1
|
Yoo BK, Lambry JC, Negrerie M. Controlling the trans effect induced by nitric oxide and carbon monoxide: H93C myoglobin versus H-NOX sensors and soluble guanylate cyclase. Protein Sci 2024; 33:e5231. [PMID: 39576123 PMCID: PMC11583245 DOI: 10.1002/pro.5231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Myoglobin (Mb) has been engineered to replace the proximal histidine (His93) with a cysteine in order to investigate the trans effect induced by diatomic ligands using time-resolved electronic absorption spectroscopy. This single mutation induces a change of heme coordination state and bonding character which change carbon monoxide (CO) and nitric oxide (NO) dynamics. In H93C Mb the increased Fe2+-S distance weakens this bond which is replaced with a distal Fe2+-His64 ligation. We measured dynamics very different from wild type Mb but similar with those measured in soluble guanylate cyclase (sGC). Whereas NO induces a direct negative trans effect, the strain on His64 ligation is sufficient to counteract the positive trans effect due to CO. After photodissociation, geminate recombination of NO to the transient 4-coordinate heme of H93C occurred with a fast time constant (6.9 ps) identical to that in sGC. Remarkably, we also observed picosecond geminate rebinding of CO to H93C Mb, similarly with sGC in the simultaneous presence of CO and an allosteric stimulator. This CO rebinding dynamics to the 4c-heme in H93C Mb was never measured in other Mb mutants and demonstrates the existence of 5-coordinate heme with CO, explaining the synergistic activation of sGC in presence of CO and a stimulator.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR 7645, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
2
|
Yoo BK, Kruglik SG, Lambry JC, Lamarre I, Raman CS, Nioche P, Negrerie M. The H-NOX protein structure adapts to different mechanisms in sensors interacting with nitric oxide. Chem Sci 2023; 14:8408-8420. [PMID: 37564404 PMCID: PMC10411614 DOI: 10.1039/d3sc01685d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Some classes of bacteria within phyla possess protein sensors identified as homologous to the heme domain of soluble guanylate cyclase, the mammalian NO-receptor. Named H-NOX domain (Heme-Nitric Oxide or OXygen-binding), their heme binds nitric oxide (NO) and O2 for some of them. The signaling pathways where these proteins act as NO or O2 sensors appear various and are fully established for only some species. Here, we investigated the reactivity of H-NOX from bacterial species toward NO with a mechanistic point of view using time-resolved spectroscopy. The present data show that H-NOXs modulate the dynamics of NO as a function of temperature, but in different ranges, changing its affinity by changing the probability of NO rebinding after dissociation in the picosecond time scale. This fundamental mechanism provides a means to adapt the heme structural response to the environment. In one particular H-NOX sensor the heme distortion induced by NO binding is relaxed in an ultrafast manner (∼15 ps) after NO dissociation, contrarily to other H-NOX proteins, providing another sensing mechanism through the H-NOX domain. Overall, our study links molecular dynamics with functional mechanism and adaptation.
Collapse
Affiliation(s)
- Byung-Kuk Yoo
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - Sergei G Kruglik
- Laboratoire Jean Perrin, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS 75005 Paris France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| | - C S Raman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore Maryland 21201 USA
| | - Pierre Nioche
- Environmental Toxicity, Therapeutic Targets, Cellular Signaling and Biomarkers, UMR S1124, Centre Universitaire des Saints-Pères, Université Paris Descartes 75006 Paris France
- Structural and Molecular Analysis Platform, BioMedTech Facilities, INSERM US36-CNRS-UMS2009, Paris Université Paris France
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, Ecole Polytechnique 91120 Palaiseau France
| |
Collapse
|
3
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Ultrafast dynamics of heme distortion in the O 2-sensor of a thermophilic anaerobe bacterium. Commun Chem 2021; 4:31. [PMID: 36697566 PMCID: PMC9814294 DOI: 10.1038/s42004-021-00471-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023] Open
Abstract
Heme-Nitric oxide and Oxygen binding protein domains (H-NOX) are found in signaling pathways of both prokaryotes and eukaryotes and share sequence homology with soluble guanylate cyclase, the mammalian NO receptor. In bacteria, H-NOX is associated with kinase or methyl accepting chemotaxis domains. In the O2-sensor of the strict anaerobe Caldanaerobacter tengcongensis (Ct H-NOX) the heme appears highly distorted after O2 binding, but the role of heme distortion in allosteric transitions was not yet evidenced. Here, we measure the dynamics of the heme distortion triggered by the dissociation of diatomics from Ct H-NOX using transient electronic absorption spectroscopy in the picosecond to millisecond time range. We obtained a spectroscopic signature of the heme flattening upon O2 dissociation. The heme distortion is immediately (<1 ps) released after O2 dissociation to produce a relaxed state. This heme conformational change occurs with different proportions depending on diatomics as follows: CO < NO < O2. Our time-resolved data demonstrate that the primary structural event of allostery is the heme distortion in the Ct H-NOX sensor, contrastingly with hemoglobin and the human NO receptor, in which the primary structural events are respectively the motion of the proximal histidine and the rupture of the iron-histidine bond.
