1
|
Nguyen D, Osterlund E, Kale J, Andrews DW. The C-terminal sequences of Bcl-2 family proteins mediate interactions that regulate cell death. Biochem J 2024; 481:903-922. [PMID: 38985308 PMCID: PMC11346437 DOI: 10.1042/bcj20210352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Programmed cell death via the both intrinsic and extrinsic pathways is regulated by interactions of the Bcl-2 family protein members that determine whether the cell commits to apoptosis via mitochondrial outer membrane permeabilization (MOMP). Recently the conserved C-terminal sequences (CTSs) that mediate localization of Bcl-2 family proteins to intracellular membranes, have been shown to have additional protein-protein binding functions that contribute to the functions of these proteins in regulating MOMP. Here we review the pivotal role of CTSs in Bcl-2 family interactions including: (1) homotypic interactions between the pro-apoptotic executioner proteins that cause MOMP, (2) heterotypic interactions between pro-apoptotic and anti-apoptotic proteins that prevent MOMP, and (3) heterotypic interactions between the pro-apoptotic executioner proteins and the pro-apoptotic direct activator proteins that promote MOMP.
Collapse
Affiliation(s)
- Dang Nguyen
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - Elizabeth Osterlund
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Justin Kale
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
| | - David W. Andrews
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
- Biological Sciences Platform, Odette Cancer Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Alhammadi SHA, Baby B, Antony P, Jobe A, Humaid RSM, Alhammadi FJA, Vijayan R. Modeling the Binding of Anticancer Peptides and Mcl-1. Int J Mol Sci 2024; 25:6529. [PMID: 38928234 PMCID: PMC11203456 DOI: 10.3390/ijms25126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Mcl-1 (myeloid cell leukemia 1), a member of the Bcl-2 family, is upregulated in various types of cancer. Peptides representing the BH3 (Bcl-2 homology 3) region of pro-apoptotic proteins have been demonstrated to bind the hydrophobic groove of anti-apoptotic Mcl-1, and this interaction is responsible for regulating apoptosis. Structural studies have shown that, while there is high overall structural conservation among the anti-apoptotic Bcl-2 (B-cell lymphoma 2) proteins, differences in the surface groove of these proteins facilitates binding specificity. This binding specificity is crucial for the mechanism of action of the Bcl-2 family in regulating apoptosis. Bim-based peptides bind specifically to the hydrophobic groove of Mcl-1, emphasizing the importance of these interactions in the regulation of cell death. Molecular docking was performed with BH3-like peptides derived from Bim to identify high affinity peptides that bind to Mcl-1 and to understand the molecular mechanism of their interactions. The interactions of three identified peptides, E2gY, E2gI, and XXA1_F3dI, were further evaluated using 250 ns molecular dynamics simulations. Conserved hydrophobic residues of the peptides play an important role in their binding and the structural stability of the complexes. Understanding the molecular basis of interaction of these peptides will assist in the development of more effective Mcl-1 specific inhibitors.
Collapse
Affiliation(s)
- Shamsa Husain Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Raghad Salman Mohammed Humaid
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatema Jumaa Ahmed Alhammadi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
3
|
Zhu L, Man CW, Harrison RE, Wu Z, Limsakul P, Peng Q, Hashimoto M, Mamaril AP, Xu H, Liu L, Wang Y. Engineering a Programmed Death-Ligand 1-Targeting Monobody Via Directed Evolution for SynNotch-Gated Cell Therapy. ACS NANO 2024; 18:8531-8545. [PMID: 38456901 PMCID: PMC10958600 DOI: 10.1021/acsnano.4c01597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Programmed death-ligand 1 (PD-L1) is a promising target for cancer immunotherapy due to its ability to inhibit T cell activation; however, its expression on various noncancer cells may cause on-target off-tumor toxicity when designing PD-L1-targeting Chimeric Antigen Receptor (CAR) T cell therapies. Combining rational design and directed evolution of the human fibronectin-derived monobody scaffold, "PDbody" was engineered to bind to PD-L1 with a preference for a slightly lower pH, which is typical in the tumor microenvironment. PDbody was further utilized as a CAR to target the PD-L1-expressing triple negative MDA-MB-231 breast cancer cell line. To mitigate on-target off-tumor toxicity associated with targeting PD-L1, a Cluster of Differentiation 19 (CD19)-recognizing SynNotch IF THEN gate was integrated into the system. This CD19-SynNotch PDbody-CAR system was then expressed in primary human T cells to target CD19-expressing MDA-MB-231 cancer cells. These CD19-SynNotch PDbody-CAR T cells demonstrated both specificity and efficacy in vitro, accurately eradicating cancer targets in cytotoxicity assays. Moreover, in an in vivo bilateral murine tumor model, they exhibited the capability to effectively restrain tumor growth. Overall, CD19-SynNotch PDbody-CAR T cells represent a distinct development over previously published designs due to their increased efficacy, proliferative capability, and mitigation of off-tumor toxicity for solid tumor treatment.
