1
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Ribeiro AJM, Riziotis IG, Borkakoti N, Thornton JM. Enzyme function and evolution through the lens of bioinformatics. Biochem J 2023; 480:1845-1863. [PMID: 37991346 PMCID: PMC10754289 DOI: 10.1042/bcj20220405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Enzymes have been shaped by evolution over billions of years to catalyse the chemical reactions that support life on earth. Dispersed in the literature, or organised in online databases, knowledge about enzymes can be structured in distinct dimensions, either related to their quality as biological macromolecules, such as their sequence and structure, or related to their chemical functions, such as the catalytic site, kinetics, mechanism, and overall reaction. The evolution of enzymes can only be understood when each of these dimensions is considered. In addition, many of the properties of enzymes only make sense in the light of evolution. We start this review by outlining the main paradigms of enzyme evolution, including gene duplication and divergence, convergent evolution, and evolution by recombination of domains. In the second part, we overview the current collective knowledge about enzymes, as organised by different types of data and collected in several databases. We also highlight some increasingly powerful computational tools that can be used to close gaps in understanding, in particular for types of data that require laborious experimental protocols. We believe that recent advances in protein structure prediction will be a powerful catalyst for the prediction of binding, mechanism, and ultimately, chemical reactions. A comprehensive mapping of enzyme function and evolution may be attainable in the near future.
Collapse
Affiliation(s)
- Antonio J. M. Ribeiro
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Ioannis G. Riziotis
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Neera Borkakoti
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| | - Janet M. Thornton
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, U.K
| |
Collapse
|
4
|
Ribeiro AJM, Riziotis IG, Tyzack JD, Borkakoti N, Thornton JM. EzMechanism: an automated tool to propose catalytic mechanisms of enzyme reactions. Nat Methods 2023; 20:1516-1522. [PMID: 37735566 PMCID: PMC10555830 DOI: 10.1038/s41592-023-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
Over the years, hundreds of enzyme reaction mechanisms have been studied using experimental and simulation methods. This rich literature on biological catalysis is now ripe for use as the foundation of new knowledge-based approaches to investigate enzyme mechanisms. Here, we present a tool able to automatically infer mechanistic paths for a given three-dimensional active site and enzyme reaction, based on a set of catalytic rules compiled from the Mechanism and Catalytic Site Atlas, a database of enzyme mechanisms. EzMechanism (pronounced as 'Easy' Mechanism) is available to everyone through a web user interface. When studying a mechanism, EzMechanism facilitates and improves the generation of hypotheses, by making sure that relevant information is considered, as derived from the literature on both related and unrelated enzymes. We validated EzMechanism on a set of 62 enzymes and have identified paths for further improvement, including the need for additional and more generic catalytic rules.
Collapse
Affiliation(s)
- Antonio J M Ribeiro
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | - Ioannis G Riziotis
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Jonathan D Tyzack
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Neera Borkakoti
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Janet M Thornton
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
5
|
Bearne SL. Design and evaluation of substrate-product analog inhibitors for racemases and epimerases utilizing a 1,1-proton transfer mechanism. Methods Enzymol 2023; 690:397-444. [PMID: 37858537 DOI: 10.1016/bs.mie.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Racemases and epimerases catalyze the inversion of stereochemistry at asymmetric carbon atoms to generate stereoisomers that often play important roles in normal and pathological physiology. Consequently, there is interest in developing inhibitors of these enzymes for drug discovery. A strategy for the rational design of substrate-product analog (SPA) inhibitors of racemases and epimerases utilizing a direct 1,1-proton transfer mechanism is elaborated. This strategy assumes that two groups on the asymmetric carbon atom remain fixed at active-site binding determinants, while the hydrogen and third, motile group move during catalysis, with the latter potentially traveling between an R- and S-pocket at the active site. SPAs incorporate structural features of the substrate and product, often with geminal disubstitution on the asymmetric carbon atom to simultaneously present the motile group to both the R- and S-pockets. For racemases operating on substrates bearing three polar groups (glutamate, aspartate, and serine racemases) or with compact, hydrophobic binding pockets (proline racemase), substituent motion is limited and the design strategy furnishes inhibitors with poor or modest binding affinities. The approach is most successful when substrates have a large, motile hydrophobic group that binds at a plastic and/or capacious hydrophobic site. Potent inhibitors were developed for mandelate racemase, isoleucine epimerase, and α-methylacyl-CoA racemase using the SPA inhibitor design strategy, exhibiting binding affinities ranging from substrate-like to exceeding that of the substrate by 100-fold. This rational approach for designing inhibitors of racemases and epimerases having the appropriate active-site architectures is a useful strategy for furnishing compounds for drug development.
Collapse
Affiliation(s)
- Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
6
|
Markin CJ, Mokhtari DA, Du S, Doukov T, Sunden F, Cook JA, Fordyce PM, Herschlag D. Decoupling of catalysis and transition state analog binding from mutations throughout a phosphatase revealed by high-throughput enzymology. Proc Natl Acad Sci U S A 2023; 120:e2219074120. [PMID: 37428919 PMCID: PMC10629569 DOI: 10.1073/pnas.2219074120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Using high-throughput microfluidic enzyme kinetics (HT-MEK), we measured over 9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout the alkaline phosphatase PafA on binding affinity for two transition state analogs (TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition state complementary, mutations to active site and active-site-contacting residues had highly similar impacts on catalysis and TSA binding. Unexpectedly, most mutations to more distal residues that reduced catalysis had little or no impact on TSA binding and many even increased tungstate affinity. These disparate effects can be accounted for by a model in which distal mutations alter the enzyme's conformational landscape, increasing the occupancy of microstates that are catalytically less effective but better able to accommodate larger transition state analogs. In support of this ensemble model, glycine substitutions (rather than valine) were more likely to increase tungstate affinity (but not more likely to impact catalysis), presumably due to increased conformational flexibility that allows previously disfavored microstates to increase in occupancy. These results indicate that residues throughout an enzyme provide specificity for the transition state and discriminate against analogs that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival the most powerful natural enzymes will likely require consideration of distal residues that shape the enzyme's conformational landscape and fine-tune active-site residues. Biologically, the evolution of extensive communication between the active site and remote residues to aid catalysis may have provided the foundation for allostery to make it a highly evolvable trait.
Collapse
Affiliation(s)
- Craig J. Markin
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | | | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, Stanford Linear Accelerator Centre National Accelerator Laboratory, Menlo Park, CA94025
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Jordan A. Cook
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Polly M. Fordyce
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94110
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
7
|
Salita T, Rustam YH, Hofferek V, Jackson M, Tollestrup I, Sheridan JP, Schramm VL, Evans GB, Reid GE, Munkacsi AB. Phosphoinositide and redox dysregulation by the anticancer methylthioadenosine phosphorylase transition state inhibitor. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159346. [PMID: 37301365 DOI: 10.1016/j.bbalip.2023.159346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/05/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Methylthio-DADMe-immucillin-A (MTDIA) is an 86 picomolar inhibitor of 5'-methylthioadenosine phosphorylase (MTAP) with potent and specific anti-cancer efficacy. MTAP salvages S-adenosylmethionine (SAM) from 5'-methylthioadenosine (MTA), a toxic metabolite produced during polyamine biosynthesis. Changes in MTAP expression are implicated in cancer growth and development, making MTAP an appealing target for anti-cancer therapeutics. Since SAM is involved in lipid metabolism, we hypothesised that MTDIA alters the lipidomes of MTDIA-treated cells. To identify these effects, we analysed the lipid profiles of MTDIA-treated Saccharomyces cerevisiae using ultra-high resolution accurate mass spectrometry (UHRAMS). MTAP inhibition by MTDIA, and knockout of the Meu1 gene that encodes for MTAP in yeast, caused global lipidomic changes and differential abundance of lipids involved in cell signaling. The phosphoinositide kinase/phosphatase signaling network was specifically impaired upon MTDIA treatment, and was independently validated and further characterised via altered localization of proteins integral to this network. Functional consequences of dysregulated lipid metabolism included a decrease in reactive oxygen species (ROS) levels induced by MTDIA that was contemporaneous with changes in immunological response factors (nitric oxide, tumour necrosis factor-alpha and interleukin-10) in mammalian cells. These results indicate that lipid homeostasis alterations and concomitant downstream effects may be associated with MTDIA mechanistic efficacy.