Collapse
|
5
|
Petrova ON, Lamarre I, Fasani F, Grillon C, Negrerie M. Soluble Guanylate Cyclase Inhibitors Discovered among Natural Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:3642-3651. [PMID: 33290062 DOI: 10.1021/acs.jnatprod.0c00854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Soluble guanylate cyclase (sGC) is the human receptor of nitric oxide (NO) in numerous kinds of cells and produces the second messenger 3',5'-cyclic guanosine monophosphate (cGMP) upon NO binding to its heme. sGC is involved in many cell signaling pathways both under healthy conditions and under pathological conditions, such as angiogenesis associated with tumor growth. Addressing the selective inhibition of the NO/cGMP pathway is a strategy worthwhile to be investigated for slowing down tumoral angiogenesis or for curing vasoplegia. However, sGC inhibitors are lacking investigation. We have explored a chemical library of various natural compounds and have discovered inhibitors of sGC. The selected compounds were evaluated for their inhibition of purified sGC in vitro and sGC in endothelial cells. Six natural compounds, from various organisms, have IC50 in the range 0.2-1.5 μM for inhibiting the NO-activated synthesis of cGMP by sGC, and selected compounds exhibit a quantified antiangiogenic activity using an endothelial cell line. These sGC inhibitors can be used directly as tools to investigate angiogenesis and cell signaling or as templates for drug design.
Collapse
Affiliation(s)
- Olga N Petrova
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| | - Fabienne Fasani
- Centre de Biophysique Moléculaire, UPR4301 CNRS, Orléans, France
| | | | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U1182, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
6
|
Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR. Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051. Protein Sci 2020; 30:448-463. [PMID: 33236796 DOI: 10.1002/pro.4005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Heme-nitric oxide/oxygen binding (H-NOX) domains bind gaseous ligands for signal transduction in organisms spanning prokaryotic and eukaryotic kingdoms. In the bioluminescent marine bacterium Shewanella woodyi (Sw), H-NOX proteins regulate quorum sensing and biofilm formation. In higher animals, soluble guanylyl cyclase (sGC) binds nitric oxide with an H-NOX domain to induce cyclase activity and regulate vascular tone, wound healing and memory formation. sGC also binds stimulator compounds targeting cardiovascular disease. The molecular details of stimulator binding to sGC remain obscure but involve a binding pocket near an interface between H-NOX and coiled-coil domains. Here, we report the full NMR structure for CO-ligated Sw H-NOX in the presence and absence of stimulator compound IWP-051, and its backbone dynamics. Nonplanar heme geometry was retained using a semi-empirical quantum potential energy approach. Although IWP-051 binding is weak, a single binding conformation was found at the interface of the two H-NOX subdomains, near but not overlapping with sites identified in sGC. Binding leads to rotation of the subdomains and closure of the binding pocket. Backbone dynamics are similar across both domains except for two helix-connecting loops, which display increased dynamics that are further enhanced by compound binding. Structure-based sequence analyses indicate high sequence diversity in the binding pocket, but the pocket itself appears conserved among H-NOX proteins. The largest dynamical loop lies at the interface between Sw H-NOX and its binding partner as well as in the interface with the coiled coil in sGC, suggesting a critical role for the loop in signal transduction.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Joon Jung
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Antonucci L, Solinas X, Bonvalet A, Joffre M. Electronic measurement of femtosecond time delays for arbitrary-detuning asynchronous optical sampling. OPTICS EXPRESS 2020; 28:18251-18260. [PMID: 32680025 DOI: 10.1364/oe.393887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Arbitrary-Detuning ASynchronous OPtical Sampling (ADASOPS) is a pump-probe technique which relies on the stability of femtosecond oscillators. It provides access to a multiscale time window ranging up to millisecond, combined with a sub-picosecond time resolution. In contrast with the first ADASOPS demonstration based on the interferometric detection of coincidences between optical pulses, we show here that the optical setup can now be reduced to a mere pair of photodetectors embedded in a specially-designed electronic system. In analogy with super-resolution methods used in optical microscopy for localizing single emitters beyond the diffraction limit, we demonstrate that purely electronic means allow the determination of time delays between each pump-probe pulse pair with a standard deviation as small as 200 fs. The new method is shown to be simpler, more versatile and more accurate than the coincidence-based approach.