Collapse
Affiliation(s)
- Linshan Zhu
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Chi-Wei Man
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California, 92093 United States
| | - Reed E.S. Harrison
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhuohang Wu
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Praopim Limsakul
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Division
of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
- Center of
Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand
| | - Qin Peng
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518132, P.R. China
| | - Matthew Hashimoto
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony P. Mamaril
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Hongquan Xu
- Department
of Statistics, University of California, Los Angeles, California 90095, United States
| | - Longwei Liu
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yingxiao Wang
- Department
of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California 92093, United States
- Alfred
E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Faraji N, Daly NL, Arab SS, Khosroushahi AY. In silico design of potential Mcl-1 peptide-based inhibitors. J Mol Model 2024; 30:108. [PMID: 38499818 DOI: 10.1007/s00894-024-05901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT BIM (Bcl-2 interacting mediator of apoptosis)-derived peptides that specifically target over-expressed Mcl-1 (myeloid cell leukemia-1) protein and induce apoptosis are potentially anti-cancer agents. Since the helicity of BIM-derived peptides has a crucial role in their functionality, a range of strategies have been used to increase the helicity including the introduction of unnatural residues and stapling methods that have some drawbacks such as the accumulation in the liver. To avoid these drawbacks, this study aimed to design a more helical peptide by utilizing bioinformatics algorithms and molecular dynamics simulations without exploiting unnatural residues and stapling methods. MM-PBSA results showed that the mutations of A4fE and A2eE in analogue 5 demonstrate a preference towards binding with Mcl-1. As evidenced by Circular dichroism results, the helicity increases from 18 to 34%, these findings could enhance the potential of analogue 5 as an anti-cancer agent targeting Mcl-1. The applied strategies in this research could shed light on the in silico peptide design. Moreover, analogue 5 as a drug candidate can be evaluated in vitro and in vivo studies. METHODS The sequence of the lead peptide was determined using the ApInAPDB database and PRALINE program. Contact finder and PDBsum web server softwares were used to determine the contact involved amino acids in complex with Mcl-1. All identified salt bridge contributing residues were unaltered to preserve the binding affinity. After proposing novel analogues, their secondary structures were predicted by Cham finder web server software and GOR, Neural Network, and Chou-Fasman algorithms. Finally, molecular dynamics simulations run for 100 ns were done using the GROMACS, version 5.0.7, with the CHARMM36 force field. MM-PBSA was used to assess binding affinity specificity in targeting Mcl-1 and Bcl-xL (B-cell lymphoma extra-large).
Collapse
Affiliation(s)
- Naser Faraji
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Wolf E, Lento C, Pu J, Dickinson BC, Wilson DJ. Innate Conformational Dynamics Drive Binding Specificity in Anti-Apoptotic Proteins Mcl-1 and Bcl-2. Biochemistry 2023; 62:1619-1630. [PMID: 37192192 PMCID: PMC10249625 DOI: 10.1021/acs.biochem.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/02/2023] [Indexed: 05/18/2023]
Abstract
The structurally conserved B-cell lymphoma 2 (Bcl-2) family of protein function to promote or inhibit apoptosis through an exceedingly complex web of specific, intrafamilial protein-protein interactions. The critical role of these proteins in lymphomas and other cancers has motivated a widespread interest in understanding the molecular mechanisms that drive specificity in Bcl-2 family interactions. However, the high degree of structural similarity among Bcl-2 homologues has made it difficult to rationalize the highly specific (and often divergent) binding behavior exhibited by these proteins using conventional structural arguments. In this work, we use time-resolved hydrogen deuterium exchange mass spectrometry to explore shifts in conformational dynamics associated with binding partner engagement in the Bcl-2 family proteins Bcl-2 and Mcl-1. Using this approach combined with homology modeling, we reveal that Mcl-1 binding is driven by a large-scale shift in conformational dynamics, while Bcl-2 complexation occurs primarily through a classical charge compensation mechanism. This work has implications for understanding the evolution of internally regulated biological systems composed of structurally similar proteins and for the development of drugs targeting Bcl-2 family proteins for promotion of apoptosis in cancer.
Collapse
Affiliation(s)
- Esther Wolf
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Cristina Lento
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jinyue Pu
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Derek J. Wilson
- Department
of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
6
|
Last but not least: BFL-1 as an emerging target for anti-cancer therapies. Biochem Soc Trans 2022; 50:1119-1128. [PMID: 35900226 PMCID: PMC9444066 DOI: 10.1042/bst20220153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022]
Abstract
BFL-1 is an understudied pro-survival BCL-2 protein. The expression of BFL-1 is reported in many cancers, but it is yet to be clarified whether high transcript expression also always correlates with a pro-survival function. However, recent applications of BH3-mimetics for the treatment of blood cancers identified BFL-1 as a potential resistance factor in this type of cancer. Hence, understanding the role of BFL-1 in human cancers and how its up-regulation leads to therapy resistance has become an area of great clinical relevance. In addition, deletion of the murine homologue of BFL-1, called A1, in mice showed only minimal impacts on the well-being of these animals, suggesting drugs targeting BFL-1 would exhibit limited on-target toxicities. BFL-1 therefore represents a good clinical cancer target. Currently, no effective BFL-1 inhibitors exist, which is likely due to the underappreciation of BFL-1 as a potential target in the clinic and lack of understanding of the BFL-1 protein. In this review, the roles of BFL-1 in the development of different types of cancers and drug resistant mechanisms are discussed and some recent advances in the generation of BFL-1 inhibitors highlighted.