Collapse
Affiliation(s)
- Timothy Salita
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Vinzenz Hofferek
- School of Chemistry, University of Melbourne, Parkville, Australia
| | - Michael Jackson
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Isaac Tollestrup
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeffrey P Sheridan
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gary B Evans
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin E Reid
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia; School of Chemistry, University of Melbourne, Parkville, Australia; Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Australia
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|
8
|
Nikkel DJ, Wetmore SD. Distinctive Formation of a DNA-Protein Cross-Link during the Repair of DNA Oxidative Damage: Insights into Human Disease from MD Simulations and QM/MM Calculations. J Am Chem Soc 2023. [PMID: 37285289 DOI: 10.1021/jacs.3c01773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species damage DNA and result in health issues. The major damage product, 8-oxo-7,8-dihydroguanine (8oG), is repaired by human adenine DNA glycosylase homologue (MUTYH). Although MUTYH misfunction is associated with a genetic disorder called MUTYH-associated polyposis (MAP) and MUTYH is a potential target for cancer drugs, the catalytic mechanism required to develop disease treatments is debated in the literature. This study uses molecular dynamics simulations and quantum mechanics/molecular mechanics techniques initiated from DNA-protein complexes that represent different stages of the repair pathway to map the catalytic mechanism of the wild-type MUTYH bacterial homologue (MutY). This multipronged computational approach characterizes a DNA-protein cross-linking mechanism that is consistent with all previous experimental data and is a distinct pathway across the broad class of monofunctional glycosylase repair enzymes. In addition to clarifying how the cross-link is formed, accommodated by the enzyme, and hydrolyzed for product release, our calculations rationalize why cross-link formation is favored over immediate glycosidic bond hydrolysis, the accepted mechanism for all other monofunctional DNA glycosylases to date. Calculations on the Y126F mutant MutY highlight critical roles for active site residues throughout the reaction, while investigation of the N146S mutant rationalizes the connection between the analogous N224S MUTYH mutation and MAP. In addition to furthering our knowledge of the chemistry associated with a devastating disorder, the structural information gained about the distinctive MutY mechanism compared to other repair enzymes represents an important step for the development of specific and potent small-molecule inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
9
|
Gutiérrez López MÁ, Tan ML, Frontera A, Matile S. The Origin of Anion-π Autocatalysis. JACS AU 2023; 3:1039-1051. [PMID: 37124310 PMCID: PMC10131205 DOI: 10.1021/jacsau.2c00656] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 05/03/2023]
Abstract
The autocatalysis of epoxide-opening ether cyclizations on the aromatic surface of anion-π catalysts stands out as a leading example of emergent properties expected from the integration of unorthodox interactions into catalysis. A working hypothesis was proposed early on, but the mechanism of anion-π autocatalysis has never been elucidated. Here, we show that anion-π autocatalysis is almost independent of peripheral crowding in substrate and product. Inaccessible asymmetric anion-π autocatalysis and sometimes erratic reproducibility further support that the origin of anion-π autocatalysis is more complex than originally assumed. The apparent long-distance communication without physical contact calls for the inclusion of water between substrate and product on the catalytic aromatic surface. Efficient anion-π autocatalysis around equimolar amounts but poor activity in dry solvents and with excess water indicate that this inclusion of water requires high precision. Computational models suggest that two water molecules transmit dual substrate activation by the product and serve as proton shuttles along antiparallel but decoupled hydrogen-bonded chains to delocalize and stabilize evolving charge density in the transition state by "anion-π double bonds". This new transition-state model of anion-π autocatalysis provides a plausible mechanism that explains experimental results and brings anion-π catalysis to an unprecedented level of sophistication.
Collapse
Affiliation(s)
- M. Ángeles Gutiérrez López
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Mei-Ling Tan
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, SP-07122 Palma de Mallorca, Spain
| | - Stefan Matile
- Department
of Organic Chemistry, University of Geneva, CH-1211 Geneva, Switzerland
- National
Centre of Competence in Research (NCCR) Molecular Systems Engineering
(MSE), CH-4002 Basel, Switzerland
| |
Collapse
|
10
|
Bearne SL. Capturing the free energy of transition state stabilization: insights from the inhibition of mandelate racemase. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220041. [PMID: 36633273 PMCID: PMC9835602 DOI: 10.1098/rstb.2022.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mandelate racemase (MR) catalyses the Mg2+-dependent interconversion of (R)- and (S)-mandelate. To effect catalysis, MR stabilizes the altered substrate in the transition state (TS) by approximately 26 kcal mol-1 (-ΔGtx), such that the upper limit of the virtual dissociation constant of the enzyme-TS complex is 2 × 10-19 M. Designing TS analogue inhibitors that capture a significant amount of ΔGtx for binding presents a challenge since there are a limited number of protein binding determinants that interact with the substrate and the structural simplicity of mandelate constrains the number of possible isostructural variations. Indeed, current intermediate/TS analogue inhibitors of MR capture less than or equal to 30% of ΔGtx because they fail to fully capitalize on electrostatic interactions with the metal ion, and the strength and number of all available electrostatic and H-bond interactions with binding determinants present at the TS. Surprisingly, phenylboronic acid (PBA), 2-formyl-PBA, and para-chloro-PBA capture 31-38% of ΔGtx. The boronic acid group interacts with the Mg2+ ion and multiple binding determinants that effect TS stabilization. Inhibitors capable of forming multiple interactions can exploit the cooperative interactions that contribute to optimum binding of the TS. Hence, maximizing interactions with multiple binding determinants is integral to effective TS analogue inhibitor design. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Stephen L. Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| |
Collapse
|
11
|
Ngo HPT, Nguyen DQ, Park H, Park YS, Kwak K, Kim T, Lee JH, Cho KS, Kang LW. Conformational change of organic cofactor PLP is essential for catalysis in PLP-dependent enzymes. BMB Rep 2022; 55:439-446. [PMID: 36104257 PMCID: PMC9537024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 03/08/2024] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are ubiquitous, catalyzing various biochemical reactions of approximately 4% of all classified enzymatic activities. They transform amines and amino acids into important metabolites or signaling molecules and are important drug targets in many diseases. In the crystal structures of PLP-dependent enzymes, organic cofactor PLP showed diverse conformations depending on the catalytic step. The conformational change of PLP is essential in the catalytic mechanism. In the study, we review the sophisticated catalytic mechanism of PLP, especially in transaldimination reactions. Most drugs targeting PLP-dependent enzymes make a covalent bond to PLP with the transaldimination reaction. A detailed understanding of organic cofactor PLP will help develop a new drug against PLP-dependent enzymes. [BMB Reports 2022; 55(9): 439-446].