Collapse
|
8
|
Négrerie M. Iron transitions during activation of allosteric heme proteins in cell signaling. Metallomics 2020; 11:868-893. [PMID: 30957812 DOI: 10.1039/c8mt00337h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allosteric heme proteins can fulfill a very large number of different functions thanks to the remarkable chemical versatility of heme through the entire living kingdom. Their efficacy resides in the ability of heme to transmit both iron coordination changes and iron redox state changes to the protein structure. Besides the properties of iron, proteins may impose a particular heme geometry leading to distortion, which allows selection or modulation of the electronic properties of heme. This review focusses on the mechanisms of allosteric protein activation triggered by heme coordination changes following diatomic binding to proteins as diverse as the human NO-receptor, cytochromes, NO-transporters and sensors, and a heme-activated potassium channel. It describes at the molecular level the chemical capabilities of heme to achieve very different tasks and emphasizes how the properties of heme are determined by the protein structure. Particularly, this reviews aims at giving an overview of the exquisite adaptability of heme, from bacteria to mammals.
Collapse
Affiliation(s)
- Michel Négrerie
- Laboratoire d'Optique et Biosciences, INSERM, CNRS, Ecole Polytechnique, 91120 Palaiseau, France.
| |
Collapse
|
9
|
Makrynitsa GI, Zompra AA, Argyriou AI, Spyroulias GA, Topouzis S. Therapeutic Targeting of the Soluble Guanylate Cyclase. Curr Med Chem 2019; 26:2730-2747. [PMID: 30621555 DOI: 10.2174/0929867326666190108095851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
The soluble guanylate cyclase (sGC) is the physiological sensor for nitric oxide and alterations of its function are actively implicated in a wide variety of pathophysiological conditions. Intense research efforts over the past 20 years have provided significant information on its regulation, culminating in the rational development of approved drugs or investigational lead molecules, which target and interact with sGC through novel mechanisms. However, there are numerous questions that remain unanswered. Ongoing investigations, with the critical aid of structural chemistry studies, try to further elucidate the enzyme's structural characteristics that define the association of "stimulators" or "activators" of sGC in the presence or absence of the heme moiety, respectively, as well as the precise conformational attributes that will allow the design of more innovative and effective drugs. This review relates the progress achieved, particularly in the past 10 years, in understanding the function of this enzyme, and focusses on a) the rationale and results of its therapeutic targeting in disease situations, depending on the state of enzyme (oxidized or not, heme-carrying or not) and b) the most recent structural studies, which should permit improved design of future therapeutic molecules that aim to directly upregulate the activity of sGC.
Collapse
Affiliation(s)
| | - Aikaterini A Zompra
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Aikaterini I Argyriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Georgios A Spyroulias
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Stavros Topouzis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| |
Collapse
|
10
|
Sömmer A, Behrends S. Methods to investigate structure and activation dynamics of GC-1/GC-2. Nitric Oxide 2018; 78:S1089-8603(17)30348-8. [PMID: 29705716 DOI: 10.1016/j.niox.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC) is a heterodimeric enzyme consisting of one α and one β subunit. The α1β1 (GC-1) and α2β1 (GC-2) heterodimers are important for NO signaling in humans and catalyse the conversion from GTP to cGMP. Each sGC subunit consists of four domains. Several crystal structures of the isolated domains are available. However, crystals of full-length sGC have failed to materialise. In consequence, the detailed three dimensional structure of sGC remains unknown to date. Different techniques including stopped-flow spectroscopy, Förster-resonance energy transfer, direct fluorescence, analytical ultracentrifugation, chemical cross-linking, small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and protein thermal shift assays, were used to collect indirect information. Taken together, this circumstantial evidence from different groups brings forth a plausible model of sGC domain arrangement, spatial orientation and dynamic rearrangement upon activation. For analysis of the active conformation the stable binding mode of sGC activators has a significant methodological advantage over the transient, elusive, complex and highly concentration dependent effects of NO in many applications. The methods used and the results obtained are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Anne Sömmer
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| | - Sönke Behrends
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany.
