1
|
Braga CB, Perli G, Fonseca R, Grigolo TA, Ionta M, Ornelas C, Pilli RA. Enhanced Synergistic Efficacy Against Breast Cancer Cells Promoted by Co-Encapsulation of Piplartine and Paclitaxel in Acetalated Dextran Nanoparticles. Mol Pharm 2024; 21:5577-5597. [PMID: 39365693 DOI: 10.1021/acs.molpharmaceut.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Malignant breast tumors constitute the most frequent cancer diagnosis among women. Notwithstanding the progress in treatments, this condition persists as a major public health issue. Paclitaxel (PTX) is a first-line classical chemotherapeutic drug used as a single active pharmaceutical ingredient (API) or in combination therapy for breast cancer (BC) treatment. Adverse effects, poor water solubility, and inevitable susceptibility to drug resistance seriously limit its therapeutic efficacy in the clinic. Piplartine (PPT), an alkaloid extracted from Piper longum L., has been shown to inhibit cancer cell proliferation in several cell lines due to its pro-oxidant activity. However, PPT has low water solubility and bioavailability in vivo, and new strategies should be developed to optimize its use as a chemotherapeutic agent. In this context, the present study aimed to synthesize a series of acetalated dextran nanoparticles (Ac-Dex NPs) encapsulating PPT and PTX to overcome the limitations of PPT and PTX, maximizing their therapeutic efficacy and achieving prolonged and targeted codelivery of these anticancer compounds into BC cells. Biodegradable, pH-responsive, and biocompatible Ac-Dex NPs with diameters of 100-200 nm and spherical morphologies were formulated using a single emulsion method. Selected Ac-Dex NPs containing only PPT or PTX as well as those coloaded with PPT and PTX achieved excellent drug-loading capabilities (PPT, ca. 11-33%; PTX, ca. 2-14%) and high encapsulation efficiencies (PPT, ∼57-98%; PTX, ∼80-97%). Under physiological conditions (pH 7.4), these NPs exhibited excellent colloidal stability and were capable of protecting drug release, while under acidic conditions (pH 5.5) they showed structural collapse, releasing the therapeutics in an extended manner. Cytotoxicity results demonstrated that the encapsulation in Ac-Dex NPs had a positive effect on the activities of both PPT and PTX against the MCF-7 human breast cancer cell line after 48 h of treatment, as well as toward MDA-MB-231 triple-negative BC cells. PPT/PTX@Ac-Dex NPs were significantly more cytotoxic (IC50/PPT = 0.25-1.77 μM and IC50/PTX = 0.07-0.75 μM) and selective (SI = 2.9-6.7) against MCF-7 cells than all the control therapeutic agents: free PPT (IC50 = 4.57 μM; SI = 1.2), free PTX (IC50 = 0.97 μM; SI = 1.0), the single-drug-loaded Ac-Dex NPs, and the physical mixture of both free drugs. All combinations of PPT and PTX resulted in pronounced synergistic antiproliferative effects in MCF-7 cells, with an optimal molar ratio of PPT to PTX of 2.3:1. PPT/PTX-2@Ac-Dex NPs notably promoted apoptosis, cell cycle arrest at the G2/M, accumulation of intracellular reactive oxygen species (ROS), and combined effects from both PPT and PTX on the microtubule network of MCF-7 cells. Overall, the combination of PTX and PPT in pH-responsive Ac-Dex NPs may offer great potential to improve the therapeutic efficacy, overcome the limitations, and provide effective simultaneous delivery of these therapeutics for BC treatment.
Collapse
Affiliation(s)
- Carolyne Brustolin Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián Spain
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Thiago Augusto Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
- R&D Department, ChemistryX, R&D and Consulting Company, 9000 Funchal, Portugal
- R&D Department, Dendriwave, Research & Development Start-Up Company, 9000 Funchal, Portugal
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo Brazil
| |
Collapse
|
2
|
Passaniti A, Kim MS, Polster BM, Shapiro P. Targeting mitochondrial metabolism for metastatic cancer therapy. Mol Carcinog 2022; 61:827-838. [PMID: 35723497 PMCID: PMC9378505 DOI: 10.1002/mc.23436] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023]
Abstract
Primary tumors evolve metabolic mechanisms favoring glycolysis for adenosine triphosphate (ATP) generation and antioxidant defenses. In contrast, metastatic cells frequently depend on mitochondrial respiration and oxidative phosphorylation (OxPhos). This reliance of metastatic cells on OxPhos can be exploited using drugs that target mitochondrial metabolism. Therefore, therapeutic agents that act via diverse mechanisms, including the activation of signaling pathways that promote the production of reactive oxygen species (ROS) and/or a reduction in antioxidant defenses may elevate oxidative stress and inhibit tumor cell survival. In this review, we will provide (1) a mechanistic analysis of function-selective extracellular signal-regulated kinase-1/2 (ERK1/2) inhibitors that inhibit cancer cells through enhanced ROS, (2) a review of the role of mitochondrial ATP synthase in redox regulation and drug resistance, (3) a rationale for inhibiting ERK signaling and mitochondrial OxPhos toward the therapeutic goal of reducing tumor metastasis and treatment resistance. Recent reports from our laboratories using metastatic melanoma and breast cancer models have shown the preclinical efficacy of novel and rationally designed therapeutic agents that target ERK1/2 signaling and mitochondrial ATP synthase, which modulate ROS events that may prevent or treat metastatic cancer. These findings and those of others suggest that targeting a tumor's metabolic requirements and vulnerabilities may inhibit metastatic pathways and tumor growth. Approaches that exploit the ability of therapeutic agents to alter oxidative balance in tumor cells may be selective for cancer cells and may ultimately have an impact on clinical efficacy and safety. Elucidating the translational potential of metabolic targeting could lead to the discovery of new approaches for treatment of metastatic cancer.
Collapse
Affiliation(s)
- Antonino Passaniti
- Research Health Scientist, The Veteran's Health Administration Research & Development Service (VAMHCS), VA Maryland Health Care System (VAMHCS), Baltimore VA Medical Center, Baltimore, Maryland, USA
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Myoung Sook Kim
- Department of Pathology and Department of Biochemistry & Molecular Biology, the Program in Molecular Medicine and the Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland USA
| | - Brian M. Polster
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore Maryland, USA
| |
Collapse
|
3
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
4
|
Debnath S, Parveen S, Pradhan P, Das I, Das T. Benzo[4,5]imidazo[1,2- a]pyridines and benzo[4,5]imidazo[1,2- a]pyrimidines: recent advancements in synthesis of two diversely important heterocyclic motifs and their derivatives. NEW J CHEM 2022. [DOI: 10.1039/d2nj00546h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen heterocycles are some of the most important compounds that are found in nature or synthesized otherwise.
Collapse
Affiliation(s)
| | - Syaleena Parveen
- Department of Chemistry, NIT Jamshedpur, Jamshedpur 831014, India
| | | | - Ipsita Das
- Department of Chemistry, NIT Jamshedpur, Jamshedpur 831014, India
| | - Tapas Das
- Department of Chemistry, NIT Jamshedpur, Jamshedpur 831014, India
| |
Collapse
|
5
|
Sinaga E, Fitrayadi A, Asrori A, Rahayu SE, Suprihatin S, Prasasty VD. Hepatoprotective effect of Pandanus odoratissimus seed extracts on paracetamol-induced rats. PHARMACEUTICAL BIOLOGY 2021; 59:31-39. [PMID: 33403907 PMCID: PMC7801105 DOI: 10.1080/13880209.2020.1865408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Pandanus odoratissimus Linn. (Pandanaceae) seed extract is known to have antioxidant activities. However, the potential hepatoprotective effect is still unclear. OBJECTIVE To investigate the hepatoprotection aspect of P. odoratissimus methanol extract towards paracetamol-induced rats. MATERIALS AND METHODS Thirty male Sprague-Dawley rats were randomly divided into six equal groups: one group served as the healthy control and five groups with hepatotoxicity (hepatotoxic control and 4 treatment groups). The oral treatment of paracetamol-induced hepatotoxicity of 3 g/kg using three different concentrations of P. odoratissimus (300, 600 and 900 mg/kg), and silymarin (200 mg/kg) groups were administered once a day for 14 days. Enzyme activities and protein levels in serum were determined in rats at the end of the treatments. The histopathology of rat livers was observed under an electron microscope with 10× magnification. RESULTS Pandanus odoratissimus significantly decreased the serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and γ-glutamyl transferase (GGT) activities in induced-paracetamol rat serum (p < 0.05). Moreover, P. odoratissimus significantly decreased total bilirubin and direct bilirubin levels (p < 0.05). It significantly blocked the decline of serum albumin and protein levels (p < 0.05). Histopathological changes amplified paracetamol-induced liver damage and the hepatoprotective effect of P. odoratissimus in the liver. DISCUSSION AND CONCLUSIONS Pandanus odoratissimus improved the hepatoprotective effect in a concentration-dependent manner by reducing related hepatic enzyme and protein markers, suggesting as a useful agent in hepatotoxicity treatment, and it can be generalized to a broader study population in different hepatotoxic animal models.