Collapse
Affiliation(s)
- Ho-Phuong-Thuy Ngo
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Diem Quynh Nguyen
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Hyunjae Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon Sik Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kiwoong Kwak
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Taejoon Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Dos Santos AM, Oliveira ARS, da Costa CHS, Kenny PW, Montanari CA, Varela JDJG, Lameira J. Assessment of Reversibility for Covalent Cysteine Protease Inhibitors Using Quantum Mechanics/Molecular Mechanics Free Energy Surfaces. J Chem Inf Model 2022; 62:4083-4094. [PMID: 36044342 DOI: 10.1021/acs.jcim.2c00466] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials to investigate the reaction mechanism for covalent inhibition of cathepsin K and assess the reversibility of inhibition. The computed free energy profiles suggest that a nucleophilic attack by the catalytic cysteine on the inhibitor warhead and proton transfer from the catalytic histidine occur in a concerted manner. The results indicate that the reaction is more strongly exergonic for the alkyne-based inhibitors, which bind irreversibly to cathepsin K, than for the nitrile-based inhibitor odanacatib, which binds reversibly. Gas-phase energies were also calculated for the addition of methanethiol to structural prototypes for a number of warheads of interest in cysteine protease inhibitor design in order to assess electrophilicity. The approaches presented in this study are particularly applicable to assessment of novel warheads, and computed transition state geometries can be incorporated into molecular models for covalent docking.
Collapse
Affiliation(s)
- Alberto M Dos Santos
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil.,Laboratório de Química Quântica Computacional, Universidade Federal do Maranhão, 65080 401 São Luis, MA, Brazil
| | - Amanda Ruslana Santana Oliveira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil
| | - Clauber H S da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil
| | - Peter W Kenny
- Medicinal and Biological Chemistry Group, Institute of Chemistry of Sao Carlos, University of Sao Paulo, Avenue Trabalhador Sancarlense 400, 13566-590 São Carlos, SP, Brazil
| | - Carlos A Montanari
- Medicinal and Biological Chemistry Group, Institute of Chemistry of Sao Carlos, University of Sao Paulo, Avenue Trabalhador Sancarlense 400, 13566-590 São Carlos, SP, Brazil
| | - Jaldyr de Jesus G Varela
- Laboratório de Química Quântica Computacional, Universidade Federal do Maranhão, 65080 401 São Luis, MA, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, Rua Augusto Correa S/N, 66075-110 Belém, PA, Brazil
| |
Collapse
|
13
|
Assies L, Mercier V, López‐Andarias J, Roux A, Sakai N, Matile S. The Dynamic Range of Acidity: Tracking Rules for the Unidirectional Penetration of Cellular Compartments. Chembiochem 2022; 23:e202200192. [PMID: 35535626 PMCID: PMC9400975 DOI: 10.1002/cbic.202200192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Indexed: 12/03/2022]
Abstract
Labeled ammonium cations with pKa ∼7.4 accumulate in acidic organelles because they can be neutralized transiently to cross the membrane at cytosolic pH 7.2 but not at their internal pH<5.5. Retention in early endosomes with less acidic internal pH was achieved recently using weaker acids of up to pKa 9.8. We report here that primary ammonium cations with higher pKa 10.6, label early endosomes more efficiently. This maximized early endosome tracking coincides with increasing labeling of Golgi networks with similarly weak internal acidity. Guanidinium cations with pKa 13.5 cannot cross the plasma membrane in monomeric form and label the plasma membrane with selectivity for vesicles embarking into endocytosis. Self-assembled into micelles, guanidinium cations enter cells like arginine-rich cell-penetrating peptides and, driven by their membrane potential, penetrate mitochondria unidirectionally despite their high inner pH. The resulting tracking rules with an approximated dynamic range of pKa change ∼3.5 are expected to be generally valid, thus enabling the design of chemistry tools for biology research in the broadest sense. From a practical point of view, most relevant are two complementary fluorescent flipper probes that can be used to image the mechanics at the very beginning of endocytosis.
Collapse
Affiliation(s)
- Lea Assies
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Vincent Mercier
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Javier López‐Andarias
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Aurelien Roux
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Naomi Sakai
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| | - Stefan Matile
- School of Chemistry and BiochemistryNCCR Chemical BiologyUniversity of Geneva1211GenevaSwitzerland
| |
Collapse
|
14
|
Ahmad K, Rizzi A, Capelli R, Mandelli D, Lyu W, Carloni P. Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Front Mol Biosci 2022; 9:899805. [PMID: 35755817 PMCID: PMC9216551 DOI: 10.3389/fmolb.2022.899805] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
The dissociation rate (k off) associated with ligand unbinding events from proteins is a parameter of fundamental importance in drug design. Here we review recent major advancements in molecular simulation methodologies for the prediction of k off. Next, we discuss the impact of the potential energy function models on the accuracy of calculated k off values. Finally, we provide a perspective from high-performance computing and machine learning which might help improve such predictions.
Collapse
Affiliation(s)
- Katya Ahmad
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Andrea Rizzi
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Atomistic Simulations, Istituto Italiano di Tecnologia, Genova, Italy
| | - Riccardo Capelli
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Davide Mandelli
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Paolo Carloni
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich, Jülich, Germany
- Molecular Neuroscience and Neuroimaging (INM-11), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
15
|
Lamiable-Oulaidi F, Harijan RK, Shaffer KJ, Crump DR, Sun Y, Du Q, Gulab SA, Khan AA, Luxenburger A, Woolhouse AD, Sidoli S, Tyler PC, Schramm VL. Synthesis and Characterization of Transition-State Analogue Inhibitors against Human DNA Methyltransferase 1. J Med Chem 2022; 65:5462-5494. [PMID: 35324190 DOI: 10.1021/acs.jmedchem.1c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hypermethylation of CpG regions by human DNA methyltransferase 1 (DNMT1) silences tumor-suppression genes, and inhibition of DNMT1 can reactivate silenced genes. The 5-azacytidines are approved inhibitors of DNMT1, but their mutagenic mechanism limits their utility. A synthon approach from the analogues of S-adenosylhomocysteine, methionine, and deoxycytidine recapitulated the chemical features of the DNMT1 transition state in the synthesis of 16 chemically stable transition-state mimics. Inhibitors causing both full and partial inhibition of purified DNMT1 were characterized. The inhibitors show modest selectivity for DNMT1 versus DNMT3b. Active-site docking predicts inhibitor interactions with S-adenosyl-l-methionine and deoxycytidine regions of the catalytic site, validated by direct binding analysis. Inhibitor action with purified DNMT1 is not reflected in cultured cells. A partial inhibitor activated cellular DNA methylation, and a full inhibitor had no effect on cellular DNA methylation. These compounds provide chemical access to a new family of noncovalent DNMT chemical scaffolds for use in DNA methyltransferases.
