1
|
Singh A, Luallen RJ. Understanding the factors regulating host-microbiome interactions using Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230059. [PMID: 38497260 PMCID: PMC10945399 DOI: 10.1098/rstb.2023.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host-microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions. Caenorhabditis elegans has been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions of C. elegans with its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host-microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions, C. elegans has emerged as a promising system to generate and test new hypotheses regarding host-microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Anupama Singh
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
2
|
Kim YJ, Jang M, Roh J, Lee YJ, Moon HJ, Byun J, Wi J, Ko SK, Tae J. Rhodamine-Based Cyclic Hydroxamate as Fluorescent pH Probe for Imaging of Lysosomes. Int J Mol Sci 2023; 24:15073. [PMID: 37894759 PMCID: PMC10606023 DOI: 10.3390/ijms242015073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Monitoring the microenvironment within specific cellular regions is crucial for a comprehensive understanding of life events. Fluorescent probes working in different ranges of pH regions have been developed for the local imaging of different pH environments. Especially, rhodamine-based fluorescent pH probes have been of great interest due to their ON/OFF fluorescence depending on the spirolactam ring's opening/closure. By introducing the N-alkyl-hydroxamic acid instead of the alkyl amines in the spirolactam of rhodamine, we were able to tune the pH range where the ring opening and closing of the spirolactam occurs. This six-membered cyclic hydroxamate spirolactam ring of rhodamine B proved to be highly fluorescent in acidic pH environments. In addition, we could monitor pH changes of lysosomes in live cells and zebrafish.
Collapse
Affiliation(s)
- Young Ju Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Mina Jang
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jongtae Roh
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Yoon Jeong Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Hee Jung Moon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Jimin Byun
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Jihyun Wi
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| | - Sung-Kyun Ko
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea; (M.J.); (J.R.)
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jinsung Tae
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea; (Y.J.K.); (Y.J.L.); (H.J.M.); (J.B.); (J.W.)
| |
Collapse
|
3
|
Suzuki Y, Kikuchi K, Numayama-Tsuruta K, Ishikawa T. Reciprocating intestinal flows enhance glucose uptake in C. elegans. Sci Rep 2022; 12:15310. [PMID: 36130988 PMCID: PMC9492717 DOI: 10.1038/s41598-022-18968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Despite its physiological and pathological importance, the mechanical relationship between glucose uptake in the intestine and intestinal flows is unclear. In the intestine of the nematode Caenorhabditis elegans, the defecation motor program (DMP) causes reciprocating intestinal flows. Although the DMP is frequently activated in the intestines, its physiological function is unknown. We evaluated the mechanical signature of enhanced glucose uptake by the DMP in worms. Glucose uptake tended to increase with increasing flow velocity during the DMP because of mechanical mixing and transport. However, the increase in input energy required for the DMP was low compared with the calorie intake. The findings suggest that animals with gastrointestinal motility exploit the reciprocating intestinal flows caused by peristalsis to promote nutrient absorption by intestinal cells.
Collapse
Affiliation(s)
- Yuki Suzuki
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
| | - Kenji Kikuchi
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan. .,Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan.
| | - Keiko Numayama-Tsuruta
- Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
| | - Takuji Ishikawa
- Graduate School of Engineering, Department of Finemechanics, Tohoku University, 6-6-01 Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan.,Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aramaki, Aoba, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
4
|
Shah P, Bao Z, Zaidel-Bar R. Visualizing and quantifying molecular and cellular processes in C. elegans using light microscopy. Genetics 2022; 221:6619563. [PMID: 35766819 DOI: 10.1093/genetics/iyac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
Light microscopes are the cell and developmental biologists' "best friend", providing a means to see structures and follow dynamics from the protein to the organism level. A huge advantage of C. elegans as a model organism is its transparency, which coupled with its small size means that nearly every biological process can be observed and measured with the appropriate probe and light microscope. Continuous improvement in microscope technologies along with novel genome editing techniques to create transgenic probes have facilitated the development and implementation of a dizzying array of methods for imaging worm embryos, larvae and adults. In this review we provide an overview of the molecular and cellular processes that can be visualized in living worms using light microscopy. A partial inventory of fluorescent probes and techniques successfully used in worms to image the dynamics of cells, organelles, DNA, and protein localization and activity is followed by a practical guide to choosing between various imaging modalities, including widefield, confocal, lightsheet, and structured illumination microscopy. Finally, we discuss the available tools and approaches, including machine learning, for quantitative image analysis tasks, such as colocalization, segmentation, object tracking, and lineage tracing. Hopefully, this review will inspire worm researchers who have not yet imaged their worms to begin, and push those who are imaging to go faster, finer, and longer.