Collapse
Affiliation(s)
- Ernawati Sinaga
- Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
- CONTACT Ernawati Sinaga Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
| | - Ami Fitrayadi
- Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
| | - Asrori Asrori
- Faculty of Biology, Universitas Nasional, Jakarta, Indonesia
| | | | | | - Vivitri Dewi Prasasty
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Vivitri Dewi Prasasty Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| |
Collapse
|
6
|
Braga CB, Pilli RA, Ornelas C, Weck M. Near-Infrared Fluorescent Micelles from Poly(norbornene) Brush Triblock Copolymers for Nanotheranostics. Biomacromolecules 2021; 22:5290-5306. [PMID: 34779620 DOI: 10.1021/acs.biomac.1c01196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This contribution describes the design and synthesis of multifunctional micelles based on amphiphilic brush block copolymers (BBCPs) for imaging and selective drug delivery of natural anticancer compounds. Well-defined BBCPs were synthesized via one-pot multi-step sequential grafting-through ring-opening metathesis polymerization (ROMP) of norbornene-based macroinitiators. The norbornenes employed contain a poly(ethylene glycol) methyl ether chain, an alkyl bromide chain, and/or a near-infrared (NIR) fluorescent cyanine dye. After block copolymerization, post-polymerization transformations using bromide-azide substitution, followed by the strain-promoted azide-alkyne cycloaddition (SPAAC) allowed for the functionalization of the BBCPs with the piplartine (PPT) moiety, a natural product with well-documented cytotoxicity against cancer cell lines, via an ester linker between the drug and the polymer side chain. The amphiphilic BBCPs self-assembled in aqueous media into nano-sized spherical micelles with neutral surface charges, as confirmed by dynamic light scattering analysis and transmission electron microscopy. During self-assembly, paclitaxel (PTX) could be effectively encapsulated into the hydrophobic core to form stable PTX-loaded micelles with high loading capacities and encapsulation efficiencies. The NIR fluorescent dye-containing micelles exhibited remarkable photophysical properties, excellent colloidal stability under physiological conditions, and a pH-induced disassembly under slightly acidic conditions, allowing for the release of the drug in a controlled manner. The in vitro studies demonstrated that the micelles without the drug (blank micelles) are biocompatible at concentrations of up to 1 mg mL-1 and present a high cellular internalization capacity toward MCF-7 cancer cells. The drug-functionalized micelles showed in vitro cytotoxicity comparable to free PPT and PTX against MCF-7 and PC3 cancer cells, confirming efficient drug release into the tumor environment upon cellular internalization. Furthermore, the drug-functionalized micelles exhibited higher selectivity than the pristine drugs and preferential cellular uptake in human cancer cell lines (MCF-7 and PC3) when compared to the normal breast cell line (MCF10A). This study provides an efficient strategy for the development of versatile polymeric nanosystems for drug delivery and image-guided diagnostics. Notably, the easy functionalization of BBCP side chains via SPAAC opens up the possibility for the preparation of a library of multifunctional systems containing other drugs or functionalities, such as target groups for recognition.
Collapse
Affiliation(s)
- Carolyne B Braga
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, São Paulo CEP 13083-970, Brazil.,Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Ronaldo A Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, São Paulo CEP 13083-970, Brazil
| | - Catia Ornelas
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, São Paulo CEP 13083-970, Brazil
| | - Marcus Weck
- Molecular Design Institute and Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
7
|
Grigolo TA, Braga CB, Ornelas C, Russowsky D, Ferreira-Silva GA, Ionta M, Pilli RA. Hybrids of 4-hydroxy derivatives of goniothalamin and piplartine bearing a diester or a 1,2,3-triazole linker as antiproliferative agents. Bioorg Chem 2021; 116:105292. [PMID: 34509797 DOI: 10.1016/j.bioorg.2021.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
A library of nine hybrids of 4-hydroxygoniothalamin (2), 4-hydroxypiplartine (4), monastrol (5) and oxo-monastrol (6) was prepared via a modular synthetic route with a diester or a 1,2,3-triazole as linkers. The compounds were assayed against a panel of human cancer cell lines, including MCF-7 (breast adenocarcinoma), HeLa (cervical adenocarcinoma), Caco-2 (colorectal adenocarcinoma) and PC3 (prostate adenocarcinoma), as well as against normal breast (MCF10A) and prostate (PNT2) cells. In general, hybrids with an ester linker containing 4-hydroxypiplartine (4) were more potent than the corresponding hybrids with 4-hydroxygoniothalamin (2). On the other hand, compounds presenting the 1,2,3-triazole linker displayed enhanced cytotoxicity and selectivity when compared to their corresponding hybrids with the diester linker. The 4-hydroxypiplartine-based hybrids 12 and 22 displayed high cytotoxicity (IC50 values below 10 μM) against all cancer cells studied, especially in MCF-7 cells with IC50 values of 1.7 ± 0.1 and 1.6 ± 0.9 μM, respectively. Furthermore, the 4-hydroxygoniothalamin-monastrol hybrid (compound 21) and the 4-hydroxypiplartine-oxo-monastrol hybrid (compound 25), both bearing a 1,2,3-triazole linker, displayed high selectivity and potency towards breast cancer cell line (MCF-7 vs. MCF10 cells, selectivity index = 15.8 and 7.1, respectively), while the 4-hydroxypiplartine -4-hydroxymethylgoniothalamin hybrid with a diester linker (compound 33) showed high selectivity towards melanoma cancer cells (selectivity index = 9.6). Antiproliferative and pro-apoptotic potential of compounds 12 and 22 against MCF-7 cancer cells were further investigated. Cell cycle studies revealed increased G2/M population in MCF-7 cultures as well as reduced G0/G1 population compared to the control groups indicating cell cycle arrest in G2/M phase. In addition, the frequency of positive cells for annexin V was higher in treated samples suggesting that compounds 12 and 22 induce apoptosis in estrogen-positive MCF-7 cells.
Collapse
Affiliation(s)
- Thiago A Grigolo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Sao Paulo, Brazil
| | - Carolyne B Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Sao Paulo, Brazil
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Sao Paulo, Brazil
| | - Dennis Russowsky
- Institute of Chemistry, Federal University of Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme A Ferreira-Silva
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas, UNIFAL-MG, 37130-001 Alfenas, Minas Gerais, Brazil
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970 Campinas, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Hao Y, Langford TF, Moon SJ, Eller KA, Sikes HD. Screening compound libraries for H 2O 2-mediated cancer therapeutics using a peroxiredoxin-based sensor. Cell Chem Biol 2021; 29:625-635.e3. [PMID: 34678160 DOI: 10.1016/j.chembiol.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/23/2021] [Accepted: 09/21/2021] [Indexed: 11/03/2022]
Abstract
Compounds that modulate H2O2 reaction networks have applications as targeted cancer therapeutics, as a subset of cancers exhibit sensitivity to this redox signal. Previous studies to identify therapeutics that induce oxidants have relied upon probes that respond to many different oxidants in cells, and thus do not report on only H2O2, a redox signal that selectively oxidizes proteins. Here we use a genetically encoded fluorescent probe for human peroxiredoxin-2 (Prx2) oxidation in screens for small-molecule compounds that modulate H2O2 pathways. We further characterize cellular responses to several compounds selected from the screen. Our results reveal that some, but not all, of the compounds enact H2O2-mediated toxicity in cells. Among them, SMER3, an antifungal, has not been reported as an oxidant-inducing drug. Several drugs, including cisplatin, that previously have been shown to induce reactive oxygen species (ROS) do not appear to oxidize Prx2, suggesting H2O2 is not among the ROS induced by those drugs.
Collapse
Affiliation(s)
- Yining Hao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Troy F Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen A Eller
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT Alliance in Research and Technology (SMART), #03-10/11 Innovation Wing, 1 CREATE Way, Singapore 138602, Singapore.
| |
Collapse
|
9
|
Tasdogan A, Ubellacker JM, Morrison SJ. Redox Regulation in Cancer Cells during Metastasis. Cancer Discov 2021; 11:2682-2692. [PMID: 34649956 DOI: 10.1158/2159-8290.cd-21-0558] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Metastasis is an inefficient process in which the vast majority of cancer cells are fated to die, partly because they experience oxidative stress. Metastasizing cancer cells migrate through diverse environments that differ dramatically from their tumor of origin, leading to redox imbalances. The rare metastasizing cells that survive undergo reversible metabolic changes that confer oxidative stress resistance. We review the changes in redox regulation that cancer cells undergo during metastasis. By better understanding these mechanisms, it may be possible to develop pro-oxidant therapies that block disease progression by exacerbating oxidative stress in cancer cells. SIGNIFICANCE: Oxidative stress often limits cancer cell survival during metastasis, raising the possibility of inhibiting cancer progression with pro-oxidant therapies. This is the opposite strategy of treating patients with antioxidants, an approach that worsened outcomes in large clinical trials.
