistry; University of York, Heslington; York YO10 5DD Großbritannien
| | - Rainer Schobert
- Organische Chemie I; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| |
Collapse
|
24
|
Torres MDT, Pedron CN, da Silva Lima JA, da Silva PI, da Silva FD, Oliveira VX. Antimicrobial activity of leucine-substituted decoralin analogs with lower hemolytic activity. J Pept Sci 2017; 23:818-823. [PMID: 28795464 DOI: 10.1002/psc.3029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Linear cationic α-helical antimicrobial peptides are promising chemotherapeutics. Most of them act by different mechanisms, making it difficult to microorganisms acquiring resistance. Decoralin is an example of antimicrobial peptide; it was described by Konno et al. and presented activity against microorganisms, but with pronounced hemolytic activity. We synthesized leucine-substituted decoralin analogs designed based on important physicochemical properties, which depend on the maintenance of the amphiphilic α-helical tendency of the native molecule. Peptides were synthesized, purified, and characterized, and the conformational studies were performed. The results indicated that the analogs presented both higher therapeutic indexes, but with antagonistic behavior. While [Leu]10 -Dec-NH2 analog showed similar activity against different microorganisms (c.a. 0.4-0.8 μmol L-1 ), helical structuration, and some hemolytic activity, [Leu]8 -Dec-NH2 analog did not tend to helical structure and presented antimicrobial activities two orders higher than the other two peptides analyzed. On the other hand, this analog showed to be the less hemolytic (MHC value = 50.0 μmol L-1 ). This approach provided insight for understanding the effects of the leucine substitution in the amphiphilic balance. They led to changes on the conformational tendency, which showed to be important for the mechanism of action and affecting antimicrobial and hemolytic activities. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | | | | | | | - Fernanda Dias da Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Vani Xavier Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| |
Collapse
|
25
|
de la Fuente-Nunez C, Torres MD, Mojica FJ, Lu TK. Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Curr Opin Microbiol 2017. [PMID: 28623720 DOI: 10.1016/j.mib.2017.05.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antibiotics started to be used almost 90 years ago to eradicate life-threatening infections. The urgency of the problem required rapid, broad-spectrum elimination of infectious agents. Since their initial discovery, these antimicrobials have saved millions of lives. However, they are not exempt from side effects, which include the indiscriminate disruption of the beneficial microbiota. Recent technological advances have enabled the development of antimicrobials that can selectively target a gene, a cellular process, or a microbe of choice. These strategies bring us a step closer to developing personalized therapies that exclusively remove disease-causing infectious agents. Here, we advocate the preservation of our beneficial microbes and provide an overview of promising alternatives to broad-spectrum antimicrobials. Specifically, we emphasize nucleic acid and peptide-based systems as a foundation for next-generation alternatives to antibiotics that do not challenge our microbiota and may help to mitigate the spread of resistance.
Collapse
Affiliation(s)
- Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Biophysics Program, Harvard University, Boston, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA.
| | - Marcelo Dt Torres
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Biophysics Program, Harvard University, Boston, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - Francisco Jm Mojica
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Pavilion 12, 03080, Alicante, Spain
| | - Timothy K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA; Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Biophysics Program, Harvard University, Boston, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA.
| |
Collapse
|
26
|
Aleksić I, Šegan S, Andrić F, Zlatović M, Moric I, Opsenica DM, Senerovic L. Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa. ACS Chem Biol 2017; 12:1425-1434. [PMID: 28350449 DOI: 10.1021/acschembio.6b01149] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 μM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 μM and 63 μM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 μM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.