Collapse
Affiliation(s)
- Pavak Shah
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles 90095, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
5
|
Kaulich E, Carroll T, Ackley BD, Tang YQ, Hardege I, Nehrke K, Schafer WR, Walker DS. Distinct roles for two Caenorhabditis elegans acid-sensing ion channels in an ultradian clock. eLife 2022; 11:e75837. [PMID: 35666106 PMCID: PMC9374441 DOI: 10.7554/elife.75837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Biological clocks are fundamental to an organism's health, controlling periodicity of behaviour and metabolism. Here, we identify two acid-sensing ion channels, with very different proton sensing properties, and describe their role in an ultradian clock, the defecation motor program (DMP) of the nematode Caenorhabditis elegans. An ACD-5-containing channel, on the apical membrane of the intestinal epithelium, is essential for maintenance of luminal acidity, and thus the rhythmic oscillations in lumen pH. In contrast, the second channel, composed of FLR-1, ACD-3 and/or DEL-5, located on the basolateral membrane, controls the intracellular Ca2+ wave and forms a core component of the master oscillator that controls the timing and rhythmicity of the DMP. flr-1 and acd-3/del-5 mutants show severe developmental and metabolic defects. We thus directly link the proton-sensing properties of these channels to their physiological roles in pH regulation and Ca2+ signalling, the generation of an ultradian oscillator, and its metabolic consequences.
Collapse
Affiliation(s)
- Eva Kaulich
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Trae Carroll
- Department of Pathology and Lab Medicine, University of Rochester Medical CenterRochesterUnited States
| | - Brian D Ackley
- Department of Molecular Biosciences, University of KansasLawrenceUnited States
| | - Yi-Quan Tang
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Iris Hardege
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical CenterRochesterUnited States
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Department of Biology, KU LeuvenLeuvenBelgium
| | - Denise S Walker
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
6
|
Viri V, Arveiler M, Lehnert T, Gijs MAM. An In Vivo Microfluidic Study of Bacterial Load Dynamics and Absorption in the C. elegans Intestine. MICROMACHINES 2021; 12:832. [PMID: 34357242 PMCID: PMC8304684 DOI: 10.3390/mi12070832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023]
Abstract
Caenorhabditiselegans (C. elegans) has gained importance as a model for studying host-microbiota interactions and bacterial infections related to human pathogens. Assessing the fate of ingested bacteria in the worm's intestine is therefore of great interest, in particular with respect to normal bacterial digestion or intestinal colonization by pathogens. Here, we report an in vivo study of bacteria in the gut of C. elegans. We take advantage of a polydimethylsiloxane (PDMS) microfluidic device enabling passive immobilization of adult worms under physiological conditions. Non-pathogenic Escherichia coli (E. coli) bacteria expressing either pH-sensitive or pH-insensitive fluorescence reporters as well as fluorescently marked indigestible microbeads were used for the different assays. Dynamic fluorescence patterns of the bacterial load in the worm gut were conveniently monitored by time-lapse imaging. Cyclic motion of the bacterial load due to peristaltic activity of the gut was observed and biochemical digestion of E. coli was characterized by high-resolution fluorescence imaging of the worm's intestine. We could discriminate between individual intact bacteria and diffuse signals related to disrupted bacteria that can be digested. From the decay of the diffuse fluorescent signal, we determined a digestion time constant of 14 ± 4 s. In order to evaluate the possibility to perform infection assays with our platform, immobilized C. elegans worms were fed pathogenic Mycobacterium marinum (M. marinum) bacteria. We analyzed bacterial fate and accumulation in the gut of N2 worms and mitochondrial stress response in a hsp-6::gfp mutant.