Collapse
Affiliation(s)
- Farah Lamiable-Oulaidi
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Rajesh K Harijan
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Karl J Shaffer
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Douglas R Crump
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Yan Sun
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Quan Du
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Shivali A Gulab
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Ashna A Khan
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Andreas Luxenburger
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Anthony D Woolhouse
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Simone Sidoli
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, P.O. Box 33436, Petone 5046, New Zealand
| | - Vern L Schramm
- Biochemistry Department, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
16
|
Teixeira CSS, Sousa SF. Current Status of the Use of Multifunctional Enzymes as Anti-Cancer Drug Targets. Pharmaceutics 2021; 14:pharmaceutics14010010. [PMID: 35056904 PMCID: PMC8780674 DOI: 10.3390/pharmaceutics14010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fighting cancer is one of the major challenges of the 21st century. Among recently proposed treatments, molecular-targeted therapies are attracting particular attention. The potential targets of such therapies include a group of enzymes that possess the capability to catalyze at least two different reactions, so-called multifunctional enzymes. The features of such enzymes can be used to good advantage in the development of potent selective inhibitors. This review discusses the potential of multifunctional enzymes as anti-cancer drug targets along with the current status of research into four enzymes which by their inhibition have already demonstrated promising anti-cancer effects in vivo, in vitro, or both. These are PFK-2/FBPase-2 (involved in glucose homeostasis), ATIC (involved in purine biosynthesis), LTA4H (involved in the inflammation process) and Jmjd6 (involved in histone and non-histone posttranslational modifications). Currently, only LTA4H and PFK-2/FBPase-2 have inhibitors in active clinical development. However, there are several studies proposing potential inhibitors targeting these four enzymes that, when used alone or in association with other drugs, may provide new alternatives for preventing cancer cell growth and proliferation and increasing the life expectancy of patients.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
17
|
Bolnykh V, Rossetti G, Rothlisberger U, Carloni P. Expanding the boundaries of ligand–target modeling by exascale calculations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Viacheslav Bolnykh
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
| | - Giulia Rossetti
- Computational Biomedicine, Institute of Neuroscience and Medicine (INM‐9)/Institute for Advanced Simulations (IAS‐5) Forschungszentrum Jülich Jülich Germany
- Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich Jülich Germany
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation University Hospital Aachen RWTH Aachen University Aachen Germany
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Paolo Carloni
- Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS‐5/INM‐9) “Computational Biomedicine” Forschungszentrum Jülich Jülich Germany
- JARA‐Institute INM‐11 “Molecular Neuroscience and Neuroimaging” Forschungszentrum Jülich Jülich Germany
| |
Collapse
|
18
|
Design, synthesis, and evaluation of transition-state analogs as inhibitors of the bacterial quorum sensing autoinducer synthase CepI. Bioorg Med Chem Lett 2021; 39:127873. [PMID: 33631369 DOI: 10.1016/j.bmcl.2021.127873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 11/23/2022]
Abstract
Quorum sensing is a bacterial signaling system that involves the synthesis, secretion and detection of signal molecules called autoinducers. The main autoinducer in Gram-negative bacteria are acylated homoserine lactones, produced by the LuxI family of autoinducer synthases and detected by the LuxR family of autoinducer receptors. Quorum sensing allows for changes in gene expression and bacterial behaviors in a coordinated, cell density dependent manner. Quorum sensing controls the expression of virulence factors in some human pathogens, making quorum sensing an antibacterial drug target. Here we describe the design and synthesis of transition-state analogs of the autoinducer synthase enzymatic reaction and the evaluation of these compounds as inhibitors of the synthase CepI. One such compound potently inhibits CepI and constitutes a new type of inhibitor against this underdeveloped antibacterial target.
Collapse
|
19
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021; 60:12258-12263. [DOI: 10.1002/anie.202016105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
20
|
Piazzolla F, Mercier V, Assies L, Sakai N, Roux A, Matile S. Fluorescent Membrane Tension Probes for Early Endosomes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Francesca Piazzolla
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Lea Assies
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry National Centre of Competence in Research (NCCR) Chemical Biology University of Geneva Geneva Switzerland
| |
Collapse
|
21
|
Ge M, Molt RW, Jenkins HT, Blackburn GM, Jin Y, Antson AA. Octahedral Trifluoromagnesate, an Anomalous Metal Fluoride Species, Stabilizes the Transition State in a Biological Motor. ACS Catal 2021; 11:2769-2773. [PMID: 33717640 PMCID: PMC7944477 DOI: 10.1021/acscatal.0c04500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/26/2020] [Indexed: 01/11/2023]
Abstract
![]()
Isoelectronic metal
fluoride transition state analogue (TSA) complexes,
MgF3– and AlF4–, have proven to be immensely useful in understanding mechanisms
of biological motors utilizing phosphoryl transfer. Here we report
a previously unobserved octahedral TSA complex, MgF3(H2O)−, in a 1.5 Å resolution Zika virus
NS3 helicase crystal structure. 19F NMR provided independent
validation and also the direct observation of conformational tightening
resulting from ssRNA binding in solution. The TSA stabilizes the two
conformations of motif V of the helicase that link ATP hydrolysis
with mechanical work. DFT analysis further validated the MgF3(H2O)− species, indicating the significance
of this TSA for studies of biological motors.
Collapse
Affiliation(s)
- Mengyu Ge
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - Robert W. Molt
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940, United States
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| | - G. Michael Blackburn
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Yi Jin
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
22
|
Minnow YVT, Harijan RK, Schramm VL. A resistant mutant of Plasmodium falciparum purine nucleoside phosphorylase uses wild-type neighbors to maintain parasite survival. J Biol Chem 2021; 296:100342. [PMID: 33524395 PMCID: PMC7949152 DOI: 10.1016/j.jbc.2021.100342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) catalyzes an essential step in purine salvage for parasite growth. 4′-Deaza-1′-Aza-2′-Deoxy-1′-(9-Methylene)-Immucillin-G (DADMe-ImmG) is a transition state analog inhibitor of this enzyme, and P. falciparum infections in an Aotus primate malaria model can be cleared by oral administration of DADMe-ImmG. P. falciparum cultured under increasing DADMe-ImmG drug pressure exhibited PfPNP gene amplification, increased protein expression, and point mutations involved in DADMe-ImmG binding. However, the weak catalytic properties of the M183L resistance mutation (∼17,000-fold decrease in catalytic efficiency) are inconsistent with the essential function of PfPNP. We hypothesized that M183L subunits may form mixed oligomers of native and mutant PfPNP monomers to give hybrid hexameric enzymes with properties conferring DADMe-ImmG resistance. To test this hypothesis, we designed PfPNP constructs that covalently linked native and the catalytically weak M183L mutant subunits. Engineered hybrid PfPNP yielded trimer-of-dimer hexameric protein with alternating native and catalytically weak M183L subunits. This hybrid PfPNP gave near-native Km values for substrate, but the affinity for DADMe-ImmG and catalytic efficiency were both reduced approximately ninefold relative to a similar construct of native subunits. Contact between the relatively inactive M183L and native subunits is responsible for altered properties of the hybrid protein. Thus, gene amplification of PfPNP provides adequate catalytic activity while resistance to DADMe-ImmG occurs in the hybrid oligomer to promote parasite survival. Coupled with the slow development of drug resistance, this resistance mechanism highlights the potential for DADMe-ImmG use in antimalarial combination therapies.
Collapse
Affiliation(s)
- Yacoba V T Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rajesh K Harijan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
23
|
Klunda T, Hricovíni M, Šesták S, Kóňa J, Poláková M. Selective Golgi α-mannosidase II inhibitors: N-alkyl substituted pyrrolidines with a basic functional group. NEW J CHEM 2021. [DOI: 10.1039/d1nj01176f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic assays, molecular modeling and NMR studies of novel 1,4-dideoxy-1,4-imino-l-lyxitols provided new information on the GH38 family enzyme inhibitors and their selectivity.