Collapse
Affiliation(s)
- Alpaslan Tasdogan
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jessalyn M Ubellacker
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sean J Morrison
- Children's Research Institute and Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
10
|
Dillon KM, Matson JB. A Review of Chemical Tools for Studying Small Molecule Persulfides: Detection and Delivery. ACS Chem Biol 2021; 16:1128-1141. [PMID: 34114796 DOI: 10.1021/acschembio.1c00255] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) has gained significant attention as a potent bioregulator in the redox metabolome, but it is just one of many reactive sulfur species (RSS). Recently, small molecule persulfides (structure RSSH) have emerged as RSS of particular interest due to their enhanced antioxidant abilities compared to H2S and their ability to directly convert protein thiols into protein persulfides, suggesting that persulfides may have distinct physiological functions from H2S. However, persulfides exhibit instability and cross-reactivity that hampers the elucidation of their precise biological roles. As such, chemists have designed chemical tools and techniques to facilitate the study of persulfides under various conditions. These molecules and methods include persulfide trapping reagents and sensors, as well as compounds that degrade in response to various triggers to release persulfides, termed persulfide donors. There now exist a variety of persulfide donor classes, some of which possess tissue-targeting capabilities designed to mimic localized endogenous production of RSS. This Review briefly covers the physicochemical properties of persulfides, the endogenous production of small molecule persulfides, and their reactions with protein thiols and other reactive species. These introductory sections are followed by a discussion of chemical tools used in persulfide chemical biology, with critical analysis of recent advancements in the field and commentary on potential directions for future research.
Collapse
Affiliation(s)
- Kearsley M. Dillon
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Wani TH, Chowdhury G, Chakrabarty A. Generation of reactive oxygen species is the primary mode of action and cause of survivin suppression by sepantronium bromide (YM155). RSC Med Chem 2021; 12:566-578. [PMID: 34046628 PMCID: PMC8128069 DOI: 10.1039/d0md00383b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Survivin is a lucrative broad-spectrum drug target for different cancer types, including triple negative breast cancer (TNBC). Sepantronium bromide (YM155) is the first of its class of survivin suppressants and was found to be quite effective in pre-clinical models of TNBC. However, in clinical trials when given in combination with docetaxel, YM55 failed to provide any added advantage. To understand if the clinical outcome is due to YM155 being ineffective or due to an inappropriate choice of combination, we need to elucidate its true mode of action. Hence, to explain the unexpected and unexplained observations pertaining to YM155 biology and its mode of action, we developed isogenic pairs of YM155-sensitive and -resistant TNBC cell lines and characterized them in detail by various biochemical assays. We found that YM155 generates reactive oxygen species (ROS) in the mitochondria in addition to the previously discovered redox cycling pathway. Both survivin suppression and DNA damage are secondary effects resulting from the ROS which contribute to the drug's cytotoxic effects on TNBC cells. Indeed, adaptation to both these pathways was important in conferring YM155 resistance. Finally, we uncovered a unique connection between the ROS and control of survivin expression involving a ROS/AKT/FoxO/survivin axis in TNBC cells. Together, by deciphering the true mode of action of YM155, we present a possible explanation for its poor clinical efficacy when used in combination with docetaxel. The results and conclusions presented here provide the information needed to effectively use YM155 in combination therapy.
Collapse
Affiliation(s)
- Tasaduq Hussain Wani
- Department of Life Sciences, Shiv Nadar University Greater Noida UP 201314 India
| | | | - Anindita Chakrabarty
- Department of Life Sciences, Shiv Nadar University Greater Noida UP 201314 India
| |
Collapse
|
12
|
Mottaghi S, Abbaszadeh H. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Crit Rev Food Sci Nutr 2021; 62:7301-7318. [PMID: 33905270 DOI: 10.1080/10408398.2021.1913568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that lignans as polyphenolic compounds are beneficial against life-threatening diseases such as cancer. Plant lignans have the potential to induce cancer cell death and interfere with carcinogenesis, tumor growth, and metastasis. Epidemiological studies have revealed that the intake of lignans is inversely associated with the risk of several cancers. Moreover, numerous experimental studies demonstrate that natural lignans significantly suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Dietary lignans arctigenin and sesamin have been found to have potent antiproliferative activities against various types of human cancer. The purpose of this review is to provide the reader with a deeper understanding of the cellular and molecular mechanisms underlying anticancer effects of arctigenin and sesamin. Our review comprehensively describes the effects of arctigenin and sesamin on the signaling pathways and related molecules involved in cancer cell proliferation and invasion. The findings of present review show that the dietary lignans arctigenin and sesamin seem to be promising carcinopreventive and anticancer agents. These natural lignans can be used as dietary supplements and pharmaceuticals for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Martinez R, Huang W, Samadani R, Mackowiak B, Centola G, Chen L, Conlon IL, Hom K, Kane MA, Fletcher S, Shapiro P. Mechanistic Analysis of an Extracellular Signal-Regulated Kinase 2-Interacting Compound that Inhibits Mutant BRAF-Expressing Melanoma Cells by Inducing Oxidative Stress. J Pharmacol Exp Ther 2020; 376:84-97. [PMID: 33109619 PMCID: PMC7788356 DOI: 10.1124/jpet.120.000266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022] Open
Abstract
Constitutively active extracellular signal–regulated kinase (ERK) 1/2 signaling promotes cancer cell proliferation and survival. We previously described a class of compounds containing a 1,1-dioxido-2,5-dihydrothiophen-3-yl 4-benzenesulfonate scaffold that targeted ERK2 substrate docking sites and selectively inhibited ERK1/2-dependent functions, including activator protein-1–mediated transcription and growth of cancer cells containing active ERK1/2 due to mutations in Ras G-proteins or BRAF, Proto-oncogene B-RAF (Rapidly Acclerated Fibrosarcoma) kinase. The current study identified chemical features required for biologic activity and global effects on gene and protein levels in A375 melanoma cells containing mutant BRAF (V600E). Saturation transfer difference-NMR and mass spectrometry analyses revealed interactions between a lead compound (SF-3-030) and ERK2, including the formation of a covalent adduct on cysteine 252 that is located near the docking site for ERK/FXF (DEF) motif for substrate recruitment. Cells treated with SF-3-030 showed rapid changes in immediate early gene levels, including DEF motif–containing ERK1/2 substrates in the Fos family. Analysis of transcriptome and proteome changes showed that the SF-3-030 effects overlapped with ATP-competitive or catalytic site inhibitors of MAPK/ERK Kinase 1/2 (MEK1/2) or ERK1/2. Like other ERK1/2 pathway inhibitors, SF-3-030 induced reactive oxygen species (ROS) and genes associated with oxidative stress, including nuclear factor erythroid 2–related factor 2 (NRF2). Whereas the addition of the ROS inhibitor N-acetyl cysteine reversed SF-3-030–induced ROS and inhibition of A375 cell proliferation, the addition of NRF2 inhibitors has little effect on cell proliferation. These studies provide mechanistic information on a novel chemical scaffold that selectively regulates ERK1/2-targeted transcription factors and inhibits the proliferation of A375 melanoma cells through a ROS-dependent mechanism.
Collapse
Affiliation(s)
- Ramon Martinez
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Ramin Samadani
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Lijia Chen
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Ivie L Conlon
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore- School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
14
|
Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Alleviating Cellular Oxidative Stress through Treatment with Superoxide-Triggered Persulfide Prodrugs. Angew Chem Int Ed Engl 2020; 59:16698-16704. [PMID: 32592216 PMCID: PMC7719095 DOI: 10.1002/anie.202006656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Overproduction of superoxide anion (O2.- ), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.- to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2 S). Termed SOPD-NAC, this persulfide donor reacts specifically with O2.- , decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2 ) to make a superoxide-responsive, persulfide-donating peptide (SOPD-Pep). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2 S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2 S donors.
Collapse
Affiliation(s)
| | | | - Zhao Li
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ethan W. Winckler
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B. Matson
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
15
|
Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Alleviating Cellular Oxidative Stress through Treatment with Superoxide‐Triggered Persulfide Prodrugs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yin Wang
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Kearsley M. Dillon
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Zhao Li
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Ethan W. Winckler
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - John B. Matson
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
16
|
Gadzhimagomedova Z, Zolotukhin P, Kit O, Kirsanova D, Soldatov A. Nanocomposites for X-Ray Photodynamic Therapy. Int J Mol Sci 2020; 21:ijms21114004. [PMID: 32503329 PMCID: PMC7312431 DOI: 10.3390/ijms21114004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) has long been known as an effective method for treating surface cancer tissues. Although this technique is widely used in modern medicine, some novel approaches for deep lying tumors have to be developed. Recently, deeper penetration of X-rays into tissues has been implemented, which is now known as X-ray photodynamic therapy (XPDT). The two methods differ in the photon energy used, thus requiring the use of different types of scintillating nanoparticles. These nanoparticles are known to convert the incident energy into the activation energy of a photosensitizer, which leads to the generation of reactive oxygen species. Since not all photosensitizers are found to be suitable for the currently used scintillating nanoparticles, it is necessary to find the most effective biocompatible combination of these two agents. The most successful combinations of nanoparticles for XPDT are presented. Nanomaterials such as metal-organic frameworks having properties of photosensitizers and scintillation nanoparticles are reported to have been used as XPDT agents. The role of metal-organic frameworks for applying XPDT as well as the mechanism underlying the generation of reactive oxygen species are discussed.
