1
|
Kumar Villuri B, Desai UR. Synthesis and Reactivity of Masked Organic Sulfates. Chemistry 2024; 30:e202402268. [PMID: 39024030 DOI: 10.1002/chem.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.
Collapse
Affiliation(s)
- Bharath Kumar Villuri
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, 23219, United States
| |
Collapse
|
2
|
Drouillard D, Halyko M, Cinquegrani E, McAllister D, Peterson FC, Marchese A, Dwinell MB. CXCL12 chemokine dimer signaling modulates acute myelogenous leukemia cell migration through altered receptor internalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609725. [PMID: 39253415 PMCID: PMC11383031 DOI: 10.1101/2024.08.26.609725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Acute myeloid leukemia (AML) is a malignancy of immature myeloid blast cells with stem-like and chemoresistant cells being retained in the bone marrow through CXCL12-CXCR4 signaling. Current CXCR4 inhibitors mobilize AML cells into the bloodstream where they become more chemosensitive have failed to improve patient survival, likely reflecting persistent receptor localization on target cells. Here we characterize the signaling properties of CXCL12-locked dimer (CXCL12-LD), a bioengineered variant of the dimeric CXCL12 structure. CXCL12-LD binding resulted in lower levels of G protein, β-arrestin, and intracellular calcium mobilization, consistent with the locked dimer being a partial agonist of CXCR4. Further, CXCL12-LD failed to induce chemotaxis in AML cells. Despite these partial agonist properties, CXCL12-LD increased CXCR4 internalization compared to wildtype and locked-monomer forms of CXCL12. Analysis of a previously published AML transcriptomic data showed CXCR4 positive AML cells co-express genes involved in chemoresistance and maintenance of a blast-like state. The CXCL12-LD partial agonist effectively mobilized stem cells into the bloodstream in mice suggesting a potential role for their use in targeting CXCR4. Together, our results suggest that enhanced internalization by CXCL12-LD partial agonist signaling can avoid pharmacodynamic tolerance and may identify new avenues to better target GPCRs.
Collapse
Affiliation(s)
- Donovan Drouillard
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
| | - Michael Halyko
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee WI, USA
| | | | - Donna McAllister
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
| | | | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee WI, USA
| | - Michael B. Dwinell
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Center for Immunology, Medical College of Wisconsin, Milwaukee WI, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee WI, USA
| |
Collapse
|
3
|
Mantonico MV, De Leo F, Quilici G, Colley LS, De Marchis F, Crippa M, Mezzapelle R, Schulte T, Zucchelli C, Pastorello C, Carmeno C, Caprioglio F, Ricagno S, Giachin G, Ghitti M, Bianchi ME, Musco G. The acidic intrinsically disordered region of the inflammatory mediator HMGB1 mediates fuzzy interactions with CXCL12. Nat Commun 2024; 15:1201. [PMID: 38331917 PMCID: PMC10853541 DOI: 10.1038/s41467-024-45505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Chemokine heterodimers activate or dampen their cognate receptors during inflammation. The CXCL12 chemokine forms with the fully reduced (fr) alarmin HMGB1 a physiologically relevant heterocomplex (frHMGB1•CXCL12) that synergically promotes the inflammatory response elicited by the G-protein coupled receptor CXCR4. The molecular details of complex formation were still elusive. Here we show by an integrated structural approach that frHMGB1•CXCL12 is a fuzzy heterocomplex. Unlike previous assumptions, frHMGB1 and CXCL12 form a dynamic equimolar assembly, with structured and unstructured frHMGB1 regions recognizing the CXCL12 dimerization surface. We uncover an unexpected role of the acidic intrinsically disordered region (IDR) of HMGB1 in heterocomplex formation and its binding to CXCR4 on the cell surface. Our work shows that the interaction of frHMGB1 with CXCL12 diverges from the classical rigid heterophilic chemokines dimerization. Simultaneous interference with multiple interactions within frHMGB1•CXCL12 might offer pharmacological strategies against inflammatory conditions.