Collapse
Affiliation(s)
- Tomáš Klunda
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Michal Hricovíni
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Monika Poláková
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
24
|
Xu Y, Wong KY, Wang M, Liu D, Zhao W, Zou D, Li X. Theoretical Simulations of Heavy-Atom Kinetic Isotope Effects in Aliphatic Claisen Rearrangement. J Phys Chem A 2020; 124:10678-10686. [DOI: 10.1021/acs.jpca.0c07784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuqing Xu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Kin-Yiu Wong
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, People’s Republic of China
| | - Meishan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Desheng Liu
- School of Physics, Shandong University, Jinan 250100, People’s Republic of China
- Department of Physics, Jining University, Qufu 273155, People’s Republic of China
| | - Wenkai Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Dongqing Zou
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| | - Xiaoteng Li
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, People’s Republic of China
| |
Collapse
|
25
|
Affiliation(s)
- Mark Aldren M. Feliciano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian Gold
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
26
|
Ferreira P, Cerqueira NMFSA, Fernandes PA, Romão MJ, Ramos MJ. Catalytic Mechanism of Human Aldehyde Oxidase. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pedro Ferreira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno M. F. Sousa A. Cerqueira
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria João Romão
- UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria João Ramos
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
27
|
Lawal MM, Sanusi ZK, Govender T, Maguire GE, Honarparvar B, Kruger HG. From Recognition to Reaction Mechanism: An Overview on the Interactions between HIV-1 Protease and its Natural Targets. Curr Med Chem 2020; 27:2514-2549. [DOI: 10.2174/0929867325666181113122900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/28/2022]
Abstract
Current investigations on the Human Immunodeficiency Virus Protease (HIV-1
PR) as a druggable target towards the treatment of AIDS require an update to facilitate further
development of promising inhibitors with improved inhibitory activities. For the past two
decades, up to 100 scholarly reports appeared annually on the inhibition and catalytic mechanism
of HIV-1 PR. A fundamental literature review on the prerequisite of HIV-1 PR action
leading to the release of the infectious virion is absent. Herein, recent advances (both computationally
and experimentally) on the recognition mode and reaction mechanism of HIV-1 PR
involving its natural targets are provided. This review features more than 80 articles from
reputable journals. Recognition of the natural Gag and Gag-Pol cleavage junctions by this
enzyme and its mutant analogs was first addressed. Thereafter, a comprehensive dissect of
the enzymatic mechanism of HIV-1 PR on its natural polypeptide sequences from literature
was put together. In addition, we highlighted ongoing research topics in which in silico
methods could be harnessed to provide deeper insights into the catalytic mechanism of the
HIV-1 protease in the presence of its natural substrates at the molecular level. Understanding
the recognition and catalytic mechanism of HIV-1 PR leading to the release of an infective
virion, which advertently affects the immune system, will assist in designing mechanismbased
inhibitors with improved bioactivity.
Collapse
Affiliation(s)
- Monsurat M. Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Zainab K. Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Glenn E.M. Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
28
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
29
|
Tamburrini A, Colombo C, Bernardi A. Design and synthesis of glycomimetics: Recent advances. Med Res Rev 2020; 40:495-531. [DOI: 10.1002/med.21625] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Alice Tamburrini
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Cinzia Colombo
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| | - Anna Bernardi
- Dipartimento di ChimicaUniversita’ degli Studi di Milano Milano Italy
| |
Collapse
|
30
|
Stachelska-Wierzchowska A, Wierzchowski J, Górka M, Bzowska A, Stolarski R, Wielgus-Kutrowska B. Tricyclic Nucleobase Analogs and Their Ribosides as Substrates and Inhibitors of Purine-Nucleoside Phosphorylases III. Aminopurine Derivatives. Molecules 2020; 25:E681. [PMID: 32033464 PMCID: PMC7037862 DOI: 10.3390/molecules25030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
Etheno-derivatives of 2-aminopurine, 2-aminopurine riboside, and 7-deazaadenosine (tubercidine) were prepared and purified using standard methods. 2-Aminopurine reacted with aqueous chloroacetaldehyde to give two products, both exhibiting substrate activity towards bacterial (E. coli) purine-nucleoside phosphorylase (PNP) in the reverse (synthetic) pathway. The major product of the chemical synthesis, identified as 1,N2-etheno-2-aminopurine, reacted slowly, while the second, minor, but highly fluorescent product, reacted rapidly. NMR analysis allowed identification of the minor product as N2,3-etheno-2-aminopurine, and its ribosylation product as N2,3-etheno-2-aminopurine-N2--D-riboside. Ribosylation of 1,N2-etheno-2-aminopurine led to analogous N2--d-riboside of this base. Both enzymatically produced ribosides were readily phosphorolysed by bacterial PNP to the respective bases. The reaction of 2-aminopurine-N9- -D-riboside with chloroacetaldehyde gave one major product, clearly distinct from that obtained from the enzymatic synthesis, which was not a substrate for PNP. A tri-cyclic 7-deazaadenosine (tubercidine) derivative was prepared in an analogous way and shown to be an effective inhibitor of the E. coli, but not of the mammalian enzyme. Fluorescent complexes of amino-purine analogs with E. coli PNP were observed.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Michał Górka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-089 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Ryszard Stolarski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| |
Collapse
|
31
|
Russelburg LP, O’Shea Murray VL, Demir M, Knutsen KR, Sehgal SL, Cao S, David SS, Horvath MP. Structural Basis for Finding OG Lesions and Avoiding Undamaged G by the DNA Glycosylase MutY. ACS Chem Biol 2020; 15:93-102. [PMID: 31829624 DOI: 10.1021/acschembio.9b00639] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The adenine glycosylase MutY selectively initiates repair of OG:A lesions and, by comparison, avoids G:A mispairs. The ability to distinguish these closely related substrates relies on the C-terminal domain of MutY, which structurally resembles MutT. To understand the mechanism for substrate specificity, we crystallized MutY in complex with DNA containing G across from the high-affinity azaribose transition state analogue. Our structure shows that G is accommodated by the OG site and highlights the role of a serine residue in OG versus G discrimination. The functional significance of Ser308 and its neighboring residues was evaluated by mutational analysis, revealing the critical importance of a β loop in the C-terminal domain for mutation suppression in cells, and biochemical performance in vitro. This loop comprising residues Phe307, Ser308, and His309 (Geobacillus stearothermophilus sequence positions) is conserved in MutY but absent in MutT and other DNA repair enzymes and may therefore serve as a MutY-specific target exploitable by chemical biological probes.
Collapse
Affiliation(s)
- L. Peyton Russelburg
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Valerie L. O’Shea Murray
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Merve Demir
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kyle R. Knutsen
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Sonia L. Sehgal
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Sheng Cao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sheila S. David
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Martin P. Horvath
- School of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
32
|
Angelastro A, Ruiz-Pernía JJ, Tuñón I, Moliner V, Luk LYP, Allemann RK. Loss of Hyperconjugative Effects Drives Hydride Transfer during Dihydrofolate Reductase Catalysis. ACS Catal 2019; 9:10343-10349. [PMID: 32051770 PMCID: PMC7007191 DOI: 10.1021/acscatal.9b02839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Indexed: 02/06/2023]
Abstract
![]()
Hydride transfer
is widespread in nature and has an essential role
in applied research. However, the mechanisms of how this transformation
occurs in living organisms remain a matter of vigorous debate. Here,
we examined dihydrofolate reductase (DHFR), an enzyme that catalyzes
hydride from C4′ of NADPH to C6 of 7,8-dihydrofolate (H2F). Despite many investigations of the mechanism of this reaction,
the contribution of polarization of the π-bond of H2F in driving hydride transfer remains unclear. H2F was
stereospecifically labeled with deuterium β to the reacting
center, and β-deuterium kinetic isotope effects were measured.
Our experimental results combined with analysis derived from QM/MM
simulations reveal that hydride transfer is triggered by polarization
at the C6 of H2F. The σ Cβ–H
bonds contribute to the buildup of the cationic character during the
chemical transformation, and hyperconjugation influences the formation
of the transition state. Our findings provide key insights into the
hydride transfer mechanism of the DHFR-catalyzed reaction, which is
a target for antiproliferative drugs and a paradigmatic model in mechanistic
enzymology.