Collapse
Affiliation(s)
- Ivana Aleksić
- Institute
of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Sandra Šegan
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Filip Andrić
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Mario Zlatović
- Faculty
of Chemistry, University of Belgrade, Studentski trg 12-16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Ivana Moric
- Institute
of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| | - Dejan M. Opsenica
- Institute
of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, P.O. Box 473, 11000 Belgrade, Serbia
| | - Lidija Senerovic
- Institute
of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, P.O. Box 23, 11010 Belgrade, Serbia
| |
Collapse
|
27
|
A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nat Commun 2017; 8:14888. [PMID: 28348410 PMCID: PMC5379069 DOI: 10.1038/ncomms14888] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/09/2017] [Indexed: 01/20/2023] Open
Abstract
Iron sequestration by host proteins contributes to the defence against bacterial pathogens, which need iron for their metabolism and virulence. A Pseudomonas aeruginosa mutant lacking all three known iron acquisition systems retains the ability to grow in media containing iron chelators, suggesting the presence of additional pathways involved in iron uptake. Here we screen P. aeruginosa mutants defective in growth in iron-depleted media and find that gene PA2374, proximal to the type VI secretion system H3 (H3-T6SS), functions synergistically with known iron acquisition systems. PA2374 (which we have renamed TseF) appears to be secreted by H3-T6SS and is incorporated into outer membrane vesicles (OMVs) by directly interacting with the iron-binding Pseudomonas quinolone signal (PQS), a cell–cell signalling compound. TseF facilitates the delivery of OMV-associated iron to bacterial cells by engaging the Fe(III)-pyochelin receptor FptA and the porin OprF. Our results reveal links between type VI secretion, cell–cell signalling and classic siderophore receptors for iron acquisition in P. aeruginosa. Pathogens require iron for their metabolism and virulence. Here the authors identify an iron acquisition system in Pseudomonas aeruginosa involving a protein secreted by a type VI secretion system, the PQS signalling compound and siderophore receptors.
Collapse
|
28
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Ribavirin suppresses bacterial virulence by targeting LysR-type transcriptional regulators. Sci Rep 2016; 6:39454. [PMID: 27991578 PMCID: PMC5171790 DOI: 10.1038/srep39454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022] Open
Abstract
Targeting bacterial virulence mechanisms without compromising bacterial growth is a promising strategy to prevent drug resistance. LysR-type transcriptional regulators (LTTRs) possess structural conservation across bacterial species and regulate virulence in numerous pathogens, making them attractive targets for antimicrobial agents. We targeted AphB, a Vibrio cholerae LTTR, which regulates the expression of genes encoding cholera toxin and toxin-co-regulated pilus for inhibitor designing. Since AphB ligand is unknown, we followed a molecular fragment-based approach for ligand designing using FDA-approved drugs and subsequent screen to identify molecules that exhibited high-affinity binding to AphB ligand-binding pocket. Among the identified compounds, ribavirin, an anti-viral drug, antagonized AphB functions. Ribavirin perturbed Vibrio cholerae pathogenesis in animal models. The inhibitory effects of the drug was limited to the bacteria expressing wild type AphB, but not its constitutively active mutant (AphBN100E), which represents the ligand-bound state, suggesting that ribavirin binds to the active site of AphB to exert its inhibitory role and there exists no AphB-independent mechanism of its action. Similarly, ribavirin suppressed the functions of Salmonella Typhi LTTR Hrg, indicating its broad spectrum efficacy. Moreover, ribavirin did not affect the bacterial viability in culture. This study cites an example of drug repurposing for anti-infective therapy.
Collapse
|
30
|
Ji C, Sharma I, Pratihar D, Hudson LL, Maura D, Guney T, Rahme LG, Pesci EC, Coleman JP, Tan DS. Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa. ACS Chem Biol 2016; 11:3061-3067. [PMID: 27658001 PMCID: PMC5117135 DOI: 10.1021/acschembio.6b00575] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular
signaling systems regulated
by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate
bacterial cell–cell communication via small-molecule natural
products and control the production of a variety of virulence factors.
The MvfR system is activated by and controls the biosynthesis of the
quinolone quorum sensing factors HHQ and PQS. A key step in the biosynthesis
of these quinolones is catalyzed by the anthranilyl-CoA synthetase
PqsA. To develop inhibitors of PqsA as novel potential antivirulence
antibiotics, we report herein the design and synthesis of sulfonyladeonsine-based
mimics of the anthranilyl-AMP reaction intermediate that is bound
tightly by PqsA. Biochemical, microbiological, and pharmacological
studies identified two potent PqsA inhibitors, anthranilyl-AMS (1) and anthranilyl-AMSN (2), that decreased HHQ
and PQS production in P. aeruginosa strain
PA14. However, these compounds did not inhibit
production of the virulence factor pyocyanin. Moreover, they exhibited
limited bacterial penetration in compound accumulation studies. This
work provides the most potent PqsA inhibitors reported to date and
sets the stage for future efforts to develop analogues with improved
cellular activity to investigate further the complex relationships
between quinolone biosynthesis and virulence factor production in P. aeruginosa and the therapeutic potential of targeting
PqsA.