Collapse
Affiliation(s)
- Malisa Vittoria Mantonico
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
| | - Federica De Leo
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
- Experimental Therapeutics Program, IFOM ETS - The AIRC Institute of Molecular Oncology and AIRC, Fondazione AIRC per la Ricerca sul Cancro ETS, Milan, Italy
| | - Giacomo Quilici
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Liam Sean Colley
- HMGBiotech S.r.l., 20133, Milan, Italy
- School of Medicine and Surgery, Università Milano-Bicocca, 20126, Milan, Italy
| | - Francesco De Marchis
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Crippa
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rosanna Mezzapelle
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
| | - Chiara Zucchelli
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Pastorello
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Camilla Carmeno
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Caprioglio
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences (DiSC), University of Padua, 35131, Padova, Italy
| | - Michela Ghitti
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Marco Emilio Bianchi
- School of Medicine, Università Vita e Salute-San Raffaele, Milan, Italy
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
4
|
Kessler N, Akabayov SR, Cohen LS, Scherf T, Naider F, Anglister J. The chemokines CCL5 and CXCL12 exhibit high-affinity binding to N-terminal peptides of the non-cognate receptors CXCR4 and CCR5, respectively. FEBS J 2024; 291:458-476. [PMID: 37997026 DOI: 10.1111/febs.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/16/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
CC and CXC chemokines are distinct chemokine subfamilies. CC chemokines usually do not bind CXC-chemokine receptors and vice versa. CCR5 and CXCR4 receptors are activated by CCL5 and CXCL12 chemokines, respectively, and are also used as HIV-1 coreceptors. CCL5 contains one conserved binding site for a sulfated tyrosine residue, whereas CXCL12 is unique in having two additional sites for sulfated/nonsulfated tyrosine residues. In this study, N-terminal (Nt) CXCR4 peptides were found to bind CCL5 with somewhat higher affinities in comparison to those of short Nt-CCR5(8-20) peptides with the same number of sulfated tyrosine residues. Similarly, a long Nt-CCR5(1-27)(s Y3,s Y10,s Y14) peptide cross reacts with CXCL12 and with lower KD in comparison to its binding to CCL5. Intermolecular nuclear overhauser effect (NOE) measurements were used to decipher the mechanism of the chemokine/Nt-receptor peptide binding. The Nt-CXCR4 peptides interact with the conserved CCL5 tyrosine sulfate-binding site by an allovalency mechanism like that observed for CCL5 binding of Nt-CCR5 peptides. Nt-CCR5 peptides bind CXCL12 in multiple modes analogous to their binding to HIV-1 gp120 and interact with all three tyrosine/sulfated tyrosine-binding pockets of CXCL12. We suggest that the chemokine-receptors Nt-segments bind promiscuously to cognate and non-cognate chemokines and in a mechanism that is dependent on the number of binding pockets for tyrosine residues found on the chemokine. In conclusion, common features shared among the chemokine-receptors' Nt-segments such as multiple tyrosine residues that are potentially sulfated, and a large number of negatively charged residues are the reason of the cross binding observed in this study.
Collapse
Affiliation(s)
- Naama Kessler
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sabine R Akabayov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leah S Cohen
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
- The Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, NY, USA
| | - Tali Scherf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Fred Naider
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, USA
- The Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center of the City University of New York, NY, USA
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Niu W, Guo J. Co-translational Installation of Posttranslational Modifications by Non-canonical Amino Acid Mutagenesis. Chembiochem 2023; 24:e202300039. [PMID: 36853967 PMCID: PMC10202221 DOI: 10.1002/cbic.202300039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Protein posttranslational modifications (PTMs) play critical roles in regulating cellular activities. Here we provide a survey of genetic code expansion (GCE) methods that were applied in the co-translational installation and studies of PTMs through noncanonical amino acid (ncAA) mutagenesis. We begin by reviewing types of PTM that have been installed by GCE with a focus on modifications of tyrosine, serine, threonine, lysine, and arginine residues. We also discuss examples of applying these methods in biological studies. Finally, we end the piece with a short discussion on the challenges and the opportunities of the field.