Collapse
|
7
|
Miles JA, Hobor F, Trinh CH, Taylor J, Tiede C, Rowell PR, Jackson BR, Nadat FA, Ramsahye P, Kyle HF, Wicky BIM, Clarke J, Tomlinson DC, Wilson AJ, Edwards TA. Selective Affimers Recognise the BCL-2 Family Proteins BCL-x L and MCL-1 through Noncanonical Structural Motifs*. Chembiochem 2021; 22:232-240. [PMID: 32961017 PMCID: PMC7821230 DOI: 10.1002/cbic.202000585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Indexed: 12/26/2022]
Abstract
The BCL-2 family is a challenging group of proteins to target selectively due to sequence and structural homologies across the family. Selective ligands for the BCL-2 family regulators of apoptosis are useful as probes to understand cell biology and apoptotic signalling pathways, and as starting points for inhibitor design. We have used phage display to isolate Affimer reagents (non-antibody-binding proteins based on a conserved scaffold) to identify ligands for MCL-1, BCL-xL , BCL-2, BAK and BAX, then used multiple biophysical characterisation methods to probe the interactions. We established that purified Affimers elicit selective recognition of their target BCL-2 protein. For anti-apoptotic targets BCL-xL and MCL-1, competitive inhibition of their canonical protein-protein interactions is demonstrated. Co-crystal structures reveal an unprecedented mode of molecular recognition; where a BH3 helix is normally bound, flexible loops from the Affimer dock into the BH3 binding cleft. Moreover, the Affimers induce a change in the target proteins towards a desirable drug-bound-like conformation. These proof-of-concept studies indicate that Affimers could be used as alternative templates to inspire the design of selective BCL-2 family modulators and more generally other protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Jennifer A. Miles
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Fruzsina Hobor
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Chi H. Trinh
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - James Taylor
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Christian Tiede
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Philip R. Rowell
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Brian R. Jackson
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Protein Production FacilityUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Fatima A. Nadat
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Protein Production FacilityUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Pallavi Ramsahye
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Hannah F. Kyle
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Basile I. M. Wicky
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Jane Clarke
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Darren C. Tomlinson
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Andrew J. Wilson
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of ChemistryUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| | - Thomas A. Edwards
- School of Molecular and Cellular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- Astbury Centre For Structural Molecular BiologyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
8
|
Foight GW, Wang Z, Wei CT, Jr Greisen P, Warner KM, Cunningham-Bryant D, Park K, Brunette TJ, Sheffler W, Baker D, Maly DJ. Multi-input chemical control of protein dimerization for programming graded cellular responses. Nat Biotechnol 2019; 37:1209-1216. [PMID: 31501561 PMCID: PMC6776690 DOI: 10.1038/s41587-019-0242-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Chemical and optogenetic methods for post-translationally controlling protein function have enabled modulation and engineering of cellular functions. However, most of these methods only confer single-input, single-output control. To increase the diversity of post-translational behaviors that can be programmed, we built a system based on a single protein receiver that can integrate multiple drug inputs, including approved therapeutics. Our system translates drug inputs into diverse outputs using a suite of engineered reader proteins to provide variable dimerization states of the receiver protein. We show that our single receiver protein architecture can be used to program a variety of cellular responses, including graded and proportional dual-output control of transcription and mammalian cell signaling. We apply our tools to titrate the competing activities of the Rac and Rho GTPases to control cell morphology. Our versatile tool set will enable researchers to post-translationally program mammalian cellular processes and to engineer cell therapies.
Collapse
Affiliation(s)
- Glenna Wink Foight
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Zhizhi Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Cindy T Wei
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Per Jr Greisen
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Global Research, Novo Nordisk A/S, Måløv, Denmark
| | - Katrina M Warner
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | - Keunwan Park
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Systems Biotechnology Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - T J Brunette
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - William Sheffler
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Linciano S, Pluda S, Bacchin A, Angelini A. Molecular evolution of peptides by yeast surface display technology. MEDCHEMCOMM 2019; 10:1569-1580. [PMID: 31803399 PMCID: PMC6836575 DOI: 10.1039/c9md00252a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Genetically encoded peptides possess unique properties, such as a small molecular weight and ease of synthesis and modification, that make them suitable to a large variety of applications. However, despite these favorable qualities, naturally occurring peptides are often limited by intrinsic weak binding affinities, poor selectivity and low stability that ultimately restrain their final use. To overcome these limitations, a large variety of in vitro display methodologies have been developed over the past few decades to evolve genetically encoded peptide molecules with superior properties. Phage display, mRNA display, ribosome display, bacteria display, and yeast display are among the most commonly used methods to engineer peptides. While most of these in vitro methodologies have already been described in detail elsewhere, this review describes solely the yeast surface display technology and its valuable use for the evolution of a wide range of peptide formats.
Collapse
Affiliation(s)
- Sara Linciano
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Stefano Pluda
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- Fidia Farmaceutici S.p.A , Via Ponte della Fabbrica 3/A , Abano Terme 35031 , Italy
| | - Arianna Bacchin
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- European Centre for Living Technology (ECLT) , Ca' Bottacin, Dorsoduro 3911, Calle Crosera , Venice 30123 , Italy .
| |
Collapse
|
10
|
Frappier V, Jenson JM, Zhou J, Grigoryan G, Keating AE. Tertiary Structural Motif Sequence Statistics Enable Facile Prediction and Design of Peptides that Bind Anti-apoptotic Bfl-1 and Mcl-1. Structure 2019; 27:606-617.e5. [PMID: 30773399 PMCID: PMC6447450 DOI: 10.1016/j.str.2019.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/20/2018] [Accepted: 01/18/2019] [Indexed: 12/25/2022]
Abstract
Understanding the relationship between protein sequence and structure well enough to design new proteins with desired functions is a longstanding goal in protein science. Here, we show that recurring tertiary structural motifs (TERMs) in the PDB provide rich information for protein-peptide interaction prediction and design. TERM statistics can be used to predict peptide binding energies for Bcl-2 family proteins as accurately as widely used structure-based tools. Furthermore, design using TERM energies (dTERMen) rapidly and reliably generates high-affinity peptide binders of anti-apoptotic proteins Bfl-1 and Mcl-1 with just 15%-38% sequence identity to any known native Bcl-2 family protein ligand. High-resolution structures of four designed peptides bound to their targets provide opportunities to analyze the strengths and limitations of the computational design method. Our results support dTERMen as a powerful approach that can complement existing tools for protein engineering.