Collapse
Affiliation(s)
- Zaira Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
- Correspondence:
| | - Peter Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Oleg Kit
- Department of Oncology, National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia;
| | - Daria Kirsanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
| |
Collapse
|
17
|
Tripathi SK, Biswal BK. Piperlongumine, a potent anticancer phytotherapeutic: Perspectives on contemporary status and future possibilities as an anticancer agent. Pharmacol Res 2020; 156:104772. [PMID: 32283222 DOI: 10.1016/j.phrs.2020.104772] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
Piperlongumine, a white to beige biologically active alkaloid/amide phytochemical, has high pharmacological relevance as an anticancer agent. Piperlongumine has several biological activities, including selective cytotoxicity against multiple cancer cells of different origins at a preclinical level. Several preclinical studies have documented the anticancer potential of piperlongumine through its targeting of multiple molecular mechanisms, such as cell cycle arrest, anti-angiogenesis, anti- invasive and anti-metastasis pathways, autophagy pathways, and intrinsic apoptotic pathways in vitro and in vivo. Mechanistically, piperlongumine inhibits cancer growth by resulting in the accumulation of intracellular reactive oxygen species, decreasing glutathione and chromosomal damage, or modulating key regulatory proteins, including PI3K, AKT, mTOR, NF-kβ, STATs, and cyclin D1. Furthermore, combined treatment with piperlongumine potentiates the anticancer activity of conventional chemotherapeutics and overcomes resistance to chemo- and radio- therapy. Nanoformulation of piperlongumine has been associated with increased aqueous solubility and bioavailability and lower toxicity, thus enhancing therapeutic efficacy in both preclinical and clinical settings. The current review highlights anticancer studies on the occurrence, chemical properties, chemopreventive mechanisms, toxicity, bioavailability, and pharmaceutical relevance of piperlongumine in vitro and in vivo.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
18
|
Hafezi K, Hemmati AA, Abbaszadeh H, Valizadeh A, Makvandi M. Anticancer activity and molecular mechanisms of α-conidendrin, a polyphenolic compound present in Taxus yunnanensis, on human breast cancer cell lines. Phytother Res 2020; 34:1397-1408. [PMID: 31971313 DOI: 10.1002/ptr.6613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/18/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022]
Abstract
α-Conidendrin is a polyphenolic compound found mainly in Taxus yunnanensis, as the source of chemotherapy drug paclitaxel, which has been used in traditional medicine for treatment of cancer. This study aimed to investigate the anticancer activity and molecular mechanisms of α-conidendrin on breast cancer cell lines. The results of the present study show that α-conidendrin possesses potent antiproliferative effects on breast cancer cell lines MCF-7 and MDA-MB-231. α-Conidendrin significantly induced apoptosis in breast cancer cells via reactive oxygen species generation, upregulation of p53 and Bax, downregulation of Bcl-2, depolarization of mitochondrial membrane potential (MMP), release of cytochrome c from mitochondria, and activation of caspases-3 and -9. α-Conidendrin remarkably inhibited the proliferation of breast cancer cells through induction of cell cycle arrest by upregulating p53 and p21 and downregulating cyclin D1 and CDK4. Unlike breast cancer cells, the antiproliferative effect of α-conidendrin on human foreskin fibroblast cells (normal cells) was very small. In normal cells, reactive oxygen species levels, loss of MMP, release of cytochrome c, mRNA expression of p53, p21, cyclin D1, CDK4, Bax, and Bcl-2 as well as mRNA expression and activity of caspases-3 and -9 were significantly less affected by α-conidendrin compared with cancer cells. These results suggest that α-conidendrin can be a promising agent for treatment of breast cancer with little or no toxicity against normal cells.
Collapse
Affiliation(s)
- Katayoon Hafezi
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asghar Hemmati
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Armita Valizadeh
- Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
19
|
Meenakshisundaram S, Krishnamoorthy V, Jagadeesan Y, Vilwanathan R, Balaiah A. Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell lines. Bioorg Chem 2020; 95:103451. [DOI: 10.1016/j.bioorg.2019.103451] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023]
|
20
|
Ahmad R, Vaali-Mohammed MA, Elwatidy M, Al-Obeed O, Al-Khayal K, Eldehna WM, Abdel-Aziz HA, Alafeefy A, Abdulla M. Induction of ROS‑mediated cell death and activation of the JNK pathway by a sulfonamide derivative. Int J Mol Med 2019; 44:1552-1562. [PMID: 31364730 DOI: 10.3892/ijmm.2019.4284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/23/2019] [Indexed: 11/06/2022] Open
Abstract
The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
Collapse
Affiliation(s)
- Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mansoor-Ali Vaali-Mohammed
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mohammed Elwatidy
- CMRC, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Omar Al-Obeed
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Khayal Al-Khayal
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo 12622, Egypt
| | - Ahmed Alafeefy
- Department of Chemistry, Kulliyyah of Science, International Islamic University, Kuantan 25200, Malaysia
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, King Khaled University Hospital, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| |
Collapse
|
21
|
Sharma AK, Singh H, Chakrapani H. Photocontrolled endogenous reactive oxygen species (ROS) generation. Chem Commun (Camb) 2019; 55:5259-5262. [PMID: 30993280 DOI: 10.1039/c9cc01747j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A cell-permeable small molecule for light-triggered generation of endogenous reactive oxygen species (ROS) is reported.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Harshit Singh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune 411 008, Maharashtra, India.
| |
Collapse
|
22
|
Shin SY, Lee J, Park J, Lee Y, Ahn S, Lee JH, Koh D, Lee YH, Lim Y. Design, synthesis, and biological activities of 1-aryl-(3-(2-styryl)phenyl)prop-2-en-1-ones. Bioorg Chem 2018; 83:438-449. [PMID: 30448722 DOI: 10.1016/j.bioorg.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/12/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
Abstract
A moderate elevation in reactive oxygen species (ROS) levels can generally be controlled in normal cells, but may lead to death of cancer cells as the ROS level in cancer cells is already elevated. Therefore, a ROS-generating compound can act as a selective chemotherapeutic agent for cancer cells that does not affect normal cells. In our previous study, a compound containing a Michael acceptor was selectively cytotoxic to cancer cells without affecting normal cells; therefore, we designed and synthesized 26 compounds containing a Michael acceptor. Their cytotoxicities against HCT116 human colon cancer cell lines were measured by using a clonogenic long-term survival assay. To derive the structural conditions required to obtain stronger cytotoxicity against cancer cells, the relationships between the half-maximal cell growth inhibitory concentration values of the synthesized compounds and their physicochemical properties were evaluated by Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis. It was confirmed that the compound with the best half-maximal cell growth inhibitory concentration triggered apoptosis through ROS generation, which then led to stimulation of the caspase pathway.
Collapse
Affiliation(s)
- Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Junho Lee
- Division of Bioscience and Biotechnology, BBRC, Konkuk University, Seoul 05029, Republic of Korea
| | - Jihyun Park
- Division of Bioscience and Biotechnology, BBRC, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngshim Lee
- Division of Bioscience and Biotechnology, BBRC, Konkuk University, Seoul 05029, Republic of Korea
| | - Seunghyun Ahn
- Division of Bioscience and Biotechnology, BBRC, Konkuk University, Seoul 05029, Republic of Korea
| | - Ji Hye Lee
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul 02748, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BBRC, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
23
|
Langford TF, Huang BK, Lim JB, Moon SJ, Sikes HD. Monitoring the action of redox-directed cancer therapeutics using a human peroxiredoxin-2-based probe. Nat Commun 2018; 9:3145. [PMID: 30087344 PMCID: PMC6081480 DOI: 10.1038/s41467-018-05557-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/29/2018] [Indexed: 01/05/2023] Open
Abstract
Redox cancer therapeutics target the increased reliance on intracellular antioxidant systems and enhanced susceptibility to oxidant-induced stress of some cancer cells compared to normal cells. Many of these therapeutics are thought to perturb intracellular levels of the oxidant hydrogen peroxide (H2O2), a signaling molecule that modulates a number of different processes in human cells. However, fluorescent probes for this species remain limited in their ability to detect the small perturbations induced during successful treatments. We report a fluorescent sensor based upon human peroxiredoxin-2, which acts as the natural indicator of small H2O2 fluctuations in human cells. The new probe reveals peroxide-induced oxidation in human cells below the detection limit of current probes, as well as peroxiredoxin-2 oxidation caused by two different redox cancer therapeutics in living cells. This capability will be useful in elucidating the mechanism of current redox-based therapeutics and in developing new ones.
Collapse
Affiliation(s)
- Troy F Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
| | - Beijing K Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
| | - Joseph B Lim
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, USA.
| |
Collapse
|
24
|
Wilke J, Kawamura T, Watanabe N, Osada H, Ziegler S, Waldmann H. Identification of cytotoxic, glutathione-reactive moieties inducing accumulation of reactive oxygen species via glutathione depletion. Bioorg Med Chem 2017; 26:1453-1461. [PMID: 29170028 DOI: 10.1016/j.bmc.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/25/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) play an essential role in the survival and progression of cancer. Moderate oxidative stress drives proliferation, whereas high levels of ROS induce cytotoxicity. Compared to cancer cells, healthy cells often exhibit lower levels of oxidative stress. Elevation of cellular ROS levels by small molecules could therefore induce cancer-specific cytotoxicity. We have employed high-throughput phenotypic screening to identify inducers of ROS accumulation. We found 4,5-dihalo-2-methylpyridazin-3-one (DHMP) and 2,3,4,5(6)-tetrachloro-6(5)-methylpyridine (TCMP) moieties to strongly deplete GSH, to cause ROS accumulation and to induce cell death. Small molecules containing these fragments will most likely share the same properties and should therefore be carefully considered in the development of bioactive molecules.