| |
Collapse
|
11
|
Makino R, Obata Y, Tsubaki M, Iizuka T, Hamajima Y, Kato-Yamada Y, Mashima K, Shiro Y. Mechanistic Insights into the Activation of Soluble Guanylate Cyclase by Carbon Monoxide: A Multistep Mechanism Proposed for the BAY 41-2272 Induced Formation of 5-Coordinate CO-Heme. Biochemistry 2018; 57:1620-1631. [PMID: 29461815 DOI: 10.1021/acs.biochem.7b01240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing enzyme that catalyzes cGMP production upon sensing NO. While the CO adduct, sGC-CO, is much less active, the allosteric regulator BAY 41-2272 stimulates the cGMP productivity to the same extent as that of sGC-NO. The stimulatory effect has been thought to be likely associated with Fe-His bond cleavage leading to 5-coordinate CO-heme, but the detailed mechanism remains unresolved. In this study, we examined the mechanism under the condition including BAY 41-2272, 2'-deoxy-3'-GMP and foscarnet. The addition of these effectors caused the original 6-coordinate CO-heme to convert to an end product that was an equimolar mixture of a 5- and a new 6-coordinate CO-heme, as assessed by IR spectral measurements. The two types of CO-hemes in the end product were further confirmed by CO dissociation kinetics. Stopped-flow measurements under the condition indicated that the ferrous sGC bound CO as two reversible steps, where the primary step was assigned to the full conversion of the ferrous enzyme to the 6-coordinate CO-heme, and subsequently followed by the slower second step leading a partial conversion of the 6-coordinate CO-heme to the 5-coordinate CO-heme. The observed rates for both steps linearly depended on CO concentrations. The unexpected CO dependence of the rates in the second step supports a multistep mechanism, in which the 5-coordinate CO-heme is led by CO release from a putative bis-carbonyl intermediate that is likely provided by the binding of a second CO to the 6-coordinate CO-heme. This mechanism provides a new aspect on the activation of sGC by CO.
Collapse
Affiliation(s)
- Ryu Makino
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yuji Obata
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Motonari Tsubaki
- Department of Chemistry, Graduate School of Science , Kobe University , Kobe , Hyogo 657-8501 , Japan
| | - Tetsutaro Iizuka
- RIKEN Harima Institute/Spring8 , 1-1-1 Kouto , Mikazuki-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Yuki Hamajima
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yasuyuki Kato-Yamada
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Keisuke Mashima
- Department of Life Science, College of Science , Rikkyo University , Nishi-ikebukuro 3-34-1 , Toshima-ku, Tokyo 171-8501 , Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science , University of Hyogo , 3-2-1 Kouto , Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan
| |
Collapse
|
12
|
Wales JA, Chen CY, Breci L, Weichsel A, Bernier SG, Sheppeck JE, Solinga R, Nakai T, Renhowe PA, Jung J, Montfort WR. Discovery of stimulator binding to a conserved pocket in the heme domain of soluble guanylyl cyclase. J Biol Chem 2017; 293:1850-1864. [PMID: 29222330 DOI: 10.1074/jbc.ra117.000457] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/18/2017] [Indexed: 11/06/2022] Open
Abstract
Soluble guanylyl cyclase (sGC) is the receptor for nitric oxide and a highly sought-after therapeutic target for the management of cardiovascular diseases. New compounds that stimulate sGC show clinical promise, but where these stimulator compounds bind and how they function remains unknown. Here, using a photolyzable diazirine derivative of a novel stimulator compound, IWP-051, and MS analysis, we localized drug binding to the β1 heme domain of sGC proteins from the hawkmoth Manduca sexta and from human. Covalent attachments to the stimulator were also identified in bacterial homologs of the sGC heme domain, referred to as H-NOX domains, including those from Nostoc sp. PCC 7120, Shewanella oneidensis, Shewanella woodyi, and Clostridium botulinum, indicating that the binding site is highly conserved. The identification of photoaffinity-labeled peptides was aided by a signature MS fragmentation pattern of general applicability for unequivocal identification of covalently attached compounds. Using NMR, we also examined stimulator binding to sGC from M. sexta and bacterial H-NOX homologs. These data indicated that stimulators bind to a conserved cleft between two subdomains in the sGC heme domain. L12W/T48W substitutions within the binding pocket resulted in a 9-fold decrease in drug response, suggesting that the bulkier tryptophan residues directly block stimulator binding. The localization of stimulator binding to the sGC heme domain reported here resolves the longstanding question of where stimulators bind and provides a path forward for drug discovery.