Collapse
Affiliation(s)
- Vincent Frappier
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin M Jenson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jianfu Zhou
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA; Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA; Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Peptide design by optimization on a data-parameterized protein interaction landscape. Proc Natl Acad Sci U S A 2018; 115:E10342-E10351. [PMID: 30322927 DOI: 10.1073/pnas.1812939115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many applications in protein engineering require optimizing multiple protein properties simultaneously, such as binding one target but not others or binding a target while maintaining stability. Such multistate design problems require navigating a high-dimensional space to find proteins with desired characteristics. A model that relates protein sequence to functional attributes can guide design to solutions that would be hard to discover via screening. In this work, we measured thousands of protein-peptide binding affinities with the high-throughput interaction assay amped SORTCERY and used the data to parameterize a model of the alpha-helical peptide-binding landscape for three members of the Bcl-2 family of proteins: Bcl-xL, Mcl-1, and Bfl-1. We applied optimization protocols to explore extremes in this landscape to discover peptides with desired interaction profiles. Computational design generated 36 peptides, all of which bound with high affinity and specificity to just one of Bcl-xL, Mcl-1, or Bfl-1, as intended. We designed additional peptides that bound selectively to two out of three of these proteins. The designed peptides were dissimilar to known Bcl-2-binding peptides, and high-resolution crystal structures confirmed that they engaged their targets as expected. Excellent results on this challenging problem demonstrate the power of a landscape modeling approach, and the designed peptides have potential uses as diagnostic tools or cancer therapeutics.
Collapse
|
12
|
D de Araujo A, Lim J, Wu KC, Xiang Y, Good AC, Skerlj R, Fairlie DP. Bicyclic Helical Peptides as Dual Inhibitors Selective for Bcl2A1 and Mcl-1 Proteins. J Med Chem 2018; 61:2962-2972. [PMID: 29584430 DOI: 10.1021/acs.jmedchem.8b00010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A 26-residue peptide BimBH3 binds indiscriminately to multiple oncogenic Bcl2 proteins that regulate apoptosis of cancer cells. Specific inhibition of the BimBH3-Bcl2A1 protein-protein interaction was obtained in vitro and in cancer cells by shortening the peptide to 14 residues, inserting two cyclization constraints to stabilize a water-stable α-helix, and incorporating an N-terminal acrylamide electrophile for selective covalent bonding to Bcl2A1. Mass spectrometry of trypsin-digested bands on electrophoresis gels established covalent bonding of an electrophilic helix to just one of the three cysteines in Bcl2A1, the one (Cys55) at the BimBH3-Bcl2A1 protein-protein interaction interface. Optimizing the helix-inducing constraints and the sequence subsequently enabled electrophile removal without loss of inhibitor potency. The bicyclic helical peptides were potent, cell permeable, plasma-stable, dual inhibitors of Bcl2A1 and Mcl-1 with high selectivity over other Bcl2 proteins. One bicyclic peptide was shown to inhibit the interaction between a pro-apoptotic protein (Bim) and either endogenous Bcl2A1 or Mcl-1, to induce apoptosis of SKMel28 human melanoma cells, and to sensitize them for enhanced cell death by the anticancer drug etoposide. These approaches look promising for chemically silencing intracellular proteins.
Collapse
Affiliation(s)
- Aline D de Araujo
- Division of Chemistry and Structural Biology, ARC Centre of Excellence in Advanced Molecular Imaging , Institute for Molecular Bioscience, The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, ARC Centre of Excellence in Advanced Molecular Imaging , Institute for Molecular Bioscience, The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, ARC Centre of Excellence in Advanced Molecular Imaging , Institute for Molecular Bioscience, The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Yibin Xiang
- Noliva Therapeutics LLC , Newton , Massachusetts 02465 , United States
| | - Andrew C Good
- Noliva Therapeutics LLC , Newton , Massachusetts 02465 , United States
| | - Renato Skerlj
- Noliva Therapeutics LLC , Newton , Massachusetts 02465 , United States
| | - David P Fairlie
- Division of Chemistry and Structural Biology, ARC Centre of Excellence in Advanced Molecular Imaging , Institute for Molecular Bioscience, The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
13
|
Foight GW, Chen TS, Richman D, Keating AE. Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design. Methods Mol Biol 2018; 1561:213-232. [PMID: 28236241 DOI: 10.1007/978-1-4939-6798-8_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.
Collapse
Affiliation(s)
- Glenna Wink Foight
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg., 68-622, Cambridge, MA, 02139, USA
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - T Scott Chen
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg., 68-622, Cambridge, MA, 02139, USA
- Google Inc., Mountain View, CA, 94043, USA
| | - Daniel Richman
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg., 68-622, Cambridge, MA, 02139, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg., 68-622, Cambridge, MA, 02139, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg., 68-622, Cambridge, MA, 02139, USA.
| |
Collapse
|
14
|
Defining specificity and on-target activity of BH3-mimetics using engineered B-ALL cell lines. Oncotarget 2017; 7:11500-11. [PMID: 26862853 PMCID: PMC4905489 DOI: 10.18632/oncotarget.7204] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
One of the hallmarks of cancer is a resistance to the induction of programmed cell death that is mediated by selection of cells with elevated expression of anti-apoptotic members of the BCL-2 family. To counter this resistance, new therapeutic agents known as BH3-mimetic small molecules are in development with the goal of antagonizing the function of anti-apoptotic molecules and promoting the induction of apoptosis. To facilitate the testing and modeling of BH3-mimetic agents, we have developed a powerful system for evaluation and screening of agents both in culture and in immune competent animal models by engineering mouse leukemic cells and re-programming them to be dependent on exogenously expressed human anti-apoptotic BCL-2 family members. Here we demonstrate that this panel of cell lines can determine the specificity of BH3-mimetics to individual anti-apoptotic BCL-2 family members (BCL-2, BCL-XL, BCL-W, BFL-1, and MCL-1), demonstrate whether cell death is due to the induction of apoptosis (BAX and BAK-dependent), and faithfully assess the efficacy of BH3-mimetic small molecules in pre-clinical mouse models. These cells represent a robust and valuable pre-clinical screening tool for validating the efficacy, selectivity, and on-target action of BH3-mimetic agents.