Collapse
Affiliation(s)
| | | | | | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (V.V.); (M.A.); (T.L.)
| |
Collapse
|
7
|
Priya B, Mahajan V, Kumar N. Xanthene-based Fluorescence Turn-on Probe for Highly Acidic pH Range in Aqueous Solution. J Fluoresc 2021; 31:853-860. [PMID: 33768472 DOI: 10.1007/s10895-021-02723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 11/26/2022]
Abstract
A xanthene-based probe, Xanth-NPr, is developed as a molecular system that exhibits sensitivity for the highly acidic environments with fluorescence turn-on behavior. Xanth-NPr is designed on the principle of photoinduced electron transfer (PET), which controls the fluorescence profile of the probe. The structure of Xanth-NPr contains the dipropylaniline group as a PET promoting unit. Xanth-NPr exhibited quenched fluorescence as long as it is present in neutral or moderately acidic conditions. However, in the highly acidic pH range, it displayed a strong red-colored fluorescence at 592 nm as the protonation of dipropylaniline moiety inhibits the PET process. A model probe Xanth-M without any PET promoting unit was also synthesized. The model probe along with theoretical calculations was employed to explain the role of the PET process in regulating the fluorescence behavior of Xanth-NPr. Xanth-NPr showed linear fluorescence response as a function of pH in the range of 1 to 4.1 with the pKa value of 2.72. Likewise, its fluorescence profile is not altered by the presence of biologically relevant cations.
Collapse
Affiliation(s)
- Bhanu Priya
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala, 144603, Punjab, India
| | - Vibha Mahajan
- Department of Chemical Sciences, IKG-Punjab Technical University, Kapurthala, 144603, Punjab, India
| | - Naresh Kumar
- Department of Chemistry, SRM University, Delhi-NCR, Sonepat, 131029, Haryana, India.
| |
Collapse
|
8
|
Koga N, Tanioka M, Kamino S, Sawada D. Morpholine-Substituted Rhodamine Analogue with Multi-Configurational Switches for Optical Sensing of pH Gradient under Extreme Acidic Environments. Chemistry 2021; 27:3761-3765. [PMID: 33205525 DOI: 10.1002/chem.202004254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Superior pH-responsive molecules are required for the development of functional materials applicable to advanced molecular technologies. Despite having been widely developed, many rhodamine-based pH-responsive molecules exhibit a single configurational switch for "turn-on". Herein, we report a new type of rhodamine-based pH-responsive molecule with multi-configurational switches displaying stable two-step structural and color conversion in response to pH. This rhodamine analogue could be successfully applied to optical sensing of pH gradient under extreme acidic environments both in solution and on hydrogel through high-contrast color change. We demonstrated that this multi-responsive character enabled optical memory of different pH information.
Collapse
Affiliation(s)
- Natsumi Koga
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Masaru Tanioka
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Shinichiro Kamino
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan.,School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, 464-8650, Japan
| | - Daisuke Sawada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| |
Collapse
|
9
|
Andresen E, Radunz S, Resch-Genger U. Novel PET-pperated rosamine pH-sensor dyes with substitution pattern-tunable p Ka values and temperature sensitivity. NEW J CHEM 2021. [DOI: 10.1039/d1nj02505h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present the synthesis and characterization of a family of regioisomerically pure pH-sensitive rosamine fluorophores consisting of xanthene fluorophore cores and differently substituted phenol moieties.