Collapse
Affiliation(s)
- Jessica A Wales
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Cheng-Yu Chen
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Linda Breci
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | - Andrzej Weichsel
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| | | | | | - Robert Solinga
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Takashi Nakai
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Paul A Renhowe
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - Joon Jung
- Ironwood Pharmaceuticals, Cambridge, Massachusetts 02142
| | - William R Montfort
- From the Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721 and
| |
Collapse
|
13
|
Montfort WR, Wales JA, Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid Redox Signal 2017; 26:107-121. [PMID: 26979942 PMCID: PMC5240008 DOI: 10.1089/ars.2016.6693] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl/guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) and is central to the physiology of blood pressure regulation, wound healing, memory formation, and other key physiological activities. sGC is increasingly implicated in disease and is targeted by novel therapeutic compounds. The protein displays a rich evolutionary history and a fascinating signal transduction mechanism, with NO binding to an N-terminal heme-containing domain, which activates the C-terminal cyclase domains. Recent Advances: Crystal structures of individual sGC domains or their bacterial homologues coupled with small-angle x-ray scattering, electron microscopy, chemical cross-linking, and Förster resonance energy transfer measurements are yielding insight into the overall structure for sGC, which is elongated and likely quite dynamic. Transient kinetic measurements reveal a role for individual domains in lowering NO affinity for heme. New sGC stimulatory drugs are now in the clinic and appear to function through binding near or directly to the sGC heme domain, relieving inhibitory contacts with other domains. New sGC-activating drugs show promise for recovering oxidized sGC in diseases with high inflammation by replacing lost heme. CRITICAL ISSUES Despite the many recent advances, sGC regulation, NO activation, and mechanisms of drug binding remain unclear. Here, we describe the molecular evolution of sGC, new molecular models, and the linked equilibria between sGC NO binding, drug binding, and catalytic activity. FUTURE DIRECTIONS Recent results and ongoing studies lay the foundation for a complete understanding of structure and mechanism, and they open the door for new drug discovery targeting sGC. Antioxid. Redox Signal. 26, 107-121.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| |
Collapse
|
14
|
Andrew CR, Petrova ON, Lamarre I, Lambry JC, Rappaport F, Negrerie M. The Dynamics Behind the Affinity: Controlling Heme-Gas Affinity via Geminate Recombination and Heme Propionate Conformation in the NO Carrier Cytochrome c'. ACS Chem Biol 2016; 11:3191-3201. [PMID: 27709886 DOI: 10.1021/acschembio.6b00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) sensors are heme proteins which may also bind CO and O2. Control of heme-gas affinity and their discrimination are achieved by the structural properties and reactivity of the heme and its distal and proximal environments, leading to several energy barriers. In the bacterial NO sensor cytochrome c' from Alcaligenes xylosoxidans (AXCP), the single Leu16Ala distal mutation boosts the affinity for gas ligands by a remarkable 106-108-fold, transforming AXCP from one of the lowest affinity gas binding proteins to one of the highest. Here, we report the dynamics of diatomics after photodissociation from wild type and L16A-AXCP over 12 orders of magnitude in time. For the L16A variant, the picosecond geminate rebinding of both CO and NO appears with an unprecedented 100% yield, and no exit of these ligands from protein to solvent could be observed. Molecular dynamic simulations saliently demonstrate that dissociated CO stays within 4 Å from Fe2+, in contrast to wild-type AXCP. The L16A mutation confers a heme propionate conformation and docking site which traps the diatomics, maximizing the probability of recombination and directly explaining the ultrahigh affinities for CO, NO, and O2. Overall, our results point to a novel mechanism for modulating heme-gas affinities in proteins.
Collapse
Affiliation(s)
- Colin R. Andrew
- Department
of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Olga N. Petrova
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Isabelle Lamarre
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jean-Christophe Lambry
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| | - Fabrice Rappaport
- Laboratoire
de Physiologie Membranaire et Moléculaire du Chloroplaste, CNRS, Université Pierre et Marie Curie, 75005 Paris, France
| | - Michel Negrerie
- Laboratoire
d’Optique et Biosciences, INSERM, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
15
|
Wu G, Liu W, Berka V, Tsai AL. H-NOX from Clostridium botulinum, like H-NOX from Thermoanaerobacter tengcongensis, Binds Oxygen but with a Less Stable Oxyferrous Heme Intermediate. Biochemistry 2015; 54:7098-109. [PMID: 26574914 DOI: 10.1021/acs.biochem.5b00994] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heme nitric oxide/oxygen binding protein isolated from the obligate anaerobe Clostridium botulinum (Cb H-NOX) was previously reported to bind NO with a femtomolar K(D) (Nioche, P. et al. Science 2004, 306, 1550-1553). On the other hand, no oxyferrous Cb H-NOX was observed despite full conservation of the key residues that stabilize the oxyferrous complex in the H-NOX from Thermoanaerobacter tengcongensis (Tt H-NOX) (the same study). In this study, we re-measured the kinetics/affinities of Cb H-NOX for CO, NO, and O2. K(D)(CO) for the simple one-step equilibrium binding was 1.6 × 10(-7) M. The K(D)(NO) of Cb H-NOX was 8.0 × 10(-11) M for the first six-coordinate NO complex, and the previous femtomolar K(D)(NO) was actually an apparent K(D) for its multiple-step NO binding. An oxyferrous Cb H-NOX was clearly observed with a K(D)(O2) of 5.3 × 10(-5) M, which is significantly higher than Tt H-NOX's K(D)(O2) = 4.4 × 10(-8) M. The gaseous ligand binding of Cb H-NOX provides another supportive example for the "sliding scale rule" hypothesis (Tsai, A.-L. et al. Antioxid. Redox Signal. 2012, 17, 1246-1263), and the presence of hydrogen bond donor Tyr139 in Cb H-NOX selectively enhanced its affinity for oxygen.