Collapse
Affiliation(s)
- Wei Niu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, N-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE-68588, USA
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE-68588, USA
| |
Collapse
|
6
|
Zhou AL, Jensen DR, Peterson FC, Thomas MA, Schlimgen RR, Dwinell MB, Smith BC, Volkman BF. Fragment-based drug discovery of small molecule ligands for the human chemokine CCL28. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00019-9. [PMID: 36841432 DOI: 10.1016/j.slasd.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The mucosal chemokine CCL28 is a promising target for immunotherapy drug development due to its elevated expression level in epithelial cells and critical role in creating and maintaining an immunosuppressive tumor microenvironment. Using sulfotyrosine as a probe, NMR chemical shift mapping identified a potential receptor-binding hotspot on the human CCL28 surface. CCL28 was screened against 2,678 commercially available chemical fragments by 2D NMR, yielding thirteen verified hits. Computational docking predicted that two fragments could occupy adjoining subsites within the sulfotyrosine recognition cleft. Dual NMR titrations confirmed their ability to bind CCL28 simultaneously, thereby validating an initial fragment pair for linking and merging strategies to design high-potency CCL28 inhibitors.
Collapse
Affiliation(s)
- Angela L Zhou
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Roman R Schlimgen
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Program in Chemical Biology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Center for Immunology, Medical College of Wisconsin 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
7
|
Allosteric modulation of the chemokine receptor-chemokine CXCR4-CXCL12 complex by tyrosine sulfation. Int J Biol Macromol 2022; 206:812-822. [PMID: 35306016 DOI: 10.1016/j.ijbiomac.2022.03.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022]
Abstract
The chemokine receptor CXCR4 and its cognate ligand CXCL12 mediate pathways that lead to cell migration and chemotaxis. Although the structural details of related receptor-ligand complexes have been resolved, the roles of the N-terminal domain of the receptor and post-translational sulfation that are determinants of ligand selectivity and affinity remain unclear. Here, we analyze the structural dynamics induced by receptor sulfation by combining molecular dynamics, docking and network analysis. The sulfotyrosine residues, 7YsN-term, 12YsN-term and 21YsN-term allow the N-terminal domain of the apo-sulfated receptor to adopt an "open" conformation that appears to facilitate ligand binding. The overall topology of the CXCR4-CXCL12 complex is independent of the sulfation state, but an extensive network of protein-protein interactions characterizes the sulfated receptor, in line with its increased ligand affinity. The altered interactions of sulfotyrosine residues, such as 21YsN-term-47RCXCL12 replacing the 21YN-term-13FCXCL12 interaction, propagate via allosteric pathways towards the receptor lumen. In particular, our results suggest that the experimentally-reported receptor-ligand interactions 262D6.58-8RCXCL12 and 277E7.28-12RCXCL12 could be dependent on the sulfation state of the receptor and need to be carefully analyzed. Our work is an important step in understanding chemokine-receptor interactions and how post-translational modifications could modulate receptor-ligand complexes.
Collapse
|
8
|
He X, Guo J, Niu W. Studying Protein Tyrosine O-Sulfation in Mammalian Cells with Genetically Encoded Sulfotyrosine. Curr Protoc 2021; 1:e301. [PMID: 34767302 PMCID: PMC8597929 DOI: 10.1002/cpz1.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein tyrosine O-sulfation (PTS) is a post-translational modification (PTM) that occurs exclusively on secreted and membrane-bound proteins. It participates in a wide range of important biological processes and is involved in the development of many diseases. The biomedical importance of PTS can only be fully unveiled when the right chemical/biological tools are available. This article outlines the steps for using an engineered Escherichia coli tyrosyl-tRNA synthetase to genetically encode sulfotyrosine (sTyr) for biological investigations of PTS in mammalian cells. Two basic protocols are described to demonstrate this methodology, including the site-specific incorporation of sTyr into eGFP protein in HEK293T cells and the functional study of an sTyr-containing CXCR4 protein using a calcium mobilization assay. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Site-specific incorporation of sTyr into eGFP Basic Protocol 2: Functional study of site-specifically sulfated CXCR4.