Collapse
Affiliation(s)
- Antonio Angelastro
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | | | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
33
|
Chen S, Kapilashrami K, Senevirathne C, Wang Z, Wang J, Linscott JA, Luo M. Substrate-Differentiated Transition States of SET7/9-Catalyzed Lysine Methylation. J Am Chem Soc 2019; 141:8064-8067. [PMID: 31034218 DOI: 10.1021/jacs.9b02553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transition state stabilization is essential for rate acceleration of enzymatic reactions. Despite extensive studies on various transition state structures of enzymes, an intriguing puzzle is whether an enzyme can accommodate multiple transition states (TSs) to catalyze a chemical reaction. It is experimentally challenging to study this proposition in terms of the choices of suitable enzymes and the feasibility to distinguish multiple TSs. As a paradigm with the protein lysine methyltransferase (PKMT) SET7/9 paired with its physiological substrates H3 and p53, their TSs were solved with experimental kinetic isotope effects as computational constraints. Remarkably, SET7/9 adopts two structurally distinct TSs, a nearly symmetric SN2 and an extremely early SN2, for H3K4 and p53K372 methylation, respectively. The two TSs are also different from those previously revealed for other PKMTs. The setting of multiple TSs is expected to be essential for SET7/9 and likely other PKMTs to act on broad substrates with high efficiency.
Collapse
Affiliation(s)
| | | | | | - Zhen Wang
- Department of Biochemistry , Albert Einstein College of Medicine , Bronx , New York 10461 , United States
| | | | - Joshua A Linscott
- Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| | - Minkui Luo
- Program of Pharmacology, Weill Graduate School of Medical Science , Cornell University , New York , New York 10021 , United States
| |
Collapse
|
34
|
Stachelska-Wierzchowska A, Wierzchowski J, Górka M, Bzowska A, Wielgus-Kutrowska B. Tri-Cyclic Nucleobase Analogs and their Ribosides as Substrates of Purine-Nucleoside Phosphorylases. II Guanine and Isoguanine Derivatives. Molecules 2019; 24:E1493. [PMID: 30995785 PMCID: PMC6514686 DOI: 10.3390/molecules24081493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Etheno-derivatives of guanine, O6-methylguanine, and isoguanine were prepared and purified using standard methods. The title compounds were examined as potential substrates of purine-nucleoside phosphorylases from various sources in the reverse (synthetic) pathway. It was found that 1,N2-etheno-guanine and 1,N6-etheno-isoguanine are excellent substrates for purine-nucleoside phosphorylase (PNP) from E. coli, while O6-methyl-N2,3-etheno-guanine exhibited moderate activity vs. this enzyme. The latter two compounds displayed intense fluorescence in neutral aqueous medium, and so did the corresponding ribosylation products. By contrast, PNP from calf spleens exhibited only modest activity towards 1,N6-etheno-isoguanine; the remaining compounds were not ribosylated by this enzyme. The enzymatic ribosylation of 1,N6-etheno-isoguanine using two forms of calf PNP (wild type and N243D) and E. coli PNP (wild type and D204N) gave three different products, which were identified on the basis of NMR analysis and comparison with the product of the isoguanosine reaction with chloroacetic aldehyde, which gave an essentially single compound, identified unequivocally as N9-riboside. With the wild-type E. coli enzyme as a catalyst, N9--d- and N7--d-ribosides are obtained in proportion ~1:3, while calf PNP produced another riboside, tentatively identified as N6--d-riboside. The potential application of various forms of PNP for synthesis of the tri-cyclic nucleoside analogs is discussed.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Michał Górka
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| |
Collapse
|
35
|
Shiba T, Inaoka DK, Takahashi G, Tsuge C, Kido Y, Young L, Ueda S, Balogun EO, Nara T, Honma T, Tanaka A, Inoue M, Saimoto H, Harada S, Moore AL, Kita K. Insights into the ubiquinol/dioxygen binding and proton relay pathways of the alternative oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:375-382. [PMID: 30910528 DOI: 10.1016/j.bbabio.2019.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022]
Abstract
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein which catalyzes the four-electron reduction of dioxygen to water by ubiquinol. Although we have recently determined the crystal structure of Trypanosoma brucei AOX (TAO) in the presence and absence of ascofuranone (AF) derivatives (which are potent mixed type inhibitors) the mechanism by which ubiquinol and dioxygen binds to TAO remain inconclusive. In this article, ferulenol was identified as the first competitive inhibitor of AOX which has been used to probe the binding of ubiquinol. Surface plasmon resonance reveals that AF is a quasi-irreversible inhibitor of TAO whilst ferulenol binding is completely reversible. The structure of the TAO-ferulenol complex, determined at 2.7 Å, provided insights into ubiquinol binding and has also identified a potential dioxygen molecule bound in a side-on conformation to the diiron center for the first time.
Collapse
Affiliation(s)
- Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan.
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan.
| | - Gen Takahashi
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Chiaki Tsuge
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Yasutoshi Kido
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Asahimachi 1-4-3, Osaka 545-8585, Japan
| | - Luke Young
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Satoshi Ueda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Emmanuel Oluwadare Balogun
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan; Department of Biochemistry, Ahmadu Bello University, Zaria 2222, Nigeria
| | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Bunkyo-ku, Hongo 2-1-1, Tokyo, 113-8421, Japan
| | - Teruki Honma
- Systems and Structural Biology Center, RIKEN, Tsurumi, Suehiro 1-7-22, Yokohama, Kanagawa 230-0045, Japan
| | - Akiko Tanaka
- Systems and Structural Biology Center, RIKEN, Tsurumi, Suehiro 1-7-22, Yokohama, Kanagawa 230-0045, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Hiroyuki Saimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyamacho-Minami 4, Tottori 680-8552, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Anthony L Moore
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Hongo 7-3-1, Tokyo 113-0033, Japan; Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| |
Collapse
|
36
|
de Moura Sperotto ND, Deves Roth C, Rodrigues-Junior VS, Ev Neves C, Reisdorfer Paula F, da Silva Dadda A, Bergo P, Freitas de Freitas T, Souza Macchi F, Moura S, Duarte de Souza AP, Campos MM, Valim Bizarro C, Santos DS, Basso LA, Machado P. Design of Novel Inhibitors of Human Thymidine Phosphorylase: Synthesis, Enzyme Inhibition, in Vitro Toxicity, and Impact on Human Glioblastoma Cancer. J Med Chem 2019; 62:1231-1245. [DOI: 10.1021/acs.jmedchem.8b01305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Fávero Reisdorfer Paula
- Laboratório de Desenvolvimento e Controle de Qualidade em Medicamentos, Universidade Federal do Pampa, 97508-000 Uruguaiana, RS, Brazil
| | | | | | | | | | - Sidnei Moura
- Laboratório de Produtos Naturais e Sintéticos, Instituto de Biotecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
38
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Abdelmagid WM, Adak T, Freeman JO, Tanner ME. Studies with Guanidinium- and Amidinium-Based Inhibitors Suggest Minimal Stabilization of Allylic Carbocation Intermediates by Dehydrosqualene and Squalene Synthases. Biochemistry 2018; 57:5591-5601. [PMID: 30179505 DOI: 10.1021/acs.biochem.8b00731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dehydrosqualene and squalene synthases catalyze the redox neutral and the reductive, head-to-head dimerization of farnesyl diphosphate, respectively. In each case, the reaction is thought to proceed via an initial dissociation of farnesyl diphosphate to form an allylic carbocation-pyrophosphate ion pair. This work describes the synthesis and testing of inhibitors in which a guanidinium or amidinium moiety is flanked by a phosphonylphosphinate group and a hydrocarbon tail. These functional groups bear a planar, delocalized, positive charge and therefore should act as excellent mimics of an allylic carbocation. An inhibitor bearing a neutral urea moiety was also prepared as a control. The positively charged inhibitors acted as competitive inhibitors against Staphylococcus aureus dehydrosqualene synthase with Ki values in the low micromolar range. Surprisingly, the neutral urea inhibitor was the most potent of the three. Similar trends were seen with the first half reaction of human squalene synthase. One interpretation of these results is that the active sites of these enzymes do not directly stabilize the allylic carbocation via electrostatic or π-cation interactions. Instead, it is likely that the enzymes use tight binding to the pyrophosphate and lipid moieties to promote catalysis and that electrostatic stabilization of the carbocation is provided by the bound pyrophosphate product. An alternate possibility is that these inhibitors cannot bind to the "ionization FPP-binding site" of the enzyme and only bind to the "nonionizing FPP-binding site". In either case, all reported attempts to generate potent inhibitors with cationic FPP analogues have been unsuccessful to date.