Collapse
Affiliation(s)
| | | | | | - L. Lynn Hudson
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - Damien Maura
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
| | | | - Laurence G. Rahme
- Department
of Surgery, Harvard Medical School and Massachusettts General Hospital, 50
Blossom Street, Boston, Massachusetts 02114, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Shriners Hospitals for
Children Boston, Boston, Massachusetts 02114, United States
| | - Everett C. Pesci
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | - James P. Coleman
- Department
of Microbiology and Immunology, The Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, North Carolina 27834, United States
| | | |
Collapse
|
31
|
Thomann A, Brengel C, Börger C, Kail D, Steinbach A, Empting M, Hartmann RW. Structure-Activity Relationships of 2-Sufonylpyrimidines as Quorum-Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release ofPseudomonas aeruginosa. ChemMedChem 2016; 11:2522-2533. [DOI: 10.1002/cmdc.201600419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/27/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Andreas Thomann
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Christian Brengel
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Carsten Börger
- PharmBioTec GmbH; Science Park 1 66123 Saarbrücken Germany
| | - Dagmar Kail
- PharmBioTec GmbH; Science Park 1 66123 Saarbrücken Germany
| | - Anke Steinbach
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland; Department of Drug Design and Optimization; Campus E 8.1 66123 Saarbrücken Germany
- Saarland University; Department of Pharmacy, Pharmaceutical and Medicinal Chemistry; Campus C 2.3 66123 Saarbrücken Germany
| |
Collapse
|
32
|
Maura D, Hazan R, Kitao T, Ballok AE, Rahme LG. Evidence for Direct Control of Virulence and Defense Gene Circuits by the Pseudomonas aeruginosa Quorum Sensing Regulator, MvfR. Sci Rep 2016; 6:34083. [PMID: 27678057 PMCID: PMC5039717 DOI: 10.1038/srep34083] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa defies eradication by antibiotics and is responsible for acute and chronic human infections due to a wide variety of virulence factors. Currently, it is believed that MvfR (PqsR) controls the expression of many of these factors indirectly via the pqs and phnAB operons. Here we provide strong evidence that MvfR may also bind and directly regulate the expression of additional 35 loci across the P. aeruginosa genome, including major regulators and virulence factors, such as the quorum sensing (QS) regulators lasR and rhlR, and genes involved in protein secretion, translation, and response to oxidative stress. We show that these anti-oxidant systems, AhpC-F, AhpB-TrxB2 and Dps, are critical for P. aeruginosa survival to reactive oxygen species and antibiotic tolerance. Considering that MvfR regulated compounds generate reactive oxygen species, this indicates a tightly regulated QS self-defense anti-poisoning system. These findings also challenge the current hierarchical regulation model of P. aeruginosa QS systems by revealing new interconnections between them that suggest a circular model. Moreover, they uncover a novel role for MvfR in self-defense that favors antibiotic tolerance and cell survival, further demonstrating MvfR as a highly desirable anti-virulence target.