Collapse
Affiliation(s)
- Elina Andresen
- Federal Institute for Materials Research and Testing (BAM)
- Division Biophotonics
- D-12489 Berlin
- Germany
- Humboldt-Universität zu Berlin
| | - Sebastian Radunz
- Federal Institute for Materials Research and Testing (BAM)
- Division Biophotonics
- D-12489 Berlin
- Germany
| | - Ute Resch-Genger
- Federal Institute for Materials Research and Testing (BAM)
- Division Biophotonics
- D-12489 Berlin
- Germany
| |
Collapse
|
10
|
Ewe CK, Alok G, Rothman JH. Stressful development: integrating endoderm development, stress, and longevity. Dev Biol 2020; 471:34-48. [PMID: 33307045 DOI: 10.1016/j.ydbio.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
In addition to performing digestion and nutrient absorption, the intestine serves as one of the first barriers to the external environment, crucial for protecting the host from environmental toxins, pathogenic invaders, and other stress inducers. The gene regulatory network (GRN) governing embryonic development of the endoderm and subsequent differentiation and maintenance of the intestine has been well-documented in C. elegans. A key regulatory input that initiates activation of the embryonic GRN for endoderm and mesoderm in this animal is the maternally provided SKN-1 transcription factor, an ortholog of the vertebrate Nrf1 and 2, which, like C. elegans SKN-1, perform conserved regulatory roles in mediating a variety of stress responses across metazoan phylogeny. Other key regulatory factors in early gut development also participate in stress response as well as in innate immunity and aging and longevity. In this review, we discuss the intersection between genetic nodes that mediate endoderm/intestine differentiation and regulation of stress and homeostasis. We also consider how direct signaling from the intestine to the germline, in some cases involving SKN-1, facilitates heritable epigenetic changes, allowing transmission of adaptive stress responses across multiple generations. These connections between regulation of endoderm/intestine development and stress response mechanisms suggest that varying selective pressure exerted on the stress response pathways may influence the architecture of the endoderm GRN, thereby leading to genetic and epigenetic variation in early embryonic GRN regulatory events.
Collapse
Affiliation(s)
- Chee Kiang Ewe
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Geneva Alok
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Joel H Rothman
- Department of MCD Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA.
| |
Collapse
|
11
|
Benomar S, Lansdon P, Bender AM, Peterson BR, Chandler JR, Ackley BD. The C. elegans CHP1 homolog, pbo-1, functions in innate immunity by regulating the pH of the intestinal lumen. PLoS Pathog 2020; 16:e1008134. [PMID: 31917826 PMCID: PMC6952083 DOI: 10.1371/journal.ppat.1008134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/07/2019] [Indexed: 12/17/2022] Open
Abstract
Caenorhabditis elegans are soil-dwelling nematodes and models for understanding innate immunity and infection. Previously, we developed a novel fluorescent dye (KR35) that accumulates in the intestine of C. elegans and reports a dynamic wave in intestinal pH associated with the defecation motor program. Here, we use KR35 to show that mutations in the Ca2+-binding protein, PBO-1, abrogate the pH wave, causing the anterior intestine to be constantly acidic. Surprisingly, pbo-1 mutants were also more susceptible to infection by several bacterial pathogens. We could suppress pathogen susceptibility in pbo-1 mutants by treating the animals with pH-buffering bicarbonate, suggesting the pathogen susceptibility is a function of the acidity of the intestinal pH. Furthermore, we use KR35 to show that upon infection by pathogens, the intestinal pH becomes neutral in a wild type, but less so in pbo-1 mutants. C. elegans is known to increase production of reactive oxygen species (ROS), such as H2O2, in response to pathogens, which is an important component of pathogen defense. We show that pbo-1 mutants exhibited decreased H2O2 in response to pathogens, which could also be partially restored in pbo-1 animals treated with bicarbonate. Ultimately, our results support a model whereby PBO-1 functions during infection to facilitate pH changes in the intestine that are protective to the host. Innate immunity is critical for host defense against pathogens. However, questions remain about how the host senses and responds to pathogen invasion. Using a pH-sensitive fluorescent dye and a Caenorhabditis elegans pathogen infection model we show that pathogens induce changes in pH of the worm intestine. We also show that intestinal pH directly affects production of reactive oxygen species (e.g. H2O2) important for pathogen defense. Our results show that pH regulation is an important component of the innate immune response to pathogens.