Collapse
|
15
|
Chen Y, Wang J, Zhang J, Wang W. Binding modes of Bcl-2 homology 3 (BH3) peptides with anti-apoptotic protein A1 and redesign of peptide inhibitors: a computational study. J Biomol Struct Dyn 2017; 36:3967-3977. [DOI: 10.1080/07391102.2017.1404933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Zhang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
Modi V, Sankararamakrishnan R. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides. J Mol Graph Model 2017; 73:115-128. [PMID: 28279820 DOI: 10.1016/j.jmgm.2016.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/29/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023]
Abstract
The anti-apoptotic members of Bcl-2 family of proteins bind to their pro-apoptotic counterparts to induce or prevent cell death.Based on the distinct binding profiles for specific pro-apoptotic BH3 peptides, the anti-apoptotic Bcl-2 proteins can be divided into at least two subclasses. The subclass that includes Bcl-XL binds strongly to Bad BH3 peptide while it has weak binding affinity for the second subclass of Bcl-2 proteins such as Mcl-1 and A1. Anti-apoptotic Bcl-2 proteins are considered to be attractive drug targets for anti-cancer drugs. BH3-mimetic inhibitors such as ABT-737 have been shown to be specific to Bcl-XL subclass while Mcl-1 and A1 show resistance to the same drug. An efficacious inhibitor should target all the anti-apoptotic Bcl-2 proteins. Hence, development of inhibitors selective to Mcl-1 and A1 is of prime importance for targeted cancer therapeutics. The first step to achieve this goal is to understand the molecular basis of high binding affinities of specific pro-apoptotic BH3 peptides for Mcl-1 and A1. To understand the interactions between the BH3 peptides and Mcl-1/A1, we performed multi-nanosecond molecular dynamics (MD) simulations of six complex structures of Mcl-1 and A1. With the exception of Bad, all complex structures were experimentally determined. Bad complex structures were modeled. Our simulation studies identified specific pattern of polar interactions between Mcl-1/A1 and high-affinity binding BH3 peptides. The lack of such polar interactions in Bad peptide complex is attributed to specific basic residues present before and after the highly conserved Leu residue. The close approach of basic residues in Bad and Mcl-1/A1 is hypothesized to be the cause of weak binding affinity. To test this hypothesis, we generated in silico mutants of these basic residues in Bad peptide and Mcl-1/A1 proteins. MD simulations of the mutant systems established the pattern of stable polar interactions observed in high-affinity binding BH3 peptides. We have thus identified specific residue positions in Bad and Mcl-1/A1 responsible for the weak binding affinity. Results from these simulation studies will aid in the development of inhibitors specific to Mcl-1 and A1 proteins.
Collapse
Affiliation(s)
- Vivek Modi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | | |
Collapse
|
17
|
Jenson JM, Ryan JA, Grant RA, Letai A, Keating AE. Epistatic mutations in PUMA BH3 drive an alternate binding mode to potently and selectively inhibit anti-apoptotic Bfl-1. eLife 2017; 6:e25541. [PMID: 28594323 PMCID: PMC5464773 DOI: 10.7554/elife.25541] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023] Open
Abstract
Overexpression of anti-apoptotic Bcl-2 family proteins contributes to cancer progression and confers resistance to chemotherapy. Small molecules that target Bcl-2 are used in the clinic to treat leukemia, but tight and selective inhibitors are not available for Bcl-2 paralog Bfl-1. Guided by computational analysis, we designed variants of the native BH3 motif PUMA that are > 150-fold selective for Bfl-1 binding. The designed peptides potently trigger disruption of the mitochondrial outer membrane in cells dependent on Bfl-1, but not in cells dependent on other anti-apoptotic homologs. High-resolution crystal structures show that designed peptide FS2 binds Bfl-1 in a shifted geometry, relative to PUMA and other binding partners, due to a set of epistatic mutations. FS2 modified with an electrophile reacts with a cysteine near the peptide-binding groove to augment specificity. Designed Bfl-1 binders provide reagents for cellular profiling and leads for developing enhanced and cell-permeable peptide or small-molecule inhibitors.
Collapse
Affiliation(s)
- Justin M Jenson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jeremy A Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States,Department of Biology, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States,
| |
Collapse
|
18
|
Berger S, Procko E, Margineantu D, Lee EF, Shen BW, Zelter A, Silva DA, Chawla K, Herold MJ, Garnier JM, Johnson R, MacCoss MJ, Lessene G, Davis TN, Stayton PS, Stoddard BL, Fairlie WD, Hockenbery DM, Baker D. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. eLife 2016; 5. [PMID: 27805565 PMCID: PMC5127641 DOI: 10.7554/elife.20352] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.
Collapse
Affiliation(s)
- Stephanie Berger
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Erik Procko
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Biochemistry, University of Illinois, Urbana, United States
| | - Daciana Margineantu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Erinna F Lee
- Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia.,Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Betty W Shen
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Daniel-Adriano Silva
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States
| | - Kusum Chawla
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Jean-Marc Garnier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, United States
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Patrick S Stayton
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Barry L Stoddard
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - W Douglas Fairlie
- Department of Chemistry and Physics, LaTrobe Institute for Molecular Science, Melbourne, Australia.,Olivia Newton-John Cancer Research Institute, Olivia Newton-John Cancer and Wellness Centre, Heidelberg, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - David M Hockenbery
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, United States.,Institute for Protein Design, University of Washington, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
19
|
Tripathi A, Gupta K, Khare S, Jain PC, Patel S, Kumar P, Pulianmackal AJ, Aghera N, Varadarajan R. Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data. Mol Biol Evol 2016; 33:2960-2975. [PMID: 27563054 PMCID: PMC5062330 DOI: 10.1093/molbev/msw182] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95pdz3) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo. This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations.