Collapse
Affiliation(s)
- Xinyuan He
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln
| |
Collapse
|
9
|
Gutjahr JC, Crawford KS, Jensen DR, Naik P, Peterson FC, Samson GPB, Legler DF, Duchene J, Veldkamp CT, Rot A, Volkman BF. The dimeric form of CXCL12 binds to atypical chemokine receptor 1. Sci Signal 2021; 14:14/696/eabc9012. [PMID: 34404752 DOI: 10.1126/scisignal.abc9012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pleiotropic chemokine CXCL12 is involved in diverse physiological and pathophysiological processes, including embryogenesis, hematopoiesis, leukocyte migration, and tumor metastasis. It is known to engage the classical receptor CXCR4 and the atypical receptor ACKR3. Differential receptor engagement can transduce distinct cellular signals and effects as well as alter the amount of free, extracellular chemokine. CXCR4 binds both monomeric and the more commonly found dimeric forms of CXCL12, whereas ACKR3 binds monomeric forms. Here, we found that CXCL12 also bound to the atypical receptor ACKR1 (previously known as Duffy antigen/receptor for chemokines or DARC). In vitro nuclear magnetic resonance spectroscopy and isothermal titration calorimetry revealed that dimeric CXCL12 bound to the extracellular N terminus of ACKR1 with low nanomolar affinity, whereas the binding affinity of monomeric CXCL12 was orders of magnitude lower. In transfected MDCK cells and primary human Duffy-positive erythrocytes, a dimeric, but not a monomeric, construct of CXCL12 efficiently bound to and internalized with ACKR1. This interaction between CXCL12 and ACKR1 provides another layer of regulation of the multiple biological functions of CXCL12. The findings also raise the possibility that ACKR1 can bind other dimeric chemokines, thus potentially further expanding the role of ACKR1 in chemokine retention and presentation.
Collapse
Affiliation(s)
- Julia C Gutjahr
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kyler S Crawford
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Davin R Jensen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Prachi Naik
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, 8280 Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany
| | | | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK. .,Institute for Cardiovascular Prevention, Ludwig-Maximilians University, 80336 Munich, Germany.,Centre for Inflammation and Therapeutic Innovation, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
10
|
Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021; 35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273r] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Historically the chemokine receptor CXCR4 and its canonical ligand CXCL12 are associated with the bone marrow niche and hematopoiesis. However, CXCL12 exhibits broad tissue expression including brain, thymus, heart, lung, liver, kidney, spleen, and bone marrow. CXCR4 can be considered as a node which is integrating and transducing inputs from a range of ligand-receptor interactions into a responsive and divergent network of intracellular signaling pathways that impact multiple cellular processes such as proliferation, migration, and stress resistance. Dysregulation of the CXCR4/CXCL12 axis and consequent fundamental cellular processes, are associated with a panoply of disease. This review frames the polyfunctionality of the receptor at a molecular, physiological, and pathophysiological levels. Transitioning our perspective of this axis from a single gene/protein:single function model to a polyfunctional signaling cascade highlights the potential for finer therapeutic intervention and cautions against a reductionist approach.