Collapse
Affiliation(s)
- Julian Wilke
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; Technical University of Dortmund, Emil-Figge-Str. 72, 44221 Dortmund, Germany
| | - Tatsuro Kawamura
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Bio-Active Compounds Discovery Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany; Technical University of Dortmund, Emil-Figge-Str. 72, 44221 Dortmund, Germany.
| |
Collapse
|
25
|
Mallepally RR, Chintakuntla N, Putta VR, K N, Vuradi RK, P M, S SS, Chitumalla RK, Jang J, Penumaka N, Sirasani S. Synthesis, Spectral Properties and DFT Calculations of new Ruthenium (II) Polypyridyl Complexes; DNA Binding Affinity and in Vitro Cytotoxicity Activity. J Fluoresc 2017; 27:1513-1530. [PMID: 28432633 DOI: 10.1007/s10895-017-2091-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
In this paper a novel ligand debip (2-(4-N,N-diethylbenzenamine)1H-imidazo[4,5-f] [1, 10]phenanthroline) and its Ru(II) polypyridyl complexes [Ru(L)2(debip)]2+, (L = phen (1), bpy (2) and dmb (3)) have been synthesized and characterized by spectroscopic techniques. The DNA binding studies for all these complexes were examined by absorption, emission, quenching studies, viscosity measurements and cyclic voltammetry. The light switching properties of complexes 1-3 have been evaluated. Molecular docking, Density Functional Theory (DFT) and time dependent DFT calculations were performed. The Ru(II) complexes exhibited efficient photocleavage activity against pBR322 DNA upon irradiation and exhibited good antimicrobial activity. Also investigated 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, lactate dehydrogenase (LDH) release assay and reactive oxygen species (ROS) against selected cancer cell lines (HeLa, PC3, Lancap, MCF-7 and MD-MBA 231).
Collapse
Affiliation(s)
| | - Nagamani Chintakuntla
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Venkat Reddy Putta
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Nagasuryaprasad K
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Madhuri P
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Satyanarayana Singh S
- Department of Biochemistry, Osmania University, Hyderabad, Telangana State, 500007, India
| | - Ramesh Kumar Chitumalla
- Department of Nanoenergy Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Joonkyung Jang
- Department of Nanoenergy Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Nagababu Penumaka
- Inorganic & Physical Chemistry Division, CSIR-IICT, Tarnaka, Hyderabad, Telangana, 500007, India
- CSIR-NEERI Kolkata Zonal Laboratory, 1-8, Sector C, East Kolkata, Area Development Projecct, P.O. East Kolkata, Township, Kolkata, 700107, India
| | | |
Collapse
|
26
|
Okazaki A, Gameiro PA, Christodoulou D, Laviollette L, Schneider M, Chaves F, Stemmer-Rachamimov A, Yazinski SA, Lee R, Stephanopoulos G, Zou L, Iliopoulos O. Glutaminase and poly(ADP-ribose) polymerase inhibitors suppress pyrimidine synthesis and VHL-deficient renal cancers. J Clin Invest 2017; 127:1631-1645. [PMID: 28346230 DOI: 10.1172/jci87800] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Many cancer-associated mutations that deregulate cellular metabolic responses to hypoxia also reprogram carbon metabolism to promote utilization of glutamine. In renal cell carcinoma (RCC), cells deficient in the von Hippel-Lindau (VHL) tumor suppressor gene use glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate (αKG). Glutamine can also generate aspartate, the carbon source for pyrimidine biosynthesis, and glutathione for redox balance. Here we have shown that VHL-/- RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine biosynthesis. Glutaminase 1 (GLS1) inhibitors depleted pyrimidines and increased ROS in VHL-/- cells but not in VHL+/+ cells, which utilized glucose oxidation for glutamate and aspartate production. GLS1 inhibitor-induced nucleoside depletion and ROS enhancement led to DNA replication stress and activation of an intra-S phase checkpoint, and suppressed the growth of VHL-/- RCC cells. These effects were rescued by administration of glutamate, αKG, or nucleobases with N-acetylcysteine. Further, we observed that the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib synergizes with GLS1 inhibitors to suppress the growth of VHL-/- cells in vitro and in vivo. This work describes a mechanism that explains the sensitivity of RCC tumor growth to GLS1 inhibitors and supports the development of therapeutic strategies for targeting VHL-deficient RCC.
Collapse
|
27
|
Xu X, Fang X, Wang J, Zhu H. Identification of novel ROS inducer by merging the fragments of piperlongumine and dicoumarol. Bioorg Med Chem Lett 2017; 27:1325-1328. [PMID: 28159415 DOI: 10.1016/j.bmcl.2016.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 08/06/2016] [Indexed: 01/05/2023]
Abstract
A series of novel ROS inducers were designed by merging the fragments of piperlongumine and dicoumarol. Most of these derivatives showed potent in vitro activity against three cancer cell lines and good selectivity towards normal lung cells. The most potent and selective compound 3e was proven to exhibit obvious ROS elevation and excellent in vivo antitumor activity with suppressed tumor growth by 48.46% at the dose of 5mg/kg. Supported by these investigation, these findings encourage further investigation around this interesting antitumor chemotype.
Collapse
Affiliation(s)
- Xiaojuan Xu
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China.
| | - Xia Fang
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China
| | - Jun Wang
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China
| | - Hong Zhu
- School of Chemistry and Chemical Engineering, Yancheng Teachers University, Yancheng, China
| |
Collapse
|
28
|
Dharmaraja AT. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J Med Chem 2017; 60:3221-3240. [DOI: 10.1021/acs.jmedchem.6b01243] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Allimuthu T. Dharmaraja
- Department of Genetics and Genome Sciences and Comprehensive Cancer
Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
29
|
Borges da Silva R, Teixeira RI, Wardell JL, Wardell SMSV, Garden SJ. Copper(ii) catalyzed synthesis of novel helical luminescent benzo[4,5]imidazo[1,2-a][1,10]phenanthrolines via an intramolecular C–H amination reaction. Org Biomol Chem 2017; 15:812-826. [DOI: 10.1039/c6ob02508k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Novel helical luminescent benzoimidazophenanthrolines were prepared using a Cu(ii) catalyzed C–H amination reaction.
Collapse
Affiliation(s)
- Ramon Borges da Silva
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Centro Tecnológica
- Bloco A
- Cidade Universitária
| | - Rodolfo Inêz Teixeira
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Centro Tecnológica
- Bloco A
- Cidade Universitária
| | - James L. Wardell
- Instituto de Tecnologia em Fármacos – Farmanguinhos
- Fiocruz. R. Sizenando Nabuco
- Rio de Janeiro
- Brazil
- Department of Chemistry
| | | | - Simon J. Garden
- Instituto de Química
- Universidade Federal do Rio de Janeiro
- Centro Tecnológica
- Bloco A
- Cidade Universitária
| |
Collapse
|
30
|
Kumar A, Kawamura T, Kawatani M, Osada H, Zhang KYJ. Identification and structure-activity relationship of purine derivatives as novel MTH1 inhibitors. Chem Biol Drug Des 2016; 89:862-869. [PMID: 27863017 DOI: 10.1111/cbdd.12909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
The human mutT homolog-1 (MTH1) protein prevents the incorporation of oxidized nucleotides such as 2-OH-dATP and 8-oxo-dGTP during DNA replication by hydrolyzing them into their corresponding monophosphates. It was found previously that cancer cells could tolerate oxidative stress due to this enzymatic activity of MTH1 and its inhibition could be a promising approach to treat several types of cancer. This finding has been challenged recently with increasing line of evidence suggesting that the cancer cell-killing effects of MTH1 inhibitors may be related to their engagement of off-targets. We have previously reported a few purine-based MTH1 inhibitors that enabled us to elucidate the dispensability of MTH1 in cancer cell survival. Here, we provide a detailed process of the identification of purine-based MTH1 inhibitors. Several new compounds with potency in the submicromolar range are disclosed. Furthermore, the structure-activity relationship and associated binding mode prediction using molecular docking have provided insights for the development of highly potent MTH1 inhibitors.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Tatsuro Kawamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kam Y J Zhang
- Structural Bioinformatics Team, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| |
Collapse
|
31
|
AbdulSalam SF, Thowfeik FS, Merino EJ. Excessive Reactive Oxygen Species and Exotic DNA Lesions as an Exploitable Liability. Biochemistry 2016; 55:5341-52. [PMID: 27582430 DOI: 10.1021/acs.biochem.6b00703] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the terms "excessive reactive oxygen species (ROS)" and "oxidative stress" are widely used, the implications of oxidative stress are often misunderstood. ROS are not a single species but a variety of compounds, each with unique biochemical properties and abilities to react with biomolecules. ROS cause activation of growth signals through thiol oxidation and may lead to DNA damage at elevated levels. In this review, we first discuss a conceptual framework for the interplay of ROS and antioxidants. This review then describes ROS signaling using FLT3-mediated growth signaling as an example. We then focus on ROS-mediated DNA damage. High concentrations of ROS result in various DNA lesions, including 8-oxo-7,8-dihydro-guanine, oxazolone, DNA-protein cross-links, and hydantoins, that have unique biological impacts. Here we delve into the biochemistry of nine well-characterized DNA lesions. Within each lesion, the types of repair mechanisms, the mutations induced, and their effects on transcription and replication are discussed. Finally, this review will discuss biochemically inspired implications for cancer therapy. Several teams have put forward designs to harness the excessive ROS and the burdened DNA repair systems of tumor cells for treating cancer. We discuss inhibition of the antioxidant system, the targeting of DNA repair, and ROS-activated prodrugs.