Collapse
Affiliation(s)
- Gang Wu
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| | - Wen Liu
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| | - Vladimir Berka
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| | - Ah-Lim Tsai
- Division of Hematology, Department of Internal Medicine, The University of Texas-Medical School at Houston , 6431 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
16
|
Motion of proximal histidine and structural allosteric transition in soluble guanylate cyclase. Proc Natl Acad Sci U S A 2015; 112:E1697-704. [PMID: 25831539 DOI: 10.1073/pnas.1423098112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We investigated the changes of heme coordination in purified soluble guanylate cyclase (sGC) by time-resolved spectroscopy in a time range encompassing 11 orders of magnitude (from 1 ps to 0.2 s). After dissociation, NO either recombines geminately to the 4-coordinate (4c) heme (τG1 = 7.5 ps; 97 ± 1% of the population) or exits the heme pocket (3 ± 1%). The proximal His rebinds to the 4c heme with a 70-ps time constant. Then, NO is distributed in two approximately equal populations (1.5%). One geminately rebinds to the 5c heme (τG2 = 6.5 ns), whereas the other diffuses out to the solution, from where it rebinds bimolecularly (τ = 50 μs with [NO] = 200 μM) forming a 6c heme with a diffusion-limited rate constant of 2 × 10(8) M(-1)⋅s(-1). In both cases, the rebinding of NO induces the cleavage of the Fe-His bond that can be observed as an individual reaction step. Saliently, the time constant of bond cleavage differs depending on whether NO binds geminately or from solution (τ5C1 = 0.66 μs and τ5C2 = 10 ms, respectively). Because the same event occurs with rates separated by four orders of magnitude, this measurement implies that sGC is in different structural states in both cases, having different strain exerted on the Fe-His bond. We show here that this structural allosteric transition takes place in the range 1-50 μs. In this context, the detection of NO binding to the proximal side of sGC heme is discussed.
Collapse
|
17
|
Ghosh A, Stasch JP, Papapetropoulos A, Stuehr DJ. Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content. J Biol Chem 2014; 289:15259-71. [PMID: 24733395 DOI: 10.1074/jbc.m114.559393] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The chaperone heat shock protein 90 (hsp90) associates with signaling proteins in cells including soluble guanylate cyclase (sGC). hsp90 associates with the heme-free (apo) sGC-β1 subunit and helps to drive heme insertion during maturation of sGC to its NO-responsive active form. Here, we found that NO caused apo-sGC-β1 to rapidly and transiently dissociate from hsp90 and associate with sGC-α1 in cells. This NO response (i) required that hsp90 be active and that cellular heme be available and be capable of inserting into apo-sGC-β1; (ii) was associated with an increase in sGC-β1 heme content; (iii) could be mimicked by the heme-independent sGC activator BAY 60-2770; and (iv) was followed by desensitization of sGC toward NO, sGC-α1 disassociation, and reassociation with hsp90. Thus, NO promoted a rapid, transient, and hsp90-dependent heme insertion into the apo-sGC-β1 subpopulation in cells, which enabled it to combine with the sGC-α1 subunit to form the mature enzyme. The driving mechanism likely involves conformational changes near the heme site in sGC-β1 that can be mimicked by the pharmacologic sGC activator. Such dynamic interplay between hsp90, apo-sGC-β1, and sGC-α1 in response to NO is unprecedented and represent new steps by which cells can modulate the heme content and activity of sGC for signaling cascades.
Collapse
Affiliation(s)
- Arnab Ghosh
- From the Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | | | | | - Dennis J Stuehr
- From the Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195,
| |
Collapse
|
18
|
Seeger F, Quintyn R, Tanimoto A, Williams GJ, Tainer JA, Wysocki VH, Garcin ED. Interfacial residues promote an optimal alignment of the catalytic center in human soluble guanylate cyclase: heterodimerization is required but not sufficient for activity. Biochemistry 2014; 53:2153-65. [PMID: 24669844 PMCID: PMC3985721 DOI: 10.1021/bi500129k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Soluble guanylate cyclase (sGC) plays
a central role in the cardiovascular
system and is a drug target for the treatment of pulmonary hypertension.