Collapse
Affiliation(s)
- Saida Benomar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States of America
| | - Patrick Lansdon
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States of America
| | - Aaron M. Bender
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, United States of America
| | - Blake R. Peterson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS, United States of America
| | - Josephine R. Chandler
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States of America
- * E-mail: (JRC); (BDA)
| | - Brian D. Ackley
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States of America
- * E-mail: (JRC); (BDA)
| |
Collapse
|
12
|
Lay A, Sheppard OH, Siefe C, McLellan CA, Mehlenbacher RD, Fischer S, Goodman MB, Dionne JA. Optically Robust and Biocompatible Mechanosensitive Upconverting Nanoparticles. ACS CENTRAL SCIENCE 2019; 5:1211-1222. [PMID: 31403071 PMCID: PMC6661856 DOI: 10.1021/acscentsci.9b00300] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Indexed: 05/05/2023]
Abstract
Upconverting nanoparticles (UCNPs) are promising tools for background-free imaging and sensing. However, their usefulness for in vivo applications depends on their biocompatibility, which we define by their optical performance in biological environments and their toxicity in living organisms. For UCNPs with a ratiometric color response to mechanical stress, consistent emission intensity and color are desired for the particles under nonmechanical stimuli. Here, we test the biocompatibility and mechanosensitivity of α-NaYF4:Yb,Er@NaLuF4 nanoparticles. First, we ligand-strip these particles to render them dispersible in aqueous media. Then, we characterize their mechanosensitivity (∼30% in the red-to-green spectral ratio per GPa), which is nearly 3-fold greater than those coated in oleic acid. We next design a suite of ex vivo and in vivo tests to investigate their structural and optical properties under several biorelevant conditions: over time in various buffers types, as a function of pH, and in vivo along the digestive tract of Caenorhabditis elegans worms. Finally, to ensure that the particles do not perturb biological function in C. elegans, we assess the chronic toxicity of nanoparticle ingestion using a reproductive brood assay. In these ways, we determine that mechanosensitive UCNPs are biocompatible, i.e., optically robust and nontoxic, for use as in vivo sensors to study animal digestion.
Collapse
Affiliation(s)
- Alice Lay
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Olivia H. Sheppard
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Chris Siefe
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Claire A. McLellan
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Randy D. Mehlenbacher
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Stefan Fischer
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Miriam B. Goodman
- Department
of Molecular and Cellular Physiology, Stanford
University, Stanford, California 94305, United States
| | - Jennifer A. Dionne
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Minoshima M, Kikuta J, Omori Y, Seno S, Suehara R, Maeda H, Matsuda H, Ishii M, Kikuchi K. In Vivo Multicolor Imaging with Fluorescent Probes Revealed the Dynamics and Function of Osteoclast Proton Pumps. ACS CENTRAL SCIENCE 2019; 5:1059-1066. [PMID: 31263765 PMCID: PMC6598158 DOI: 10.1021/acscentsci.9b00220] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 05/05/2023]
Abstract
In vivo two-photon fluorescence imaging is a powerful modality to monitor cell dynamics in biomedical studies. To detect protein functions in living animals in real-time, fluorescent probes must show a quick response to the target function in specific tissues. Here, we developed a rhodamine-based small-molecule fluorescent probe called Red-pHocas (red pH-activatable fluorescent probe for osteoclast activity sensing) to reversibly detect the acidic environments for the spatiotemporal analysis of the function of osteoclast proton pumps. The introduction of electron-withdrawing N-alkyl substituents in the rhodamine spirolactam fluorophore remarkably increased the kinetics of the fluorescence response to acidic pHs, which allowed the rapid and reversible monitoring of acidic compartments and the analysis of the dynamics of osteoclast proton pumps during osteoclastic bone resorption. In vivo multicolor two-photon imaging using Red-pHocas in fluorescent reporter mice revealed that bone acidification occurred synchronously with the accumulation of proton pumps onto the bone surfaces. To our knowledge, this is the first study to demonstrate the direct involvement of osteoclast proton pumps in bone acidification under intravital conditions by means of an imaging probe.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Junichi Kikuta
- Department
of Immunology and Cell Biology, Graduate School of Medicine and Frontier
Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- WPI—Immunology
Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Omori
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeto Seno
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Riko Suehara
- Department
of Immunology and Cell Biology, Graduate School of Medicine and Frontier
Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Maeda
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideo Matsuda