Collapse
Affiliation(s)
- Safnas F AbdulSalam
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Fathima Shazna Thowfeik
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| | - Edward J Merino
- Department of Chemistry, University of Cincinnati , 404 Crosley Tower, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
32
|
Gopinath P, Mahammed A, Ohayon S, Gross Z, Brik A. Understanding and predicting the potency of ROS-based enzyme inhibitors, exemplified by naphthoquinones and ubiquitin specific protease-2. Chem Sci 2016; 7:7079-7086. [PMID: 28451143 PMCID: PMC5355956 DOI: 10.1039/c6sc02758j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/03/2016] [Indexed: 12/26/2022] Open
Abstract
Recent studies have suggested that selective targeting of overexpressed enzymes in cancer cells by small molecules that induce the formation of reactive oxygen species (ROS) could be a viable approach in cancer therapy. One such example is the inactivation of ubiquitin specific protease-2 (USP2)-an emerging drug target to combat prostate cancer-by β-lapachone, which has been identified to involve oxidation of the catalytic cysteine's thiol residue to sulfinic acid. A rational design of β-lapachone analogs with improved activity requires a much better understanding of the variables that determine ROS production by this class of molecules. This crucial aspect was addressed via modulation of its 1,2-naphthoquinone scaffold and establishment of a structure/activity relationship, regarding its ability to reduce molecular oxygen to a ROS. The same series of compounds was also examined in terms of their inhibitory effect on the enzymatic activity of USP2. One deduction from these investigations was that the ortho-quinone motif in β-lapachone is much better suited for the catalytic reduction of oxygen than the para-quinone motif and some approved quinone based drugs. A broader conclusion, obtained from the series of compounds with ortho-quinone motifs, is that only the agents whose redox potential is in the narrow range of -0.3 ± 0.1 V (vs. Ag/AgCl in pH 7.5 aqueous buffer) induce the formation of ROS. The excellent correlation between the ROS production ability and the USP2 inhibition potency emphasizes that the relatively easy, fast, and reliable testing of electrocatalytic oxygen reduction by small molecules might be applied to screening and evaluating new drug candidates for similar targets.
Collapse
Affiliation(s)
- Pushparathinam Gopinath
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 3200008 , Israel . ;
| | - Atif Mahammed
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 3200008 , Israel . ;
| | - Shimrit Ohayon
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 3200008 , Israel . ;
| | - Zeev Gross
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 3200008 , Israel . ;
| | - Ashraf Brik
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 3200008 , Israel . ;
| |
Collapse
|
33
|
Huang BK, Langford TF, Sikes HD. Using Sensors and Generators of H2O2 to Elucidate the Toxicity Mechanism of Piperlongumine and Phenethyl Isothiocyanate. Antioxid Redox Signal 2016; 24:924-38. [PMID: 26905788 PMCID: PMC4900193 DOI: 10.1089/ars.2015.6482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/02/2016] [Accepted: 02/21/2016] [Indexed: 01/23/2023]
Abstract
AIMS Chemotherapeutics target vital functions that ensure survival of cancer cells, including their increased reliance on defense mechanisms against oxidative stress compared to normal cells. Many chemotherapeutics exploit this vulnerability to oxidative stress by elevating the levels of intracellular reactive oxygen species (ROS). A quantitative understanding of the oxidants generated and how they induce toxicity will be important for effective implementation and design of future chemotherapeutics. Molecular tools that facilitate measurement and manipulation of individual chemical species within the context of the larger intracellular redox network present a means to develop this understanding. In this work, we demonstrate the use of such tools to elucidate the roles of H2O2 and glutathione (GSH) in the toxicity mechanism of two ROS-based chemotherapeutics, piperlongumine and phenethyl isothiocyanate. RESULTS Depletion of GSH as a result of treatment with these compounds is not an important part of the toxicity mechanisms of these drugs and does not lead to an increase in the intracellular H2O2 level. Measuring peroxiredoxin-2 (Prx-2) oxidation as evidence of increased H2O2, only piperlongumine treatment shows elevation and it is GSH independent. Using a combination of a sensor (HyPer) along with a generator (D-amino acid oxidase) to monitor and mimic the drug-induced H2O2 production, it is determined that H2O2 produced during piperlongumine treatment acts synergistically with the compound to cause enhanced cysteine oxidation and subsequent toxicity. The importance of H2O2 elevation in the mechanism of piperlongumine promotes a hypothesis of why certain cells, such as A549, are more resistant to the drug than others. INNOVATION AND CONCLUSION The approach described herein sheds new light on the previously proposed mechanism of these two ROS-based chemotherapeutics and advocates for the use of both sensors and generators of specific oxidants to isolate their effects. Antioxid. Redox Signal. 24, 924-938.
Collapse
Affiliation(s)
- Beijing K. Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Troy F. Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hadley D. Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
34
|
Soares HT, Campos JRS, Gomes-da-Silva LC, Schaberle FA, Dabrowski JM, Arnaut LG. Pro-oxidant and Antioxidant Effects in Photodynamic Therapy: Cells Recognise that Not All Exogenous ROS Are Alike. Chembiochem 2016; 17:836-42. [DOI: 10.1002/cbic.201500573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Helder T. Soares
- Chemistry Department; Universidade de Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | - Joana R. S. Campos
- Chemistry Department; Universidade de Coimbra; Rua Larga 3004-535 Coimbra Portugal
| | | | | | - Janusz M. Dabrowski
- Faculty of Chemistry; Jagiellonian University; Ingardena 3 30-060 Kraków Poland
| | - Luis G. Arnaut
- Chemistry Department; Universidade de Coimbra; Rua Larga 3004-535 Coimbra Portugal
| |
Collapse
|
35
|
Wang Y, Wu X, Zhou Y, Jiang H, Pan S, Sun B. Piperlongumine Suppresses Growth and Sensitizes Pancreatic Tumors to Gemcitabine in a Xenograft Mouse Model by Modulating the NF-kappa B Pathway. Cancer Prev Res (Phila) 2016; 9:234-44. [PMID: 26667450 DOI: 10.1158/1940-6207.capr-15-0306] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/24/2015] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is an aggressive malignancy, which generally respond poorly to chemotherapy. Hence, novel agents that are safe and effective are highly needed. The aim of this study was to investigate whether piperlongumine, a natural product isolated from the fruit of the pepper Piper longum, has any efficacy against human pancreatic cancer when used either alone or in combination with gemcitabine in vitro and in a xenograft mouse model. In vitro, piperlongumine inhibited the proliferation of pancreatic cancer cell lines, potentiated the apoptotic effects of gemcitabine, inhibited the constitutive and inducible activation of NF-κB, and suppressed the NF-κB-regulated expression of c-Myc, cyclin D1, Bcl-2, Bcl-xL, Survivin, XIAP, VEGF, and matrix metalloproteinase-9 (MMP-9). Furthermore, in an in vivo xenograft model, we found piperlongumine alone significantly suppressed tumor growth and enhanced the antitumor properties of gemcitabine. These results were consistent with the downregulation of NF-κB activity and its target genes, decreased proliferation (PCNA and Ki-67), decreased microvessel density (CD31), and increased apoptosis (TUNEL) in tumor remnants. Collectively, our results suggest that piperlongumine alone exhibits significant antitumor effects against human pancreatic cancer and it further enhances the therapeutic effects of gemcitabine, possibly through the modulation of NF-κB- and NF-κB-regulated gene products.