Collapse
Affiliation(s)
- Damien Maura
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Ronen Hazan
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA.,Institute of Dental Sciences and School of Dental Medicine, Hebrew University, Jerusalem P.O.B 12272, 91120, Israel
| | - Tomoe Kitao
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Alicia E Ballok
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| | - Laurence G Rahme
- Department of Surgery, Massachusetts General Hospital, Boston MA 02114, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA 02115, USA.,Shriners Hospitals for Children Boston, Boston, 02114, Massachusetts, USA
| |
Collapse
|
33
|
Exploiting Interkingdom Interactions for Development of Small-Molecule Inhibitors of Candida albicans Biofilm Formation. Antimicrob Agents Chemother 2016; 60:5894-905. [PMID: 27458231 DOI: 10.1128/aac.00190-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
A rapid decline in the development of new antimicrobial therapeutics has coincided with the emergence of new and more aggressive multidrug-resistant pathogens. Pathogens are protected from antibiotic activity by their ability to enter an aggregative biofilm state. Therefore, disrupting this process in pathogens is a key strategy for the development of next-generation antimicrobials. Here, we present a suite of compounds, based on the Pseudomonas aeruginosa 2-heptyl-4(1H)-quinolone (HHQ) core quinolone interkingdom signal structure, that exhibit noncytotoxic antibiofilm activity toward the fungal pathogen Candida albicans In addition to providing new insights into what is a clinically important bacterium-fungus interaction, the capacity to modularize the functionality of the quinolone signals is an important advance in harnessing the therapeutic potential of signaling molecules in general. This provides a platform for the development of potent next-generation small-molecule therapeutics targeting clinically relevant fungal pathogens.
Collapse
|
34
|
Zender M, Witzgall F, Drees SL, Weidel E, Maurer CK, Fetzner S, Blankenfeldt W, Empting M, Hartmann RW. Dissecting the Multiple Roles of PqsE in Pseudomonas aeruginosa Virulence by Discovery of Small Tool Compounds. ACS Chem Biol 2016; 11:1755-63. [PMID: 27082157 DOI: 10.1021/acschembio.6b00156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pseudomonas aeruginosa uses quorum sensing (QS) as a cell-to-cell communication system to orchestrate the expression of virulence determinants. The biosynthesis of the important Pseudomonas quinolone signal (PQS) requires the pqsABCDE operon. Here, PqsE acts as a pathway-specific thioesterase, but it also contributes to the regulation of bacterial virulence via an unknown mechanism. In this manuscript, we report the discovery of PqsE inhibitors as tool compounds to gain further insights into its different functions. Differential scanning fluorimetry (DSF) was used to screen a fragment library, and isothermal titration calorimetry (ITC) was employed as a secondary filter. As proven by X-ray crystallography, hit molecules bound to the active center inhibiting PqsE's thioesterase activity in cell-based and in vitro assays. Notably, the ligands did not affect the levels of the PqsE-regulated virulence factor pyocyanin. These findings indicate that the regulatory function of PqsE is not linked to its thioesterase activity and must be encoded outside of the active center. This study highlights the potential of fragment-based screening for the discovery of tool compounds. This approach provided novel insight into complex biological systems, which could not be obtained by knockout studies.
Collapse
Affiliation(s)
- Michael Zender
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Florian Witzgall
- Helmholtz Centre for Infection Research, Department
Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Steffen L. Drees
- Institute
of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Elisabeth Weidel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christine K. Maurer
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Susanne Fetzner
- Institute
of Molecular Microbiology and Biotechnology, University of Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research, Department
Structure and Function of Proteins, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institut
für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
- Pharmaceutical
and Medicinal Chemistry, Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
35
|
Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 2016; 33:41-46. [PMID: 27318551 DOI: 10.1016/j.mib.2016.06.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/01/2016] [Accepted: 06/04/2016] [Indexed: 11/23/2022]
Abstract
As antibiotic resistance remains a major public health threat, anti-virulence therapy research is gaining interest. Hundreds of potential anti-virulence compounds have been examined, but very few have made it to clinical trials and none have been approved. This review surveys the current anti-virulence research field with a focus on the highly resistant and deadly ESKAPE pathogens, especially Pseudomonas aeruginosa. We discuss timely considerations and caveats in anti-virulence drug development, including target identification, administration, preclinical development, and metrics for success in clinical trials. Development of a defined pipeline for anti-virulence agents, which differs in important ways from conventional antibiotics, is imperative for the future success of these critically needed drugs.