Collapse
Affiliation(s)
- Arti Tripathi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kritika Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Pankaj C Jain
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Siddharth Patel
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Prasanth Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
20
|
Rezaei Araghi R, Keating AE. Designing helical peptide inhibitors of protein-protein interactions. Curr Opin Struct Biol 2016; 39:27-38. [PMID: 27123812 DOI: 10.1016/j.sbi.2016.04.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 04/03/2016] [Indexed: 02/04/2023]
Abstract
Short helical peptides combine characteristics of small molecules and large proteins and provide an exciting area of opportunity in protein design. A growing number of studies report novel helical peptide inhibitors of protein-protein interactions. New techniques have been developed for peptide design and for chemically stabilizing peptides in a helical conformation, which frequently improves protease resistance and cell permeability. We summarize advances in peptide crosslinking chemistry and give examples of peptide design studies targeting coiled-coil transcription factors, Bcl-2 family proteins, MDM2/MDMX, and HIV gp41, among other targets.
Collapse
Affiliation(s)
- Raheleh Rezaei Araghi
- MIT Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Amy E Keating
- MIT Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; MIT Department of Biological Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
21
|
Rosenfeld L, Heyne M, Shifman JM, Papo N. Protein Engineering by Combined Computational and In Vitro Evolution Approaches. Trends Biochem Sci 2016; 41:421-433. [PMID: 27061494 DOI: 10.1016/j.tibs.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/30/2022]
Abstract
Two alternative strategies are commonly used to study protein-protein interactions (PPIs) and to engineer protein-based inhibitors. In one approach, binders are selected experimentally from combinatorial libraries of protein mutants that are displayed on a cell surface. In the other approach, computational modeling is used to explore an astronomically large number of protein sequences to select a small number of sequences for experimental testing. While both approaches have some limitations, their combination produces superior results in various protein engineering applications. Such applications include the design of novel binders and inhibitors, the enhancement of affinity and specificity, and the mapping of binding epitopes. The combination of these approaches also aids in the understanding of the specificity profiles of various PPIs.
Collapse
Affiliation(s)
- Lior Rosenfeld
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Heyne
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Julia M Shifman
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
22
|
Taherzadeh G, Yang Y, Zhang T, Liew AW, Zhou Y. Sequence‐based prediction of protein–peptide binding sites using support vector machine. J Comput Chem 2016; 37:1223-9. [DOI: 10.1002/jcc.24314] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ghazaleh Taherzadeh
- School of Information and Communication TechnologyGriffith UniversityParklands DriveSouthport Queensland4215 Australia
| | - Yuedong Yang
- School of Information and Communication TechnologyGriffith UniversityParklands DriveSouthport Queensland4215 Australia
- Institute for Glycomics, Griffith UniversityParklands DrSouthport Queensland4215 Australia
| | - Tuo Zhang
- Weill Cornell Medical College1300 York AvenueNew York, New York10065
| | - Alan Wee‐Chung Liew
- School of Information and Communication TechnologyGriffith UniversityParklands DriveSouthport Queensland4215 Australia
| | - Yaoqi Zhou
- School of Information and Communication TechnologyGriffith UniversityParklands DriveSouthport Queensland4215 Australia
- Institute for Glycomics, Griffith UniversityParklands DrSouthport Queensland4215 Australia
| |
Collapse
|
23
|
Foight GW, Keating AE. Locating Herpesvirus Bcl-2 Homologs in the Specificity Landscape of Anti-Apoptotic Bcl-2 Proteins. J Mol Biol 2015; 427:2468-2490. [PMID: 26009469 DOI: 10.1016/j.jmb.2015.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 12/31/2022]
Abstract
Viral homologs of the anti-apoptotic Bcl-2 proteins are highly diverged from their mammalian counterparts, yet they perform overlapping functions by binding and inhibiting BH3 (Bcl-2 homology 3)-motif-containing proteins. We investigated the BH3 binding properties of the herpesvirus Bcl-2 homologs KSBcl-2, BHRF1, and M11, as they relate to those of the human Bcl-2 homologs Mcl-1, Bfl-1, Bcl-w, Bcl-xL, and Bcl-2. Analysis of the sequence and structure of the BH3 binding grooves showed that, despite low sequence identity, M11 has structural similarities to Bcl-xL, Bcl-2, and Bcl-w. BHRF1 and KSBcl-2 are more structurally similar to Mcl-1 than to the other human proteins. Binding to human BH3-like peptides showed that KSBcl-2 has similar specificity to Mcl-1, and BHRF1 has a restricted binding profile; M11 binding preferences are distinct from those of Bcl-xL, Bcl-2, and Bcl-w. Because KSBcl-2 and BHRF1 are from human herpesviruses associated with malignancies, we screened computationally designed BH3 peptide libraries using bacterial surface display to identify selective binders of KSBcl-2 or BHRF1. The resulting peptides bound to KSBcl-2 and BHRF1 in preference to Bfl-1, Bcl-w, Bcl-xL, and Bcl-2 but showed only modest specificity over Mcl-1. Rational mutagenesis increased specificity against Mcl-1, resulting in a peptide with a dissociation constant of 2.9nM for binding to KSBcl-2 and >1000-fold specificity over other Bcl-2 proteins, as well as a peptide with >70-fold specificity for BHRF1. In addition to providing new insights into viral Bcl-2 binding specificity, this study will inform future work analyzing the interaction properties of homologous binding domains and designing specific protein interaction partners.