Collapse
Affiliation(s)
- C Britton
- Vaccine and Immunotherapy Center, Boston, MA, USA
| | | | - P Reeves
- Vaccine and Immunotherapy Center, Boston, MA, USA.,Department of Medicine, Imperial College School of Medicine, London, England
| |
Collapse
|
11
|
De Leo F, Quilici G, De Marchis F, Mantonico MV, Bianchi ME, Musco G. Discovery of 5,5'-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the HMGB1·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. Front Chem 2020; 8:598710. [PMID: 33324614 PMCID: PMC7726319 DOI: 10.3389/fchem.2020.598710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
HMGB1 is a key molecule that both triggers and sustains inflammation following infection or injury, and is involved in a large number of pathologies, including cancer. HMGB1 participates in the recruitment of inflammatory cells, forming a heterocomplex with the chemokine CXCL12 (HMGB1·CXCL12), thereby activating the G-protein coupled receptor CXCR4. Thus, identification of molecules that disrupt this heterocomplex can offer novel pharmacological opportunities to treat inflammation-related diseases. To identify new HMGB1·CXCL12 inhibitors we have performed a study on the ligandability of the single HMG boxes of HMGB1 followed by a virtual screening campaign on both HMG boxes using Zbc Drugs and three different docking programs (Glide, AutoDock Vina, and AutoDock 4.2.6). The best poses in terms of scoring functions, visual inspection, and predicted ADME properties were further filtered according to a pharmacophore model based on known HMGB1 binders and clustered according to their structures. Eight compounds representative of the clusters were tested for HMGB1 binding by NMR. We identified 5,5'-methylenedi-2,3-cresotic acid (2a) as a binder of both HMGB1 and CXCL12; 2a also targets the HMGB1·CXCL12 heterocomplex. In cell migration assays 2a inhibited the chemotactic activity of HMGB1·CXCL12 with IC50 in the subnanomolar range, the best documented up to now. These results pave the way for future structure activity relationship studies to optimize the pharmacological targeting of HMGB1·CXCL12 for anti-inflammatory purposes.
Collapse
Affiliation(s)
- Federica De Leo
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giacomo Quilici
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesco De Marchis
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Malisa Vittoria Mantonico
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Emilio Bianchi
- Chromatin Dynamics Unit, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
- Faculty of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Giovanna Musco
- Biomolecular Nuclear Magnetic Resonance Laboratory, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
12
|
He X, Chen Y, Beltran DG, Kelly M, Ma B, Lawrie J, Wang F, Dodds E, Zhang L, Guo J, Niu W. Functional genetic encoding of sulfotyrosine in mammalian cells. Nat Commun 2020; 11:4820. [PMID: 32973160 PMCID: PMC7515910 DOI: 10.1038/s41467-020-18629-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/22/2022] Open
Abstract
Protein tyrosine O-sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy. To promote and facilitate relevant studies, a generally applicable method is needed to enable efficient expression of sulfoproteins with defined sulfation sites in live mammalian cells. Here we report the engineering, in vitro biochemical characterization, structural study, and in vivo functional verification of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells. We further apply this chemical biology tool to cell-based studies on the role of a sulfation site in the activation of chemokine receptor CXCR4 by its ligand. Our work will not only facilitate cellular studies of PTS, but also paves the way for economical production of sulfated proteins as therapeutic agents in mammalian systems.
Collapse
Affiliation(s)
- Xinyuan He
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Yan Chen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Maia Kelly
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Bin Ma
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Justin Lawrie
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Feng Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eric Dodds
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Limei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
13
|
Stephens BS, Ngo T, Kufareva I, Handel TM. Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis. Sci Signal 2020; 13:eaay5024. [PMID: 32665413 PMCID: PMC7437921 DOI: 10.1126/scisignal.aay5024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Because of their prominent roles in development, cancer, and HIV, the chemokine receptor CXCR4 and its ligand CXCL12 have been the subject of numerous structural and functional studies, but the determinants of ligand binding, selectivity, and signaling are still poorly understood. Here, building on our latest structural model, we used a systematic mutagenesis strategy to dissect the functional anatomy of the CXCR4-CXCL12 complex. Key charge swap mutagenesis experiments provided evidence for pairwise interactions between oppositely charged residues in the receptor and chemokine, confirming the accuracy of the predicted orientation of the chemokine relative to the receptor and providing insight into ligand selectivity. Progressive deletion of N-terminal residues revealed an unexpected contribution of the receptor N terminus to chemokine signaling. This finding challenges a longstanding "two-site" hypothesis about the essential features of the receptor-chemokine interaction in which the N terminus contributes only to binding affinity. Our results suggest that although the interaction of the chemokine N terminus with the receptor-binding pocket is the key driver of signaling, the signaling amplitude depends on the extent to which the receptor N terminus binds the chemokine. Together with systematic characterization of other epitopes, these data enable us to propose an experimentally consistent structural model for how CXCL12 binds CXCR4 and initiates signal transmission through the receptor transmembrane domain.