Collapse
Affiliation(s)
- Walid M Abdelmagid
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Taniya Adak
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Jon O Freeman
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Martin E Tanner
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
40
|
Protein structure and computational drug discovery. Biochem Soc Trans 2018; 46:1367-1379. [DOI: 10.1042/bst20180202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
The first protein structures revealed a complex web of weak interactions stabilising the three-dimensional shape of the molecule. Small molecule ligands were then found to exploit these same weak binding events to modulate protein function or act as substrates in enzymatic reactions. As the understanding of ligand–protein binding grew, it became possible to firstly predict how and where a particular small molecule might interact with a protein, and then to identify putative ligands for a specific protein site. Computer-aided drug discovery, based on the structure of target proteins, is now a well-established technique that has produced several marketed drugs. We present here an overview of the various methodologies being used for structure-based computer-aided drug discovery and comment on possible future developments in the field.
Collapse
|
41
|
Gadda G, Sobrado P. Kinetic Solvent Viscosity Effects as Probes for Studying the Mechanisms of Enzyme Action. Biochemistry 2018; 57:3445-3453. [DOI: 10.1021/acs.biochem.8b00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
42
|
Barraza SJ, Denmark SE. Synthesis, Reactivity, Functionalization, and ADMET Properties of Silicon-Containing Nitrogen Heterocycles. J Am Chem Soc 2018; 140:6668-6684. [PMID: 29763323 PMCID: PMC6011798 DOI: 10.1021/jacs.8b03187] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Silicon-containing compounds have been largely ignored in drug design and development, despite their potential to improve not only the potency but also the physicochemical and ADMET ( absorption, distribution, metabolism, excretion, toxicity) properties of drug-like candidates because of the unique characteristics of silicon. This deficiency is in large part attributable to a lack of general methods for synthesizing diverse organosilicon structures. Accordingly, a new building block strategy has been developed that diverges from traditional approaches to incorporation of silicon into drug candidates. Flexible, multi-gram-scale syntheses of silicon-containing tetrahydroquinoline and tetrahydroisoquinoline building blocks are described, along with methods by which diversely functionalized silicon-containing nitrogen heterocycles can be rapidly built using common reactions optimized to accommodate the properties of silicon. Furthermore, to better clarify the liabilities and advantages of silicon incorporation, select compounds and their carbon analogues were challenged in ADMET-focused biological studies.
Collapse
Affiliation(s)
- Scott J. Barraza
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E. Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Abstract
The Immucillins are chemically stable analogues that mimic the ribocation and leaving-group features of N-ribosyltransferase transition states. Infectious disease agents often rely on ribosyltransferase chemistry in pathways involving precursor synthesis for nucleic acids, salvage of nucleic acid precursors, or synthetic pathways with nucleoside intermediates. Here, we review three infectious agents and the use of the Immucillins to taget enzymes essential to the parasites. First, DADMe-Immucillin-G is a purine nucleoside phosphorylase (PNP) inhibitor that blocks purine salvage and shows clinical potential for treatment for the malaria parasite Plasmodium falciparum, a purine auxotroph requiring hypoxanthine for purine nucleotide synthesis. Inhibition of the PNPs in the host and in parasite cells leads to apurinic starvation and death. Second, Helicobacter pylori, a causative agent of human ulcers, synthesizes menaquinone, an essential electron transfer agent, in a pathway requiring aminofutalosine nucleoside hydrolysis. Inhibitors of the H. pylori methylthioadenosine nucleosidase (MTAN) are powerful antibiotics for this organism. Synthesis of menaquinone by the aminofutalosine pathway does not occur in most bacteria populating the human gut microbiome. Thus, MTAN inhibitors provide high-specificity antibiotics for H. pylori and are not expected to disrupt the normal gut bacterial flora. Third, Immucillin-A was designed as a transition state analogue of the atypical PNP from Trichomonas vaginalis. In antiviral screens, Immucillin-A was shown to act as a prodrug. It is active against filoviruses and flaviviruses. In virus-infected cells, Immucillin-A is converted to the triphosphate, is incorporated into the viral transcript, and functions as an atypical chain-terminator for RNA-dependent RNA polymerases. Immucillin-A has entered clinical trials for use as an antiviral. We also summarize other Immucillins that have been characterized in successful clinical trials for T-cell lymphoma and gout. The human trials support the potential development of the Immucillins in infectious diseases.
Collapse
Affiliation(s)
- Gary B. Evans
- Ferrier Research
Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Peter C. Tyler
- Ferrier Research
Institute, Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt, 5010, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
44
|
Pal M, Easton NM, Yaphe H, Bearne SL. Potent dialkyl substrate-product analogue inhibitors and inactivators of α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis by rational design. Bioorg Chem 2018; 77:640-650. [PMID: 29502025 DOI: 10.1016/j.bioorg.2018.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/15/2022]
Abstract
Rational approaches for the design of enzyme inhibitors furnish powerful strategies for developing pharmaceutical agents and tools for probing biological mechanisms. A new strategy for the development of gem-disubstituted substrate-product analogues as inhibitors of racemases and epimerases is elaborated using α-methylacyl-coenzyme A racemase from Mycobacterium tuberculosis (MtMCR) as a model enzyme. MtMCR catalyzes the epimerization at C2 of acyl-CoA substrates, a key step in the metabolism of branched-chain fatty acids. Moreover, the human enzyme is a potential target for the development of therapeutic agents directed against prostate cancer. We show that rationally designed, N,N-dialkylcarbamoyl-CoA substrate-product analogues inactivate MtMCR. Binding greatly exceeds that of the substrate, (S)-ibuprofenoyl-CoA, up to ∼250-fold and is proportional to the alkyl chain length (4-12 carbons) with the N,N-didecyl and N,N-didodecyl species having competitive inhibition constants with values of 1.9 ± 0.2 μM and 0.42 ± 0.04 μM, respectively. The presence of two decyl chains enhanced binding over a single decyl chain by ∼204-fold. Overall, the results reveal that gem-disubstituted substrate-product analogues can yield extremely potent inhibitors of an epimerase with a capacious active site.