Collapse
Affiliation(s)
- Glenna Wink Foight
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
24
|
Jacobs TM, Yumerefendi H, Kuhlman B, Leaver-Fay A. SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Res 2014; 43:e34. [PMID: 25539925 PMCID: PMC4357694 DOI: 10.1093/nar/gku1323] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Degenerate codon (DC) libraries efficiently address the experimental library-size limitations of directed evolution by focusing diversity toward the positions and toward the amino acids (AAs) that are most likely to generate hits; however, manually constructing DC libraries is challenging, error prone and time consuming. This paper provides a dynamic programming solution to the task of finding the best DCs while keeping the size of the library beneath some given limit, improving on the existing integer-linear programming formulation. It then extends the algorithm to consider multiple DCs at each position, a heretofore unsolved problem, while adhering to a constraint on the number of primers needed to synthesize the library. In the two library-design problems examined here, the use of multiple DCs produces libraries that very nearly cover the set of desired AAs while still staying within the experimental size limits. Surprisingly, the algorithm is able to find near-perfect libraries where the ratio of amino-acid sequences to nucleic-acid sequences approaches 1; it effectively side-steps the degeneracy of the genetic code. Our algorithm is freely available through our web server and solves most design problems in about a second.
Collapse
Affiliation(s)
- Timothy M Jacobs
- Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hayretin Yumerefendi
- Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Kuhlman
- Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Andrew Leaver-Fay
- Department of Biochemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Dutta S, Ryan J, Chen TS, Kougentakis C, Letai A, Keating AE. Potent and specific peptide inhibitors of human pro-survival protein Bcl-xL. J Mol Biol 2014; 427:1241-1253. [PMID: 25451027 DOI: 10.1016/j.jmb.2014.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/25/2022]
Abstract
The Bcl-2 family of proteins plays a critical role regulating apoptosis, and pro-survival Bcl-2 family members are important therapeutic targets due to their overexpression in different cancers. Pro-apoptotic Bcl-2 homology 3 (BH3)-only proteins antagonize pro-survival Bcl-2 protein functions by binding directly to them, and a sub-class of BH3-only proteins termed sensitizers can initiate apoptosis via this mechanism in response to diverse signals. The five pro-survival proteins Bcl-xL, Mcl-1, Bcl-2, Bcl-w and Bfl-1 differ in their binding preferences, with Bcl-xL, Bcl-2 and Bcl-w sharing similar interaction profiles for many natural sensitizers and small molecules. Peptides that bind selectively to just one or a subset of family members have shown utility in assays that diagnose apoptotic blockades in cancer cells and as reagents for dissecting apoptotic mechanism. Combining computational design, combinatorial library screening and rational mutagenesis, we designed a series of BH3 sensitizer peptides that bind Bcl-xL with sub-nanomolar affinity and selectivity up to 1000-fold over each of the four competing pro-survival proteins. We demonstrate the efficacy of our designed BH3 peptides in assays that differentiate between cancer cells that are dependent on different pro-survival proteins.
Collapse
Affiliation(s)
- Sanjib Dutta
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeremy Ryan
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - T Scott Chen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christos Kougentakis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Amy E Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Lee EF, Dewson G, Evangelista M, Pettikiriarachchi A, Gold GJ, Zhu H, Colman PM, Fairlie WD. The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (Bcl-2) proteins depend on structural differences in their Bcl-2 homology 3 (BH3) domains. J Biol Chem 2014; 289:36001-17. [PMID: 25371206 DOI: 10.1074/jbc.m114.610758] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bcl-2 homology 3 (BH3) domains are short sequence motifs that mediate nearly all protein-protein interactions between B cell lymphoma 2 (Bcl-2) family proteins in the intrinsic apoptotic cell death pathway. These sequences are found on both pro-survival and pro-apoptotic members, although their primary function is believed to be associated with induction of cell death. Here, we identify critical features of the BH3 domains of pro-survival proteins that distinguish them functionally from their pro-apoptotic counterparts. Biochemical and x-ray crystallographic studies demonstrate that these differences reduce the capacity of most pro-survival proteins to form high affinity "BH3-in-groove" complexes that are critical for cell death induction. Switching these residues for the corresponding residues in Bcl-2 homologous antagonist/killer (Bak) increases the binding affinity of isolated BH3 domains for pro-survival proteins; however, their exchange in the context of the parental protein causes rapid proteasomal degradation due to protein destabilization. This is supported by further x-ray crystallographic studies that capture elements of this destabilization in one pro-survival protein, Bcl-w. In pro-apoptotic Bak, we demonstrate that the corresponding distinguishing residues are important for its cell-killing capacity and antagonism by pro-survival proteins.