Collapse
|
36
|
Welsh MA, Blackwell HE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 2016; 40:774-94. [PMID: 27268906 DOI: 10.1093/femsre/fuw009] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/20/2023] Open
Abstract
Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
37
|
Thomann A, de Mello Martins AGG, Brengel C, Empting M, Hartmann RW. Application of Dual Inhibition Concept within Looped Autoregulatory Systems toward Antivirulence Agents against Pseudomonas aeruginosa Infections. ACS Chem Biol 2016; 11:1279-86. [PMID: 26882081 DOI: 10.1021/acschembio.6b00117] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa quorum-sensing (QS) is a sophisticated network of genome-wide regulation triggered in response to population density. A major component is the self-inducing pseudomonas quinolone signal (PQS) QS system that regulates the production of several nonvital virulence- and biofilm-related determinants. Hence, QS circuitry is an attractive target for antivirulence agents with lowered resistance development potential and a good model to study the concept of polypharmacology in autoloop-regulated systems per se. Based on the finding that a combination of PqsR antagonist and PqsD inhibitor synergistically lowers pyocyanin, we have developed a dual-inhibitor compound of low molecular weight and high solubility that targets PQS transcriptional regulator (PqsR) and PqsD, a key enzyme in the biosynthesis of PQS-QS signal molecules (HHQ and PQS). In vitro, this compound markedly reduced virulence factor production and biofilm formation accompanied by a diminished content of extracellular DNA (eDNA). Additionally, coadministration with ciprofloxacin increased susceptibility of PA14 to antibiotic treatment under biofilm conditions. Finally, disruption of pathogenicity mechanisms was also assessed in vivo, with significantly increased survival of challenged larvae in a Galleria mellonella infection model. Favorable physicochemical properties and effects on virulence/biofilm establish a promising starting point for further optimization. In particular, the ability to address two targets of the PQS autoinduction cycle at the same time with a single compound holds great promise in achieving enhanced synergistic cellular effects while potentially lowering rates of resistance development.
Collapse
Affiliation(s)
- Andreas Thomann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Antonio G. G. de Mello Martins
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christian Brengel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department for Drug Design and Optimization, Campus E8.1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
38
|
Wagner S, Sommer R, Hinsberger S, Lu C, Hartmann RW, Empting M, Titz A. Novel Strategies for the Treatment of Pseudomonas aeruginosa Infections. J Med Chem 2016; 59:5929-69. [DOI: 10.1021/acs.jmedchem.5b01698] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stefanie Wagner
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Roman Sommer
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| | - Stefan Hinsberger
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Cenbin Lu
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Martin Empting
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
- Drug
Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
| | - Alexander Titz
- Chemical
Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), 30625 Standort Hannover-Braunschweig, Germany
| |
Collapse
|
39
|
Reuter K, Steinbach A, Helms V. Interfering with Bacterial Quorum Sensing. PERSPECTIVES IN MEDICINAL CHEMISTRY 2016; 8:1-15. [PMID: 26819549 PMCID: PMC4718088 DOI: 10.4137/pmc.s13209] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Abstract
Quorum sensing (QS) describes the exchange of chemical signals in bacterial populations to adjust the bacterial phenotypes according to the density of bacterial cells. This serves to express phenotypes that are advantageous for the group and ensure bacterial survival. To do so, bacterial cells synthesize autoinducer (AI) molecules, release them to the environment, and take them up. Thereby, the AI concentration reflects the cell density. When the AI concentration exceeds a critical threshold in the cells, the AI may activate the expression of virulence-associated genes or of luminescent proteins. It has been argued that targeting the QS system puts less selective pressure on these pathogens and should avoid the development of resistant bacteria. Therefore, the molecular components of QS systems have been suggested as promising targets for developing new anti-infective compounds. Here, we review the QS systems of selected gram-negative and gram-positive bacteria, namely, Vibrio fischeri, Pseudomonas aeruginosa, and Staphylococcus aureus, and discuss various antivirulence strategies based on blocking different components of the QS machinery.