While the three-dimensional structure of sGC is unknown, studies suggest
that binding of the regulatory domain to the catalytic domain maintains
sGC in an autoinhibited basal state. The activation signal, binding
of NO to heme, is thought to be transmitted via the regulatory and
dimerization domains to the cyclase domain and unleashes the full
catalytic potential of sGC. Consequently, isolated catalytic domains
should show catalytic turnover comparable to that of activated sGC.
Using X-ray crystallography, activity measurements, and native mass
spectrometry, we show unambiguously that human isolated catalytic
domains are much less active than basal sGC, while still forming heterodimers.
We identified key structural elements regulating the dimer interface
and propose a novel role for residues located in an interfacial flap
and a hydrogen bond network as key modulators of the orientation of
the catalytic subunits. We demonstrate that even in the absence of
the regulatory domain, additional sGC domains are required to guide
the appropriate conformation of the catalytic subunits associated
with high activity. Our data support a novel regulatory mechanism
whereby sGC activity is tuned by distinct domain interactions that
either promote or inhibit catalytic activity. These results further
our understanding of heterodimerization and activation of sGC and
open additional drug discovery routes for targeting the NO–sGC–cGMP
pathway via the design of small molecules that promote a productive
conformation of the catalytic subunits or disrupt inhibitory domain
interactions.
Collapse
Affiliation(s)
- Franziska Seeger
- University of Maryland Baltimore County , Baltimore, Maryland 21250, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Purohit R, Fritz BG, The J, Issaian A, Weichsel A, David CL, Campbell E, Hausrath AC, Rassouli-Taylor L, Garcin ED, Gage MJ, Montfort WR. YC-1 binding to the β subunit of soluble guanylyl cyclase overcomes allosteric inhibition by the α subunit. Biochemistry 2013; 53:101-14. [PMID: 24328155 DOI: 10.1021/bi4015133] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soluble guanylate cyclase (sGC) is a heterodimeric heme protein and the primary nitric oxide receptor. NO binding stimulates cyclase activity, leading to regulation of cardiovascular physiology and making sGC an attractive target for drug discovery. YC-1 and related compounds stimulate sGC both independently and synergistically with NO and CO binding; however, where the compounds bind and how they work remain unknown. Using linked equilibrium binding measurements, surface plasmon resonance, and domain truncations in Manduca sexta and bovine sGC, we demonstrate that YC-1 binds near or directly to the heme-containing domain of the β subunit. In the absence of CO, YC-1 binds with a Kd of 9-21 μM, depending on the construct. In the presence of CO, these values decrease to 0.6-1.1 μM. Pfizer compound 25 bound ∼10-fold weaker than YC-1 in the absence of CO, whereas compound BAY 41-2272 bound particularly tightly in the presence of CO (Kd = 30-90 nM). Additionally, we found that CO binds much more weakly to heterodimeric sGC proteins (Kd = 50-100 μM) than to the isolated heme domain (Kd = 0.2 μM for Manduca β H-NOX/PAS). YC-1 greatly enhanced binding of CO to heterodimeric sGC, as expected (Kd ∼ 1 μM). These data indicate the α subunit induces a heme pocket conformation with a lower affinity for CO and NO. YC-1 family compounds bind near the heme domain, overcoming the α subunit effect and inducing a heme pocket conformation with high affinity. We propose this high-affinity conformation is required for the full-length protein to achieve high catalytic activity.
Collapse
Affiliation(s)
- Rahul Purohit
- Department of Chemistry and Biochemistry, The University of Arizona , Tucson, Arizona 85721, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Busker M, Neidhardt I, Behrends S. Nitric oxide activation of guanylate cyclase pushes the α1 signaling helix and the β1 heme-binding domain closer to the substrate-binding site. J Biol Chem 2013; 289:476-84. [PMID: 24220034 DOI: 10.1074/jbc.m113.504472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The complete structure of the assembled domains of nitric oxide-sensitive guanylate cyclase (NOsGC) remains to be determined. It is also unknown how binding of NO to heme in guanylate cyclase is communicated to the catalytic domain. In the current study the conformational change of guanylate cyclase on activation by NO was studied using FRET. Endogenous tryptophan residues were used as donors, the substrate analog 2'-Mant-3'-dGTP as acceptor. The enzyme contains five tryptophan residues distributed evenly over all four functional domains. This provides a unique opportunity to detect the movement of the functional domains relative to the substrate-binding catalytic region. FRET measurements indicate that NO brings tryptophan 22 in the αB helix of the β1 heme NO binding domain and tryptophan 466 in the second short helix of the α1 coiled-coil domain closer to the catalytic domain. We propose that the respective domains act as a pair of tongs forcing the catalytic domain into the nitric oxide-activated conformation.