Collapse
Affiliation(s)
- Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Ngo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
De Leo F, Quilici G, Tirone M, De Marchis F, Mannella V, Zucchelli C, Preti A, Gori A, Casalgrandi M, Mezzapelle R, Bianchi ME, Musco G. Diflunisal targets the HMGB1/CXCL12 heterocomplex and blocks immune cell recruitment. EMBO Rep 2019; 20:e47788. [PMID: 31418171 PMCID: PMC6776901 DOI: 10.15252/embr.201947788] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022] Open
Abstract
Extracellular HMGB1 triggers inflammation following infection or injury and supports tumorigenesis in inflammation-related malignancies. HMGB1 has several redox states: reduced HMGB1 recruits inflammatory cells to injured tissues forming a heterocomplex with CXCL12 and signaling via its receptor CXCR4; disulfide-containing HMGB1 binds to TLR4 and promotes inflammatory responses. Here we show that diflunisal, an aspirin-like nonsteroidal anti-inflammatory drug (NSAID) that has been in clinical use for decades, specifically inhibits in vitro and in vivo the chemotactic activity of HMGB1 at nanomolar concentrations, at least in part by binding directly to both HMGB1 and CXCL12 and disrupting their heterocomplex. Importantly, diflunisal does not inhibit TLR4-dependent responses. Our findings clarify the mode of action of diflunisal and open the way to the rational design of functionally specific anti-inflammatory drugs.
Collapse
Affiliation(s)
- Federica De Leo
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
- Università Vita‐Salute San RaffaeleMilanItaly
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Giacomo Quilici
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | | | - Francesco De Marchis
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Valeria Mannella
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
- Center for Translational Genomics and Bioinformatics (CTGB)IRCCS Policlinico San DonatoSan Donato MilaneseItaly
| | - Chiara Zucchelli
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | | | - Alessandro Gori
- Istituto di Chimica del Riconoscimento MolecolareCNRMilanItaly
| | | | - Rosanna Mezzapelle
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Marco E Bianchi
- Università Vita‐Salute San RaffaeleMilanItaly
- Chromatin Dynamics UnitDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| | - Giovanna Musco
- Biomolecular NMR LaboratoryDivision of Genetics and Cell BiologyIRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
15
|
Heusinkveld LE, Majumdar S, Gao JL, McDermott DH, Murphy PM. WHIM Syndrome: from Pathogenesis Towards Personalized Medicine and Cure. J Clin Immunol 2019; 39:532-556. [PMID: 31313072 PMCID: PMC6698215 DOI: 10.1007/s10875-019-00665-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
WHIM syndrome is a rare combined primary immunodeficiency disease named by acronym for the diagnostic tetrad of warts, hypogammaglobulinemia, infections, and myelokathexis. Myelokathexis is a unique form of non-cyclic severe congenital neutropenia caused by accumulation of mature and degenerating neutrophils in the bone marrow; monocytopenia and lymphopenia, especially B lymphopenia, also commonly occur. WHIM syndrome is usually caused by autosomal dominant mutations in the G protein-coupled chemokine receptor CXCR4 that impair desensitization, resulting in enhanced and prolonged G protein- and β-arrestin-dependent responses. Accordingly, CXCR4 antagonists have shown promise as mechanism-based treatments in phase 1 clinical trials. This review is based on analysis of all 105 published cases of WHIM syndrome and covers current concepts, recent advances, unresolved enigmas and controversies, and promising future research directions.