Collapse
Affiliation(s)
- Kerstin Reuter
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany.; Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anke Steinbach
- Department of Drug Design and Optimization, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| |
Collapse
|
40
|
Sams T, Baker Y, Hodgkinson J, Gross J, Spring D, Welch M. The Pseudomonas Quinolone Signal (PQS). Isr J Chem 2015. [DOI: 10.1002/ijch.201400128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv Drug Deliv Rev 2015; 85:44-56. [PMID: 25453270 DOI: 10.1016/j.addr.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
New pharmaceutical formulations must be proven as safe and effective before entering clinical trials. Also in the context of pulmonary drug delivery, preclinical models allow testing of novel antimicrobials, reducing risks and costs during their development. Such models allow reducing the complexity of the human lung, but still need to reflect relevant (patho-) physiological features. This review focuses on preclinical pulmonary models, mainly in vitro models, to assess drug safety and efficacy of antimicrobials. Furthermore, approaches to investigate common infectious diseases of the respiratory tract, are emphasized. Pneumonia, tuberculosis and infections occurring due to cystic fibrosis are in focus of this review. We conclude that especially in vitro models offer the chance of an efficient and detailed analysis of new antimicrobials, but also draw attention to the advantages and limitations of such currently available models and critically discuss the necessary steps for their future development.
Collapse
|
42
|
Functionalised Mn(VI)-nanoparticles: an advanced high-valent magnetic catalyst. Sci Rep 2015; 5:8636. [PMID: 25727767 PMCID: PMC4345317 DOI: 10.1038/srep08636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/16/2015] [Indexed: 12/18/2022] Open
Abstract
We discover Mn(VI)-nanoparticles (NPs) bearing functional groups, high oxidation state, strong electron affinity, unique redox and paramagnetic nature, which opens up a new avenue to catalysis, magnetism and material application. However, its synthesis is challenging and remains unexplored because of associated serious difficulties. A simple benign synthetic strategy is devised to fabricate the high-valent NPs using mild reducing agent bromide, which transformed Mn(VII) to valuable Mn(VI)-species. The EELS-imaging of individual elements, ESI-MS, XPS and other techniques established its composition as Br(Me3SiO)Mn(VI)O2. It revealed significantly improved magnetic moment (SQUID) with isotropic hyperfine splitting of six line spectrum (EPR). The high-oxidation state and incorporated-ligands of the metals present on the active surface of the NPs led to development of a general catalytic process for oxidative heterodifunctionalisation to C-C triple bond towards formation of a new O-C/N-C/S-C and C-C coupling cum cyclisation to biologically important flavones and their aza- and marcapto-analogues, and valuable enaloxy synthons.
Collapse
|
43
|
Singh RP. Attenuation of quorum sensing-mediated virulence in Gram-negative pathogenic bacteria: implications for the post-antibiotic era. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00363b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quorum quenching compounds blocked quorum sensing system of bacteria by several mechanisms (a, b, c and d).
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Kyushu University
- Fukuoka-shi
- Japan
| |
Collapse
|
44
|
Chourasiya SS, Kathuria D, Singh S, Sonawane VC, Chakraborti AK, Bharatam PV. Design, synthesis and biological evaluation of novel unsymmetrical azines as quorum sensing inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra12925g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this report, novel unsymmetrical azines have been designed and synthesised by using one pot approach. Further, they were evaluated as quorum sensing inhibitors.