Collapse
Affiliation(s)
- Erinna F Lee
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Grant Dewson
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marco Evangelista
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and
| | - Anne Pettikiriarachchi
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and
| | - Grace J Gold
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Haoran Zhu
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter M Colman
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - W Douglas Fairlie
- From the Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, Victoria 3052, Australia and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
27
|
DeBartolo J, Taipale M, Keating AE. Genome-wide prediction and validation of peptides that bind human prosurvival Bcl-2 proteins. PLoS Comput Biol 2014; 10:e1003693. [PMID: 24967846 PMCID: PMC4072508 DOI: 10.1371/journal.pcbi.1003693] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/13/2014] [Indexed: 01/27/2023] Open
Abstract
Programmed cell death is regulated by interactions between pro-apoptotic and prosurvival members of the Bcl-2 family. Pro-apoptotic family members contain a weakly conserved BH3 motif that can adopt an alpha-helical structure and bind to a groove on prosurvival partners Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. Peptides corresponding to roughly 13 reported BH3 motifs have been verified to bind in this manner. Due to their short lengths and low sequence conservation, BH3 motifs are not detected using standard sequence-based bioinformatics approaches. Thus, it is possible that many additional proteins harbor BH3-like sequences that can mediate interactions with the Bcl-2 family. In this work, we used structure-based and data-based Bcl-2 interaction models to find new BH3-like peptides in the human proteome. We used peptide SPOT arrays to test candidate peptides for interaction with one or more of the prosurvival proteins Bcl-xL, Bcl-w, Bcl-2, Mcl-1 and Bfl-1. For the 36 most promising array candidates, we quantified binding to all five human receptors using direct and competition binding assays in solution. All 36 peptides showed evidence of interaction with at least one prosurvival protein, and 22 peptides bound at least one prosurvival protein with a dissociation constant between 1 and 500 nM; many peptides had specificity profiles not previously observed. We also screened the full-length parent proteins of a subset of array-tested peptides for binding to Bcl-xL and Mcl-1. Finally, we used the peptide binding data, in conjunction with previously reported interactions, to assess the affinity and specificity prediction performance of different models. Bcl-2 family proteins regulate key cell death vs. survival decisions and are implicated in the development of many cancers. To understand the roles of Bcl-2 family proteins in both normal and diseased cells, it is important to map the interaction network of the family. Low sequence conservation in known Bcl-2 interaction motifs precludes easy identification of possible binding partners, but we developed computational models based on structure and experimental mutation data that show good predictive performance. We used our models to search the human proteome for new Bcl-2 interaction partners. We predicted and experimentally validated more than twice as many tight-binding peptides as were previously known.
Collapse
Affiliation(s)
- Joe DeBartolo
- MIT Department of Biology, Cambridge, Massachusetts, United States of America
| | - Mikko Taipale
- MIT Department of Biology, Cambridge, Massachusetts, United States of America
| | - Amy E. Keating
- MIT Department of Biology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
28
|
Procko E, Berguig GY, Shen BW, Song Y, Frayo S, Convertine AJ, Margineantu D, Booth G, Correia BE, Cheng Y, Schief WR, Hockenbery DM, Press OW, Stoddard BL, Stayton PS, Baker D. A computationally designed inhibitor of an Epstein-Barr viral Bcl-2 protein induces apoptosis in infected cells. Cell 2014; 157:1644-1656. [PMID: 24949974 PMCID: PMC4079535 DOI: 10.1016/j.cell.2014.04.034] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/13/2014] [Accepted: 04/15/2014] [Indexed: 11/25/2022]
Abstract
Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates.
Collapse
Affiliation(s)
- Erik Procko
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Geoffrey Y. Berguig
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Betty W. Shen
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Yifan Song
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Shani Frayo
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Garrett Booth
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Yuanhua Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | - Oliver W. Press
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Residue specific contributions to stability and activity inferred from saturation mutagenesis and deep sequencing. Curr Opin Struct Biol 2014; 24:63-71. [DOI: 10.1016/j.sbi.2013.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 12/23/2022]
|
30
|
Abstract
B-cell lymphoma-2 (Bcl-2) homology-3 (BH3)-only proteins are considered members of the Bcl-2 family, though they bear little sequence or structural identity with the multi-BH motif prosurvival or proapoptotic Bcl-2 proteins like Bcl-2 or Bax. They are better considered a separate phylogenetic entity. In combination, results from biophysical, biochemical, cell biological, and animal studies in conjunction with structural investigations have elucidated the function and mechanism of action of these proteins. Either by antagonizing prosurvival Bcl-2 proteins or directly activating proapoptotic Bcl-2 proteins (Bax or Bak) they initiate apoptosis. BH3-only proteins are intrinsically disordered and fold and bind into a groove provided by their cognate receptor Bcl-2 family proteins. Our detailed molecular understanding of BH3-only protein action has aided the development of novel chemical entities that initiate cell death by mimicking the properties of BH3-only proteins.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Medical Science, La Trobe University, Bundoora, Victoria, Australia.
| | - Mark G Hinds
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
31
|
Smith BJ, Lee EF, Checco JW, Evangelista M, Gellman SH, Fairlie WD. Structure-guided rational design of α/β-peptide foldamers with high affinity for BCL-2 family prosurvival proteins. Chembiochem 2013; 14:1564-72. [PMID: 23929624 DOI: 10.1002/cbic.201300351] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Indexed: 12/22/2022]
Abstract
We have used computational methods to improve the affinity of a foldamer ligand for its target protein. The effort began with a previously reported α/β-peptide based on the BH3 domain of the proapoptotic protein Puma; this foldamer binds tightly to Bcl-x(L) but weakly to Mcl-1. The crystal structure of the Puma-derived α/β-peptide complexed to Bcl-x(L) was used as the basis for computational design of variants intended to display improved binding to Mcl-1. Molecular modelling suggested modification of three α residues of the original α/β backbone. Individually, each substitution caused only a modest (4- to 15-fold) gain in affinity; however, together the three substitutions led to a 250-fold increase in binding to Mcl-1. These modifications had very little effect on affinity for Bcl-x(L). Crystal structures of a number of the new α/β-peptides bound to either Mcl-1 or Bcl-x(L) validated the selection of each substitution. Overall, our findings demonstrate that structure-guided rational design can be used to improve affinity and alter partner selectivity of peptidic ligands with unnatural backbones that bind to specific protein partners.
Collapse
Affiliation(s)
- Brian J Smith
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria (Australia).
| | | | | | | | | | | |
Collapse
|