Collapse
Affiliation(s)
- Mareike Busker
- From the Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig-Institute of Technology, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
21
|
Fritz BG, Roberts SA, Ahmed A, Breci L, Li W, Weichsel A, Brailey JL, Wysocki VH, Tama F, Montfort WR. Molecular model of a soluble guanylyl cyclase fragment determined by small-angle X-ray scattering and chemical cross-linking. Biochemistry 2013; 52:1568-82. [PMID: 23363317 PMCID: PMC3607398 DOI: 10.1021/bi301570m] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Soluble guanylyl/guanylate cyclase (sGC) converts GTP to cGMP after binding nitric oxide, leading to smooth muscle relaxation and vasodilation. Impaired sGC activity is common in cardiovascular disease, and sGC stimulatory compounds are vigorously sought. sGC is a 150 kDa heterodimeric protein with two H-NOX domains (one with heme, one without), two PAS domains, a coiled-coil domain, and two cyclase domains. Binding of NO to the sGC heme leads to proximal histidine release and stimulation of catalytic activity. To begin to understand how binding leads to activation, we examined truncated sGC proteins from Manduca sexta (tobacco hornworm) that bind NO, CO, and stimulatory compound YC-1 but lack the cyclase domains. We determined the overall shape of truncated M. sexta sGC using analytical ultracentrifugation and small-angle X-ray scattering (SAXS), revealing an elongated molecule with dimensions of 115 Å × 90 Å × 75 Å. Binding of NO, CO, or YC-1 had little effect on shape. Using chemical cross-linking and tandem mass spectrometry, we identified 20 intermolecular contacts, allowing us to fit homology models of the individual domains into the SAXS-derived molecular envelope. The resulting model displays a central parallel coiled-coil platform upon which the H-NOX and PAS domains are assembled. The β1 H-NOX and α1 PAS domains are in contact and form the core signaling complex, while the α1 H-NOX domain can be removed without a significant effect on ligand binding or overall shape. Removal of 21 residues from the C-terminus yields a protein with dramatically increased proximal histidine release rates upon NO binding.
Collapse
Affiliation(s)
- Bradley G. Fritz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Sue A. Roberts
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Aqeel Ahmed
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Linda Breci
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Wenzhou Li
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Jacqueline L. Brailey
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - Florence Tama
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| | - William R. Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
22
|
Liebl U, Lambry JC, Vos MH. Primary processes in heme-based sensor proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1684-92. [PMID: 23485911 DOI: 10.1016/j.bbapap.2013.02.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/08/2013] [Accepted: 02/16/2013] [Indexed: 12/22/2022]
Abstract
A wide and still rapidly increasing range of heme-based sensor proteins has been discovered over the last two decades. At the molecular level, these proteins function as bistable switches in which the catalytic activity of an enzymatic domain is altered mostly by binding or dissociation of small gaseous ligands (O2, NO or CO) to the heme in a sensor domain. The initial "signal" at the heme level is subsequently transmitted within the protein to the catalytic site, ultimately leading to adapted expression levels of specific proteins. Making use of the photolability of the heme-ligand bond that mimics thermal dissociation, early processes in this intra-protein signaling pathway can be followed using ultrafast optical spectroscopic techniques; they also occur on timescales accessible to molecular dynamics simulations. Experimental studies performed over the last decade on proteins including the sensors FixL (O2), CooA (CO) and soluble guanylate cyclase (NO) are reviewed with an emphasis on emerging general mechanisms. After heme-ligand bond breaking, the ligand can escape from the heme pocket and eventually from the protein, or rebind directly to the heme. Remarkably, in all sensor proteins the rebinding, specifically of the sensed ligand, is highly efficient. This "ligand trap" property possibly provides means to smoothen the effects of fast environmental fluctuations on the switching frequency. For 6-coordinate proteins, where exchange between an internal heme-bound residue and external gaseous ligands occurs, the study of early processes starting from the unliganded form indicates that mobility of the internal ligand may facilitate signal transfer. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
Affiliation(s)
- Ursula Liebl
- Laboratory for Optics and Biosciences, CNRS, Ecole Polytechnique, Palaiseau, France
| | | | | |
Collapse
|