Collapse
Affiliation(s)
- Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Deepika Kathuria
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Shaminder Singh
- Bio-Chemical Engineering Research and Process Development Centre (BERPDC)
- Institute of Microbial Technology (IMTECH)
- India
| | - Vijay C. Sonawane
- Bio-Chemical Engineering Research and Process Development Centre (BERPDC)
- Institute of Microbial Technology (IMTECH)
- India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- India
| |
Collapse
|
45
|
Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J, Kitao T, Righi V, Milot S, Tzika A, Rahme L. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 2014; 10:e1004321. [PMID: 25144274 PMCID: PMC4140854 DOI: 10.1371/journal.ppat.1004321] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Etiological agents of acute, persistent, or relapsing clinical infections are often refractory to antibiotics due to multidrug resistance and/or antibiotic tolerance. Pseudomonas aeruginosa is an opportunistic Gram-negative bacterial pathogen that causes recalcitrant and severe acute chronic and persistent human infections. Here, we target the MvfR-regulated P. aeruginosa quorum sensing (QS) virulence pathway to isolate robust molecules that specifically inhibit infection without affecting bacterial growth or viability to mitigate selective resistance. Using a whole-cell high-throughput screen (HTS) and structure-activity relationship (SAR) analysis, we identify compounds that block the synthesis of both pro-persistence and pro-acute MvfR-dependent signaling molecules. These compounds, which share a benzamide-benzimidazole backbone and are unrelated to previous MvfR-regulon inhibitors, bind the global virulence QS transcriptional regulator, MvfR (PqsR); inhibit the MvfR regulon in multi-drug resistant isolates; are active against P. aeruginosa acute and persistent murine infections; and do not perturb bacterial growth. In addition, they are the first compounds identified to reduce the formation of antibiotic-tolerant persister cells. As such, these molecules provide for the development of next-generation clinical therapeutics to more effectively treat refractory and deleterious bacterial-human infections. Antibiotic resistant and tolerant bacterial pathogens are responsible for acute, chronic and persistent human infections recalcitrant to any current treatments. Therefore, there is an urgent need to identify new antimicrobial drugs that will help circumvent the current antibiotic resistance crisis. Bacterial pathogens often develop resistance to antibiotic drugs that target bacterial growth or viability. In contrast, strategies that specifically target virulence pathways non-essential for growth could limit selective resistance, and thus are candidates for the development of next-generation antimicrobial therapeutics. In this study we target the bacterial communication system MvfR (PqsR), which is known to control virulence of the opportunistic bacterial pathogen Pseudomonas aeruginosa. We identified and improved upon new small molecules that effectively silence the MvfR communication system, and as a result block P. aeruginosa virulence both in vitro and in vivo. Moreover, these new compounds are the first known to restrict the ability of bacteria to form antibiotic-tolerant cells and consequently proved to be very effective at preventing persistent infection in a mammalian infection model. Because of their ability to simultaneously block acute and persistent infections, these new molecules may provide a very strong basis for the development of next generation antimicrobials.
Collapse
Affiliation(s)
- Melissa Starkey
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | | | - Damien Maura
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Arunava Bandyopadhaya
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Biljana Lesic
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Jianxin He
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Tomoe Kitao
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
| | - Valeria Righi
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General and Shriners Hospitals, Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sylvain Milot
- INRS-Institut Armand Frappier, Laval, Québec, Canada
| | - Aria Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General and Shriners Hospitals, Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center of Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Laurence Rahme
- Department of Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Shriners Hospitals for Children Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Rampioni G, Leoni L, Williams P. The art of antibacterial warfare: Deception through interference with quorum sensing–mediated communication. Bioorg Chem 2014; 55:60-8. [DOI: 10.1016/j.bioorg.2014.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/02/2023]
|
47
|
Nafee N, Husari A, Maurer CK, Lu C, de Rossi C, Steinbach A, Hartmann RW, Lehr CM, Schneider M. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 2014; 192:131-40. [PMID: 24997276 DOI: 10.1016/j.jconrel.2014.06.055] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 12/18/2022]
Abstract
Cystic fibrosis (CF) is a genetic disease mainly manifested in the respiratory tract. Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen identified in cultures of the CF airways, however, its eradication with antibiotics remains challenging as it grows in biofilms that counterwork human immune response and dramatically decrease susceptibility to antibiotics. P. aeruginosa regulates pathogenicity via a cell-to-cell communication system known as quorum sensing (QS) involving the virulence factor (pyocyanin), thus representing an attractive target for coping with bacterial pathogenicity. The first in vivo potent QS inhibitor (QSI) was recently developed. Nevertheless, its lipophilic nature might hamper its penetration of non-cellular barriers such as mucus and bacterial biofilms, which limits its biomedical application. Successful anti-infective inhalation therapy necessitates proper design of a biodegradable nanocarrier allowing: 1) high loading and prolonged release, 2) mucus penetration, 3) effective pulmonary delivery, and 4) maintenance of the anti-virulence activity of the QSI. In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization. Plain and QSI-loaded SLNs were characterized in terms of colloidal properties, drug loading, in vitro release and acute toxicity on Calu-3 cells. Mucus penetration was studied using a newly-developed confocal microscopy technique based on 3D-time-lapse imaging. For pulmonary application, nebulization efficiency of SLNs and lung deposition using next generation impactor (NGI) were performed. The anti-virulence efficacy was investigated by pyocyanin formation in P. aeruginosa cultures. Ultra-small SLNs (<100nm diameter) provided high encapsulation efficiency (68-95%) according to SLN composition, high burst in phosphate buffer saline compared to prolonged release of the payload over >8h in simulated lung fluid with minor burst. All types and concentrations of plain and QSI-loaded SLNs maintained the viability of Calu-3 cells. 3D time-lapse confocal imaging proved the ability of SLNs to penetrate into artificial sputum model. SLNs were efficiently nebulized; NGI experiments revealed their deposition in the bronchial region. Overall, nanoencapsulated QSI showed up to sevenfold superior anti-virulence activity to the free compound. Most interestingly, the plain SLNs exhibited anti-virulence properties themselves, which was shown to be related to anti-virulence effects of the emulsifiers used. These startling findings represent a new perspective of ultimate significance in the area of nano-based delivery of novel anti-infectives.