Collapse
Affiliation(s)
- Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangsong Wu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yinan Zhou
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongchi Jiang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
36
|
Bräutigam L, Pudelko L, Jemth AS, Gad H, Narwal M, Gustafsson R, Karsten S, Carreras Puigvert J, Homan E, Berndt C, Berglund UW, Stenmark P, Helleday T. Hypoxic Signaling and the Cellular Redox Tumor Environment Determine Sensitivity to MTH1 Inhibition. Cancer Res 2016; 76:2366-75. [PMID: 26862114 DOI: 10.1158/0008-5472.can-15-2380] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/29/2016] [Indexed: 11/16/2022]
Abstract
Cancer cells are commonly in a state of redox imbalance that drives their growth and survival. To compensate for oxidative stress induced by the tumor redox environment, cancer cells upregulate specific nononcogenic addiction enzymes, such as MTH1 (NUDT1), which detoxifies oxidized nucleotides. Here, we show that increasing oxidative stress in nonmalignant cells induced their sensitization to the effects of MTH1 inhibition, whereas decreasing oxidative pressure in cancer cells protected against inhibition. Furthermore, we purified zebrafish MTH1 and solved the crystal structure of MTH1 bound to its inhibitor, highlighting the zebrafish as a relevant tool to study MTH1 biology. Delivery of 8-oxo-dGTP and 2-OH-dATP to zebrafish embryos was highly toxic in the absence of MTH1 activity. Moreover, chemically or genetically mimicking activated hypoxia signaling in zebrafish revealed that pathologic upregulation of the HIF1α response, often observed in cancer and linked to poor prognosis, sensitized embryos to MTH1 inhibition. Using a transgenic zebrafish line, in which the cellular redox status can be monitored in vivo, we detected an increase in oxidative pressure upon activation of hypoxic signaling. Pretreatment with the antioxidant N-acetyl-L-cysteine protected embryos with activated hypoxia signaling against MTH1 inhibition, suggesting that the aberrant redox environment likely causes sensitization. In summary, MTH1 inhibition may offer a general approach to treat cancers characterized by deregulated hypoxia signaling or redox imbalance. Cancer Res; 76(8); 2366-75. ©2016 AACR.
Collapse
Affiliation(s)
- Lars Bräutigam
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Linda Pudelko
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helge Gad
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mohit Narwal
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Stella Karsten
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jordi Carreras Puigvert
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Evert Homan
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Life Science Center, Düsseldorf, Germany
| | - Ulrika Warpman Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
37
|
Carbohydrate-based inducers of cellular stress for targeting cancer cells. Bioorg Med Chem Lett 2016; 26:1452-6. [PMID: 26832785 DOI: 10.1016/j.bmcl.2016.01.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/30/2023]
Abstract
Small molecules that block the altered metabolism in cancer or increase the production of reactive oxygen species (ROS) are emerging as potential anti-cancer agents. Considering that various carbohydrates can be used for cellular energetics or protein N-glycosylation of which interruption can lead to cellular stress, we have synthesized and evaluated a library of N-aryl glycosides for induction of ROS and cytotoxicity in H1299 cancer cell line. Two N-aryl glycosides (K8 and H8) were identified that induce about 2-fold induction of ROS and cytotoxicity in H1299 cells. We further showed that the acetylated form of K8 (K8A) activates AMPK, and stabilizes p53 in HEK293 cells, and induce a higher cytotoxicity than 2-deoxy-d-glucose in H1299 cell line.
Collapse
|
38
|
Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL, Bodycombe NE, Soule CK, Alexander B, Li A, Montgomery P, Kotz JD, Hon CSY, Munoz B, Liefeld T, Dančík V, Haber DA, Clish CB, Bittker JA, Palmer M, Wagner BK, Clemons PA, Shamji AF, Schreiber SL. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 2015; 12:109-16. [PMID: 26656090 PMCID: PMC4718762 DOI: 10.1038/nchembio.1986] [Citation(s) in RCA: 538] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Changes in cellular gene expression in response to small-molecule or genetic perturbations have yielded signatures that can connect unknown mechanisms of action (MoA) to ones previously established. We hypothesized that differential basal gene expression could be correlated with patterns of small-molecule sensitivity across many cell lines to illuminate the actions of compounds whose MoA are unknown. To test this idea, we correlated the sensitivity patterns of 481 compounds with ∼19,000 basal transcript levels across 823 different human cancer cell lines and identified selective outlier transcripts. This process yielded many novel mechanistic insights, including the identification of activation mechanisms, cellular transporters and direct protein targets. We found that ML239, originally identified in a phenotypic screen for selective cytotoxicity in breast cancer stem-like cells, most likely acts through activation of fatty acid desaturase 2 (FADS2). These data and analytical tools are available to the research community through the Cancer Therapeutics Response Portal.
Collapse
Affiliation(s)
| | - Brinton Seashore-Ludlow
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Jaime H Cheah
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Drew J Adams
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Edmund V Price
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | - Sarah Javaid
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | - Nicole E Bodycombe
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | - Christian K Soule
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | - Ava Li
- Broad Institute, Cambridge, Massachusetts, USA
| | | | | | | | | | - Ted Liefeld
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA
| | | | | | - Michelle Palmer
- Broad Institute, Cambridge, Massachusetts, USA.,Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden (B.S.L); Koch Institute for Cancer Research at MIT, Cambridge, Massachusetts, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Novartis Institutes for Biomedical Research, Emeryville, California, USA; Pfizer, Cambridge, Massachusetts, USA; University of California San Diego School of Medicine, La Jolla, California, USA; ImmunoGen, Waltham, Massachusetts, USA
| | | | | | | | | |
Collapse
|
39
|
Wang L, Yu Y, Chow DC, Yan F, Hsu CC, Stossi F, Mancini MA, Palzkill T, Liao L, Zhou S, Xu J, Lonard DM, O'Malley BW. Characterization of a Steroid Receptor Coactivator Small Molecule Stimulator that Overstimulates Cancer Cells and Leads to Cell Stress and Death. Cancer Cell 2015; 28:240-52. [PMID: 26267537 PMCID: PMC4536575 DOI: 10.1016/j.ccell.2015.07.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 03/12/2015] [Accepted: 07/10/2015] [Indexed: 12/18/2022]
Abstract
By integrating growth pathways on which cancer cells rely, steroid receptor coactivators (SRC-1, SRC-2, and SRC-3) represent emerging targets in cancer therapeutics. High-throughput screening for SRC small molecule inhibitors (SMIs) uncovered MCB-613 as a potent SRC small molecule "stimulator" (SMS). We demonstrate that MCB-613 can super-stimulate SRCs' transcriptional activity. Further investigation revealed that MCB-613 increases SRCs' interactions with other coactivators and markedly induces ER stress coupled to the generation of reactive oxygen species (ROS). Because cancer cells overexpress SRCs and rely on them for growth, we show that we can exploit MCB-613 to selectively induce excessive stress in cancer cells. This suggests that over-stimulating the SRC oncogenic program can be an effective strategy to kill cancer cells.
Collapse
Affiliation(s)
- Lei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dar-Chone Chow
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fei Yan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Chao Hsu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy Palzkill
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suoling Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Kempema AM, Widen JC, Hexum JK, Andrews TE, Wang D, Rathe SK, Meece FA, Noble KE, Sachs Z, Largaespada DA, Harki DA. Synthesis and antileukemic activities of C1-C10-modified parthenolide analogues. Bioorg Med Chem 2015; 23:4737-4745. [PMID: 26088334 DOI: 10.1016/j.bmc.2015.05.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/24/2015] [Indexed: 01/08/2023]
Abstract
Parthenolide (PTL) is a sesquiterpene lactone natural product with anti-proliferative activity to cancer cells. Selective eradication of leukemic stem cells (LSCs) over healthy hematopoietic stem cells (HSCs) by PTL has been demonstrated in previous studies, which suggests PTL and related molecules may be useful for targeting LSCs. Eradication of LSCs is required for curative therapy. Chemical optimizations of PTL to improve potency and pharmacokinetic parameters have focused largely on the α-methylene-γ-butyrolactone, which is essential for activity. Conversely, we evaluated modifications to the C1-C10 olefin and benchmarked new inhibitors to PTL with respect to inhibitory potency across a panel of cancer cell lines, ability to target drug-resistant acute myeloid leukemia (AML) cells, efficacy for inhibiting clonal growth of AML cells, toxicity to healthy bone marrow cells, and efficiency for promoting intracellular reactive oxygen species (ROS) levels. Cyclopropane 4 was found to possess less toxicity to healthy bone marrow cells, enhanced potency for the induction of cellular ROS, and similar broad-spectrum anti-proliferative activity to cancer cells in comparison to PTL.
Collapse
Affiliation(s)
- Aaron M Kempema
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - John C Widen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph K Hexum
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy E Andrews
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Wang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Frederick A Meece
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Klara E Noble
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zohar Sachs
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Singh S, Chakraborty A, Singh V, Molla A, Hussain S, Singh MK, Das P. DNA mediated assembly of quantum dot–protoporphyrin IX FRET probes and the effect of FRET efficiency on ROS generation. Phys Chem Chem Phys 2015; 17:5973-81. [DOI: 10.1039/c4cp05306k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dot-protoporphyrin IX FRET probes are assembled through DNA hybridization and the efficiency of FRET and ROS generation was studied.