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Ishii
- Department
of Immunology and Cell Biology, Graduate School of Medicine and Frontier
Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- WPI—Immunology
Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- WPI—Immunology
Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
- E-mail:
| |
Collapse
|
14
|
The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res 2019; 377:383-396. [DOI: 10.1007/s00441-019-03036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
|
15
|
Moyson S, Town RM, Joosen S, Husson SJ, Blust R. The interplay between chemical speciation and physiology determines the bioaccumulation and toxicity of Cu(II) and Cd(II) toCaenorhabditis elegans. J Appl Toxicol 2018; 39:282-293. [DOI: 10.1002/jat.3718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Sofie Moyson
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Raewyn M. Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Steven Joosen
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Steven J. Husson
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology; University of Antwerp; Groenenborgerlaan 171 BE-2020 Antwerp Belgium
| |
Collapse
|
16
|
Stratton SG, Taumoefolau GH, Purnell GE, Rasooly M, Czaplyski WL, Harbron EJ. Tuning the p
K
a
of Fluorescent Rhodamine pH Probes through Substituent Effects. Chemistry 2017; 23:14064-14072. [DOI: 10.1002/chem.201703176] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Sarah G. Stratton
- Department of Chemistry The College of William and Mary Williamsburg VA 23187-8795 USA
| | - Grace H. Taumoefolau
- Department of Chemistry The College of William and Mary Williamsburg VA 23187-8795 USA
| | - Grace E. Purnell
- Department of Chemistry The College of William and Mary Williamsburg VA 23187-8795 USA
| | - Mona Rasooly
- Department of Chemistry The College of William and Mary Williamsburg VA 23187-8795 USA
| | - William L. Czaplyski
- Department of Chemistry The College of William and Mary Williamsburg VA 23187-8795 USA
| | - Elizabeth J. Harbron
- Department of Chemistry The College of William and Mary Williamsburg VA 23187-8795 USA
| |
Collapse
|
17
|
Nagy S, Huang YC, Alkema MJ, Biron D. Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion. Sci Rep 2015; 5:17174. [PMID: 26597056 PMCID: PMC4657007 DOI: 10.1038/srep17174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/26/2015] [Indexed: 12/27/2022] Open
Abstract
Distinct motor programs can be coupled to refine the repertoire of behavior dynamics. However, mechanisms underlying such coupling are poorly understood. The defecation motor program (DMP) of C. elegans is composed of a succession of body contraction and expulsion steps, performed repeatedly with a period of 50-60 sec. We show that recurring patterns of directed locomotion are executed in tandem with, co-reset, and co-terminate with the DMP cycle. Calcium waves in the intestine and proton signaling were shown to regulate the DMP. We found that genetic manipulations affecting these calcium dynamics regulated the corresponding patterns of directed locomotion. Moreover, we observed the initiation of a recurring locomotion pattern 10 seconds prior to the posterior body contraction, suggesting that the synchronized motor program may initiate prior to the DMP. This study links two multi-step motor programs executed by C. elegans in synchrony, utilizing non-neuronal tissue to drive directed locomotion.
Collapse
Affiliation(s)
- Stanislav Nagy
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| | - Yung-Chi Huang
- Department of Neurobiology, University of Ma ssachusetts Medical School, Worcester, MA
| | - Mark J Alkema
- Department of Neurobiology, University of Ma ssachusetts Medical School, Worcester, MA
| | - David Biron
- The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| |
Collapse
|
18
|
Despras G, Zamaleeva AI, Dardevet L, Tisseyre C, Magalhaes JG, Garner C, De Waard M, Amigorena S, Feltz A, Mallet JM, Collot M. H-Rubies, a new family of red emitting fluorescent pH sensors for living cells. Chem Sci 2015; 6:5928-5937. [PMID: 29861916 PMCID: PMC5950754 DOI: 10.1039/c5sc01113b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
Monitoring intracellular pH has drawn much attention due to its undeniably important function in cells. The widespread development of fluorescent imaging techniques makes pH sensitive fluorescent dyes valuable tools, especially red-emitting dyes which help to avoid the overcrowded green end of the spectral band. Herein, we present H-Rubies, a family of pH sensors based on a phenol moiety and a X-rhodamine fluorophore that display a bright red fluorescence upon acidification with pKa values spanning from 4 to 9. Slight structural modifications led to dramatic changes in their physicochemical properties and a relationship between their structures, their ability to form H-aggregates, and their apparent pKa was established. While molecular form H-Rubies can be used to monitor mitochondrial acidification of glioma cells, their functionalised forms were linked via click chemistry to dextrans or microbeads containing a near infrared Cy5 (Alexa-647) in order to provide ratiometric systems that were used to measure respectively the phagosomal and endosomal pH in macrophages (RAW 264.7 cells) using flow cytometry.