Collapse
Affiliation(s)
- Mohan Pal
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Nicole M Easton
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Hannah Yaphe
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
45
|
Stachelska-Wierzchowska A, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Tricyclic nitrogen base 1,N 6-ethenoadenine and its ribosides as substrates for purine-nucleoside phosphorylases: Spectroscopic and kinetic studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:89-101. [PMID: 29376769 DOI: 10.1080/15257770.2017.1419255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The title compound is an excellent substrate for E. coli PNP, as well as for its D204N mutant. The main product of the synthetic reaction is N9-riboside, but some amount of N7-riboside is also present. Surprisingly, 1,N6-ethenoadenine is also ribosylated by both wild-type and mutated (N243D) forms of calf PNP, which catalyze the synthesis of a different riboside, tentatively identified as N6-β-D-ribosyl-1,N6-ethenoadenine. All ribosides are susceptible to phosphorolysis by the E. coli PNP (wild type). All the ribosides are fluorescent and can be utilized as analytical probes.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- a Department of Biophysics , University of Varmia & Masuria in Olsztyn , 4 Oczapowskiego St, Olsztyn , Poland
| | - Agnieszka Bzowska
- b Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , 5 Pasteura St., Warsaw , Poland
| | - Beata Wielgus-Kutrowska
- b Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , 5 Pasteura St., Warsaw , Poland
| |
Collapse
|
46
|
Harris LD, Harijan RK, Ducati RG, Evans GB, Hirsch BM, Schramm VL. Synthesis of bis-Phosphate Iminoaltritol Enantiomers and Structural Characterization with Adenine Phosphoribosyltransferase. ACS Chem Biol 2018; 13:152-160. [PMID: 29178779 DOI: 10.1021/acschembio.7b00601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoribosyl transferases (PRTs) are essential in nucleotide synthesis and salvage, amino acid, and vitamin synthesis. Transition state analysis of several PRTs has demonstrated ribocation-like transition states with a partial positive charge residing on the pentose ring. Core chemistry for synthesis of transition state analogues related to the 5-phospho-α-d-ribosyl 1-pyrophosphate (PRPP) reactant of these enzymes could be developed by stereospecific placement of bis-phosphate groups on an iminoaltritol ring. Cationic character is provided by the imino group and the bis-phosphates anchor both the 1- and 5-phosphate binding sites. We provide a facile synthetic path to these molecules. Cyclic-nitrone redox methodology was applied to the stereocontrolled synthesis of three stereoisomers of a selectively monoprotected diol relevant to the synthesis of transition-state analogue inhibitors. These polyhydroxylated pyrrolidine natural product analogues were bis-phosphorylated to generate analogues of the ribocationic form of 5-phosphoribosyl 1-phosphate. A safe, high yielding synthesis of the key intermediate represents a new route to these transition state mimics. An enantiomeric pair of iminoaltritol bis-phosphates (L-DIAB and D-DIAB) was prepared and shown to display inhibition of Plasmodium falciparum orotate phosphoribosyltransferase and Saccharomyces cerevisiae adenine phosphoribosyltransferase (ScAPRT). Crystallographic inhibitor binding analysis of L- and D-DIAB bound to the catalytic sites of ScAPRT demonstrates accommodation of both enantiomers by altered ring geometry and bis-phosphate catalytic site contacts.
Collapse
Affiliation(s)
- Lawrence D. Harris
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
| | - Rajesh K. Harijan
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Rodrigo G. Ducati
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Gary B. Evans
- The
Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield
Rd, Lower Hutt, 5010, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Brett M. Hirsch
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Vern L. Schramm
- Department
of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
47
|
Klinman JP, Offenbacher AR, Hu S. Origins of Enzyme Catalysis: Experimental Findings for C-H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs. J Am Chem Soc 2017; 139:18409-18427. [PMID: 29244501 PMCID: PMC5812730 DOI: 10.1021/jacs.7b08418] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Adam R Offenbacher
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Shenshen Hu
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
48
|
Sengupta R, Capp MW, Shkel IA, Record MT. The mechanism and high-free-energy transition state of lac repressor-lac operator interaction. Nucleic Acids Res 2017; 45:12671-12680. [PMID: 29036376 PMCID: PMC5727403 DOI: 10.1093/nar/gkx862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
Significant, otherwise-unavailable information about mechanisms and transition states (TS) of protein folding and binding is obtained from solute effects on rate constants. Here we characterize TS for lac repressor(R)–lac operator(O) binding by analyzing effects of RO-stabilizing and RO-destabilizing solutes on association (ka) and dissociation (kd) rate constants. RO-destabilizing solutes (urea, KCl) reduce ka comparably (urea) or more than (KCl) they increase kd, demonstrating that they destabilize TS relative to reactants and RO, and that TS exhibits most of the Coulombic interactions between R and O. Strikingly, three solutes which stabilize RO by favoring burial/dehydration of amide oxygens and anionic phosphate oxygens all reduce kd without affecting ka significantly. The lack of stabilization of TS by these solutes indicates that O phosphates remain hydrated in TS and that TS preferentially buries aromatic carbons and amide nitrogens while leaving amide oxygens exposed. In our proposed mechanism, DNA-binding-domains (DBD) of R insert in major grooves of O pre-TS, forming most Coulombic interactions of RO and burying aromatic carbons. Nucleation of hinge helices creates TS, burying sidechain amide nitrogens. Post-TS, hinge helices assemble and the DBD-hinge helix-O-DNA module docks on core repressor, partially dehydrating phosphate oxygens and tightening all interfaces to form RO.
Collapse
Affiliation(s)
- Rituparna Sengupta
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael W Capp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irina A Shkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Thomas Record
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
49
|
Holdgate GA, Meek TD, Grimley RL. Mechanistic enzymology in drug discovery: a fresh perspective. Nat Rev Drug Discov 2017; 17:115-132. [PMID: 29192286 DOI: 10.1038/nrd.2017.219] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the therapeutic and commercial success of small-molecule enzyme inhibitors, as exemplified by kinase inhibitors in oncology, a major focus of current drug-discovery and development efforts is on enzyme targets. Understanding the course of an enzyme-catalysed reaction can help to conceptualize different types of inhibitor and to inform the design of screens to identify desired mechanisms. Exploiting this information allows the thorough evaluation of diverse compounds, providing the knowledge required to efficiently optimize leads towards differentiated candidate drugs. This review highlights the rationale for conducting high-quality mechanistic enzymology studies and considers the added value in combining such studies with orthogonal biophysical methods.
Collapse
Affiliation(s)
- Geoffrey A Holdgate
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| | - Thomas D Meek
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Rachel L Grimley
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Building 310, Cambridge Science Park, Milton Road, Cambridge, CB4 0WG, UK
| |
Collapse
|
50
|
Bueno AB, Agejas J, Broughton H, Dally R, Durham TB, Espinosa JF, González R, Hahn PJ, Marcos A, Rodríguez R, Sanz G, Soriano JF, Timm D, Vidal P, Yang HC, McCarthy JR. Optimization of Hydroxyethylamine Transition State Isosteres as Aspartic Protease Inhibitors by Exploiting Conformational Preferences. J Med Chem 2017; 60:9807-9820. [PMID: 29088532 DOI: 10.1021/acs.jmedchem.7b01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR conformational analysis of a hydroxyethylamine peptide isostere developed as an aspartic protease inhibitor shows that it is a flexible architecture. Cyclization to form pyrrolidines, piperidines, or morpholines results in a preorganization of the whole system in solution. The resulting conformation is similar to the conformation of the inhibitor in the active site of BACE-1. This entropic gain results in increased affinity for the enzyme when compared with the acyclic system. For morpholines 27 and 29, the combination of steric and electronic factors is exploited to orient substituents toward S1, S1', and S2' pockets both in the solution and in the bound states. These highly preorganized molecules proved to be the most potent compounds of the series. Additionally, the morpholines, unlike the pyrrolidine and piperidine analogues, have been found to be brain penetrant BACE-1 inhibitors.
Collapse
Affiliation(s)
- Ana B Bueno
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Javier Agejas
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Howard Broughton
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Robert Dally
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - Timothy B Durham
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | | | - Rosario González
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Patric J Hahn
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - Alicia Marcos
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Ramón Rodríguez
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Gema Sanz
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - José F Soriano
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - David Timm
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - Paloma Vidal
- Lilly SA , Avenida de la Industria 30, 28108 Alcobendas, Madrid, Spain
| | - Hsiu-Chiung Yang
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| | - James R McCarthy
- Lilly Research Laboratories , Indianapolis, Indiana 46285, United States
| |
Collapse
|