Collapse
Affiliation(s)
- Noha Nafee
- Pharmaceutics and Biopharmacy, Philipps University Marburg, Marburg, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ayman Husari
- Pharmaceutics and Biopharmacy, Philipps University Marburg, Marburg, Germany; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Christine K Maurer
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany
| | - Cenbin Lu
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany
| | - Chiara de Rossi
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany
| | - Anke Steinbach
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Development and Optimization (DDOP), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Saarland University, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Pharmaceutics and Biopharmacy, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
48
|
Hutter MC, Brengel C, Negri M, Henn C, Zimmer C, Hartmann RW, Empting M, Steinbach A. Mechanistic details for anthraniloyl transfer in PqsD: the initial step in HHQ biosynthesis. J Mol Model 2014; 20:2255. [PMID: 24842325 DOI: 10.1007/s00894-014-2255-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
PqsD mediates the conversion of anthraniloyl-coenzyme A (ACoA) to 2-heptyl-4-hydroxyquinoline (HHQ), a precursor of the Pseudomonas quinolone signal (PQS) molecule. Due to the role of the quinolone signaling pathway of Pseudomonas aeruginosa in the expression of several virulence factors and biofilm formation, PqsD is a potential target for controlling this nosocomial pathogen, which exhibits a low susceptibility to standard antibiotics. PqsD belongs to the β-ketoacyl-ACP synthase family and is similar in structure to homologous FabH enzymes in E. coli and Mycobacterium tuberculosis. Here, we used molecular dynamics simulations to obtain the structural position of the substrate ACoA in the binding pocket of PqsD, and semiempirical molecular orbital calculations to study the reaction mechanism for the catalytic cleavage of ACoA. Our findings suggest a nucleophilic attack of the deprotonated sulfur of Cys112 at the carbonyl carbon of ACoA and a switch in the protonation pattern of His257 whereby Nδ is protonated and the proton of Nε is shifted to the sulfur of CoA during the reaction. This is in agreement with the experimentally determined decreased catalytic activity of the Cys112Ser mutant, whereas the Cys112Ala, His257Phe, and Asn287Ala mutants are all inactive. ESI mass-spectrometric measurements of the Asn287Ala mutant show that anthraniloyl remains covalently bound to Cys112, thus further supporting the inference from our computed mechanism that Asn287 does not take part in the cleavage of ACoA. Since this mutant is inactive, we suggest instead that Asn287 must play an essential role in the subsequent formation of HHQ in vitro.
Collapse
Affiliation(s)
- Michael C Hutter
- Center for Bioinformatics, Saarland University, Campus Building E2.1, 66123, Saarbrücken, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Optimization of anti-virulence PqsR antagonists regarding aqueous solubility and biological properties resulting in new insights in structure–activity relationships. Eur J Med Chem 2014; 79:173-83. [DOI: 10.1016/j.ejmech.2014.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/28/2022]
|
50
|
Sharma G, Rao S, Bansal A, Dang S, Gupta S, Gabrani R. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals 2014; 42:1-7. [DOI: 10.1016/j.biologicals.2013.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022] Open
|