Collapse
Affiliation(s)
- Guillaume Despras
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| | - Alsu I Zamaleeva
- Ecole Normale Supérieure , Institut de Biologie de l'ENS (IBENS) , INSERM U1024 , CNRS UMR 8197 , Paris F-75005 , France
- INSERM U932 , Institute Curie , 75248 , Paris, Cedex 05 , France
| | - Lucie Dardevet
- Inserm U836 , LabEx Ion Channels, Science and Therapeutics , Grenoble Institute of Neuroscience , chemin fortuné ferrini, bâtiment Edmond Safra , 38042 Grenoble Cedex 09 , France
- Université Joseph Fourier , Grenoble , France
| | - Céline Tisseyre
- Inserm U836 , LabEx Ion Channels, Science and Therapeutics , Grenoble Institute of Neuroscience , chemin fortuné ferrini, bâtiment Edmond Safra , 38042 Grenoble Cedex 09 , France
- Université Joseph Fourier , Grenoble , France
| | | | - Charlotte Garner
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| | - Michel De Waard
- Inserm U836 , LabEx Ion Channels, Science and Therapeutics , Grenoble Institute of Neuroscience , chemin fortuné ferrini, bâtiment Edmond Safra , 38042 Grenoble Cedex 09 , France
- Université Joseph Fourier , Grenoble , France
- Smartox Biotechnology , Saint Martin d'Hères , France
| | | | - Anne Feltz
- Ecole Normale Supérieure , Institut de Biologie de l'ENS (IBENS) , INSERM U1024 , CNRS UMR 8197 , Paris F-75005 , France
| | - Jean-Maurice Mallet
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| | - Mayeul Collot
- Laboratory of Biomolecules (LBM) , UPMC Université Paris 06 , Ecole Normale Supérieure (ENS) , CNRS, UMR 7203 , Paris F-75005 , France .
| |
Collapse
|
19
|
Sheng M, Hosseinzadeh A, Muralidharan SV, Gaur R, Selstam E, Tuck S. Aberrant fat metabolism in Caenorhabditis elegans mutants with defects in the defecation motor program. PLoS One 2015; 10:e0124515. [PMID: 25849533 PMCID: PMC4388766 DOI: 10.1371/journal.pone.0124515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanisms by which dietary fatty acids are absorbed by the intestine, and the way in which the process is regulated are poorly understood. In a genetic screen for mutations affecting fat accumulation in the intestine of Caenorhabditis elegans, nematode worms, we have isolated mutations in the aex-5 gene, which encodes a Kex2/subtilisin-family, Ca2+-sensitive proprotein convertase known to be required for maturation of certain neuropeptides, and for a discrete step in an ultradian rhythmic phenomenon called the defecation motor program. We demonstrate that aex-5 mutants have markedly lower steady-state levels of fat in the intestine, and that this defect is associated with a significant reduction in the rate at which labeled fatty acid derivatives are taken up from the intestinal lumen. Other mutations affecting the defecation motor program also affect steady-state levels of triglycerides, suggesting that the program is required per se for the proper accumulation of neutral lipids. Our results suggest that an important function of the defecation motor program in C. elegans is to promote the uptake of an important class of dietary nutrients. They also imply that modulation of the program might be one way in which worms adjust nutrient uptake in response to altered metabolic status.