Collapse
Affiliation(s)
- Seema Singh
- Department of Chemistry
- Indian Institute of Technology
- Patna-800013
- India
| | | | - Vandana Singh
- Department of Chemistry
- Indian Institute of Technology
- Patna-800013
- India
| | - Aniruddha Molla
- Department of Chemistry
- Indian Institute of Technology
- Patna-800013
- India
| | - Sahid Hussain
- Department of Chemistry
- Indian Institute of Technology
- Patna-800013
- India
| | - Manoj K. Singh
- Atomic and Molecular Physics Division
- Bhabha Atomic Research Centre
- Mumbai-400085
- India
| | - Prolay Das
- Department of Chemistry
- Indian Institute of Technology
- Patna-800013
- India
| |
Collapse
|
42
|
Imbeault E, Mahvelati TM, Braun R, Gris P, Gris D. Nlrx1 regulates neuronal cell death. Mol Brain 2014; 7:90. [PMID: 25540124 PMCID: PMC4302421 DOI: 10.1186/s13041-014-0090-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/14/2014] [Indexed: 12/20/2022] Open
Abstract
Background Regulation of cell death during neurodegeneration is one of the key factors that play a role in the speed at which a disease progresses. Out of several cellular pathways responsible for this progression, necrosis and apoptosis are situated on the opposite spectrum of cell death regulation. Necrosis produces an environment that promotes inflammation and cytotoxicity and apoptosis is a highly organized process that maintains tissue homeostasis. A recently discovered protein, Nlrx1, regulates inflammatory and cell death responses during infection. Findings Using transfections of N2A cell line, we demonstrate that Nlrx1 redirects cells away from necrosis and towards an apoptotic pathway following rotenone treatments. In addition, Nlrx1 promotes DRP1 phosphorylation and increases mitochondrial fission. Conclusion Our results suggest a novel molecular pathway for regulating mitochondrial dynamics and neuronal death. Nlrx1 may play an important role in neurodegenerative diseases, where necrosis is a prominent factor.
Collapse
Affiliation(s)
- Emilie Imbeault
- Program of Immunology, Department of Paediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada.
| | - Tara M Mahvelati
- Program of Immunology, Department of Paediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada.
| | - Ralf Braun
- Institut fuer Zellbiologie, Universitaet Bayreuth, Bayreuth, Germany.
| | - Pavel Gris
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada.
| | - Denis Gris
- Program of Immunology, Department of Paediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
43
|
Ruthenium(II) polypyridyl complexes: synthesis, cytotoxicity in vitro, reactive oxygen species, mitochondrial membrane potential and cell cycle arrest studies. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9901-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Kim D, Park GB, Hur DY. Apoptotic signaling through reactive oxygen species in cancer cells. World J Immunol 2014; 4:158-173. [DOI: 10.5411/wji.v4.i3.158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 10/16/2014] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) take part in diverse biological processes like cell growth, programmed cell death, cell senescence, and maintenance of the transformed state through regulation of signal transduction. Cancer cells adapt to new higher ROS circumstance. Sometimes, ROS induce cancer cell proliferation. Meanwhile, elevated ROS render cancer cells vulnerable to oxidative stress-induced cell death. However, this prominent character of cancer cells allows acquiring a resistance to oxidative stress conditions relative to normal cells. Activated signaling pathways that increase the level of intracellular ROS in cancer cells not only render up-regulation of several genes involved in cellular proliferation and evasion of apoptosis but also cause cancer cells and cancer stem cells to develop a high metabolic rate. In over the past several decades, many studies have indicated that ROS play a critical role as the secondary messenger of tumorigenesis and metastasis in cancer from both in vitro and in vivo. Here we summarize the role of ROS and anti-oxidants in contributing to or preventing cancer. In addition, we review the activated signaling pathways that make cancer cells susceptible to death.
Collapse
|
45
|
|
46
|
Han JG, Gupta SC, Prasad S, Aggarwal BB. Piperlongumine chemosensitizes tumor cells through interaction with cysteine 179 of IκBα kinase, leading to suppression of NF-κB-regulated gene products. Mol Cancer Ther 2014; 13:2422-35. [PMID: 25082961 DOI: 10.1158/1535-7163.mct-14-0171] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, two different reports appeared in prominent journals suggesting a mechanism by which piperlongumine, a pyridine alkaloid, mediates anticancer effects. In the current report, we describe another novel mechanism by which this alkaloid mediates its anticancer effects. We found that piperlongumine blocked NF-κB activated by TNFα and various other cancer promoters. This downregulation was accompanied by inhibition of phosphorylation and degradation of IκBα. Further investigation revealed that this pyridine alkaloid directly interacts with IκBα kinase (IKK) and inhibits its activity. Inhibition of IKK occurred through interaction with its cysteine 179 as the mutation of this residue to alanine abolished the activity of piperlongumine. Inhibition in NF-κB activity downregulated the expression of proteins involved in cell survival (Bcl-2, Bcl-xL, c-IAP-1, c-IAP-2, survivin), proliferation (c-Myc, cyclin D1), inflammation (COX-2, IL6), and invasion (ICAM-1, -9, CXCR-4, VEGF). Overall, our results reveal a novel mechanism by which piperlongumine can exhibit antitumor activity through downmodulation of proinflammatory pathway.
Collapse
Affiliation(s)
- Jia Gang Han
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. University of Mississippi Medical Center, Jackson, Mississippi
| | - Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
47
|
Barcelos RC, Pastre JC, Vendramini-Costa DB, Caixeta V, Longato GB, Monteiro PA, de Carvalho JE, Pilli RA. Design and synthesis of N-acylated aza-goniothalamin derivatives and evaluation of their in vitro and in vivo antitumor activity. ChemMedChem 2014; 9:2725-43. [PMID: 25263285 DOI: 10.1002/cmdc.201402292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Indexed: 01/24/2023]
Abstract
Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.
Collapse
Affiliation(s)
- Rosimeire Coura Barcelos
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970, Campinas, SP (Brazil)
| | | | | | | | | | | | | | | |
Collapse
|
48
|
A small molecule that induces reactive oxygen species via cellular glutathione depletion. Biochem J 2014; 463:53-63. [DOI: 10.1042/bj20140669] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new cytotoxic compound was found in our chemical library. We revealed that the compound induced reactive oxygen species through glutathione depletion. Moreover, the compound was effective against several cancer cell lines including those harbouring KRAS.
Collapse
|
49
|
Moghadamtousi SZ, Kadir HA, Paydar M, Rouhollahi E, Karimian H. Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:299. [PMID: 25127718 PMCID: PMC4246449 DOI: 10.1186/1472-6882-14-299] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/05/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Annona muricata leaves have been reported to have antiproliferative effects against various cancer cell lines. However, the detailed mechanism has yet to be defined. The current study was designed to evaluate the molecular mechanisms of A. muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells. METHODS The effect of AMEAE on cell proliferation of different cell lines was analyzed by MTT assay. High content screening (HCS) was applied to investigate the suppression of NF-κB translocation, cell membrane permeability, mitochondrial membrane potential (MMP) and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. The western blot analysis also carried out to determine the protein expression of cleaved caspase-3 and -9. Flow cytometry analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. Quantitative PCR analysis was performed to measure the gene expression of Bax and Bcl-2 proteins. RESULTS Cell viability analysis revealed the selective cytotoxic effect of AMEAE towards lung cancer cells, A549, with an IC50 value of 5.09 ± 0.41 μg/mL after 72 h of treatment. Significant LDH leakage and phosphatidylserine externalization were observed in AMEAE treated cells by fluorescence analysis. Treatment of A549 cells with AMEAE significantly elevated ROS formation, followed by attenuation of MMP via upregulation of Bax and downregulation of Bcl-2, accompanied by cytochrome c release to the cytosol. The incubation of A549 cells with superoxide dismutase and catalase significantly attenuated the cytotoxicity caused by AMEAE, indicating that intracellular ROS plays a pivotal role in cell death. The released cytochrome c triggered the activation of caspase-9 followed by caspase-3. In addition, AMEAE-induced apoptosis was accompanied by cell cycle arrest at G0/G1 phase. Moreover, AMEAE suppressed the induced translocation of NF-κB from cytoplasm to nucleus. CONCLUSIONS Our data showed for the first time that the ethyl acetate extract of Annona muricata inhibited the proliferation of A549 cells, leading to cell cycle arrest and programmed cell death through activation of the mitochondrial-mediated signaling pathway with the involvement of the NF-kB signalling pathway.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- />Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- />Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammadjavad Paydar
- />Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Elham Rouhollahi
- />Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- />Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Wu Y, Min X, Zhuang C, Li J, Yu Z, Dong G, Yao J, Wang S, Liu Y, Wu S, Zhu S, Sheng C, Wei Y, Zhang H, Zhang W, Miao Z. Design, synthesis and biological activity of piperlongumine derivatives as selective anticancer agents. Eur J Med Chem 2014; 82:545-51. [PMID: 24937186 DOI: 10.1016/j.ejmech.2014.05.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 12/14/2022]
Abstract
In an effort to expand the structure-activity relationship of the natural anticancer compound piperlongumine, we have prepared sixteen novel piperlongumine derivatives with halogen or morpholine substituents at C2 and alkyl substituents at C7. Most of 2-halogenated piperlongumines showed potent in vitro activity against four cancer cells and modest selectivity for lung normal cells. The highly active anticancer compound 11h exhibited obvious ROS elevation and excellent in vivo antitumor potency with suppressed tumor growth by 48.58% at the dose of 2 mg/kg. The results indicated that halogen substituents as electrophilic group at C2 played an important role in increasing cytotoxicity.
Collapse
Affiliation(s)
- Yuelin Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China; School of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, People's Republic of China
| | - Xiao Min
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Jin Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Zhiliang Yu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Jiangzhong Yao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Shengzheng Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Yang Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Shanchao Wu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Shiping Zhu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China
| | - Yunyang Wei
- School of Chemical Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing 210094, People's Republic of China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, People's Republic of China.
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China.
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|