Collapse
Affiliation(s)
- Ming Sheng
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Ava Hosseinzadeh
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Rahul Gaur
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| | - Eva Selstam
- Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Simon Tuck
- Umeå Center for Molecular Medicine, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
20
|
Liu C, Best QA, Suarez B, Pertile J, McCarroll ME, Scott CN. Cycloalkyl-aminomethylrhodamines: pH dependent photophysical properties tuned by cycloalkane ring size. J Fluoresc 2015; 25:231-7. [PMID: 25686771 DOI: 10.1007/s10895-015-1519-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
A series of fluorescent pH probes based on the spiro-cyclic rhodamine core, aminomethylrhodamines (AMR), was synthesized and the effect of cycloalkane ring size on the acid/base properties of the AMR system was explored. The study involved a series of rhodamine 6G (cAMR6G) and rhodamine B (cAMR) pH probes with cycloalkane ring sizes from C-3 to C-6 on the spiro-cyclic amino group. It is known that the pKa value of cycloalkylamines can be tuned by different ring sizes in accordance with the Baeyer ring strain theory. Smaller ring amines have lower pKa value, i.e., they are less basic, such that the relative order in cycloalkylamine basicity is: cyclohexyl > cyclopentyl > cyclobutyl > cyclopropyl. Herein, it was found that the pKa values of the cAMR and cAMR6G systems can also be predicted by Baeyer ring strain theory. The pKa values for the cAMR6G series were shown to be higher than the cAMR series by a value of approximately 1.
Collapse
Affiliation(s)
- Chuangjun Liu
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, USA
| | | | | | | | | | | |
Collapse
|
21
|
Thai HBD, Yu JK, Park YJ, Ahn DR. A dual-responsive pH-sensor and its potential as a universal probe for assays of pH-changing enzymes. Analyst 2015; 140:2804-9. [DOI: 10.1039/c4an01844c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We described a dual turn-on probe sensitive to both acidity and basicity, which could be designed by connecting a fluorophore to a quencher via metal–ligand interaction.
Collapse
Affiliation(s)
- Hien Bao Dieu Thai
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology
- Seoul 136-791
- Republic of Korea
| | - Jin Kyung Yu
- Department of Laboratory Medicine
- College of Medicine
- The Catholic University of Korea
- Seoul 137-701
- Republic of Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine
- College of Medicine
- The Catholic University of Korea
- Seoul 137-701
- Republic of Korea
| | - Dae-Ro Ahn
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology
- Seoul 136-791
- Republic of Korea
| |
Collapse
|
22
|
Zhang LM, Guo LE, Li XM, Shi YG, Wu GF, Xie XG, Zhou Y, Zhao QH, Zhang JF. 1,8-Naphthalimide-based colorimetric and fluorescent sensor for recognition of GMP, TMP, and UMP and its application in in vivo imaging. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Zhou J, Luo Y, Li Q, Shen J, Wang R, Xu Y, Qian X. Assembly of indole fluorophore in situ for hydrogen sulfide signaling through substrate triggered intramolecular reduction–cyclization cascade: a sensitive and selective probe in aqueous solution. NEW J CHEM 2014. [DOI: 10.1039/c3nj01465g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence enhancement is due to the formation of the indole fluorophore through reduction by H2S and cyclization.
Collapse
Affiliation(s)
- Ji Zhou
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai, China
| | - Yuanyuan Luo
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai, China
| | - Qiang Li
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai, China
| | - Jiaoning Shen
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai, China
| | - Rui Wang
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology
- State Key Laboratory of Bioreactor Engineering
- School of Pharmacy
- East China University of Science and Technology
- Shanghai, China
| |
Collapse
|
24
|
Best QA, Liu C, van Hoveln PD, McCarroll ME, Scott CN. Anilinomethylrhodamines: pH sensitive probes with tunable photophysical properties by substituent effect. J Org Chem 2013; 78:10134-43. [PMID: 24050117 DOI: 10.1021/jo401323g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of pH dependent rhodamine analogues possessing an anilino-methyl moiety was developed and shown to exhibit a unique photophysical response to pH. These anilinomethylrhodamines (AnMR) maintain a colorless, nonfluorescent spirocyclic structure at high pH. The spirocyclic structures open in mildly acidic conditions and are weakly fluorescent; however, at very low pH, the fluorescence is greatly enhanced. The equilibrium constants of these processes show a linear response to substituent effects, which was demonstrated by the Hammett equation.
Collapse
Affiliation(s)
- Quinn A Best
- Department of Chemistry & Biochemistry, Southern Illinois University , Carbondale, Illinois 62901-4409, United States
| | | | | | | | | |
Collapse
|