Collapse
Affiliation(s)
- Lauren E Heusinkveld
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Cleveland Clinic, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, 44195, USA
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Thomas MA, He J, Peterson FC, Huppler AR, Volkman BF. The Solution Structure of CCL28 Reveals Structural Lability that Does Not Constrain Antifungal Activity. J Mol Biol 2018; 430:3266-3282. [PMID: 29913161 DOI: 10.1016/j.jmb.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/18/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
The chemokine CCL28 is constitutively expressed in mucosal tissues and is abundant in low-salt mucosal secretions. Beyond its traditional role as a chemoattractant, CCL28 has been shown to act as a potent and broad-spectrum antimicrobial agent with particular efficacy against the commensal fungus and opportunistic pathogen Candida albicans. However, the structural features that allow CCL28 to perform its chemotactic and antimicrobial functions remain unknown. Here, we report the structure of CCL28, solved using nuclear magnetic resonance spectroscopy. CCL28 adopts the canonical chemokine tertiary fold, but also has a disordered C-terminal domain that is partially tethered to the core by a non-conserved disulfide bond. Structure-function analysis reveals that removal of the C-terminal tail reduces the antifungal activity of CCL28 without disrupting its structural integrity. Conversely, removal of the non-conserved disulfide bond destabilizes the tertiary fold of CCL28 without altering its antifungal effects. Moreover, we report that CCL28 unfolds in response to low pH but is stabilized by the presence of salt. To explore the physiologic relevance of the observed structural lability of CCL28, we investigated the effects of pH and salt on the antifungal activity of CCL28 in vitro. We found that low pH enhances the antifungal potency of CCL28, but also that this pH effect is independent of CCL28's tertiary fold. Given its dual role as a chemoattractant and antimicrobial agent, our results suggest that changes in the salt concentration or pH at mucosal sites may fine-tune CCL28's functional repertoire by adjusting the thermostability of its structure.
Collapse
Affiliation(s)
- Monica A Thomas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jie He
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anna R Huppler
- Department of Pediatrics, Division of Infectious Disease, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
17
|
Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep 2018; 8:5171. [PMID: 29581527 PMCID: PMC5979958 DOI: 10.1038/s41598-018-23554-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
MIF is a chemokine-like cytokine that plays a role in the pathogenesis of inflammatory and cardiovascular disorders. It binds to the chemokine-receptors CXCR2/CXCR4 to trigger atherogenic leukocyte migration albeit lacking canonical chemokine structures. We recently characterized an N-like-loop and the Pro-2-residue of MIF as critical molecular determinants of the CXCR4/MIF binding-site and identified allosteric agonism as a mechanism that distinguishes CXCR4-binding to MIF from that to the cognate ligand CXCL12. By using peptide spot-array technology, site-directed mutagenesis, structure-activity-relationships, and molecular docking, we identified the Arg-Leu-Arg (RLR) sequence-region 87–89 that – in three-dimensional space – ‘extends’ the N-like-loop to control site-1-binding to CXCR4. Contrary to wildtype MIF, mutant R87A-L88A-R89A-MIF fails to bind to the N-terminal of CXCR4 and the contribution of RLR to the MIF/CXCR4-interaction is underpinned by an ablation of MIF/CXCR4-specific signaling and reduction in CXCR4-dependent chemotactic leukocyte migration of the RLR-mutant of MIF. Alanine-scanning, functional competition by RLR-containing peptides, and molecular docking indicate that the RLR residues directly participate in contacts between MIF and CXCR4 and highlight the importance of charge-interactions at this interface. Identification of the RLR region adds important structural information to the MIF/CXCR4 binding-site that distinguishes this interface from CXCR4/CXCL12 and will help to design MIF-specific drug-targeting approaches.
Collapse
|
18
|
Martinez-Rosell G, Harvey MJ, De Fabritiis G. Molecular-Simulation-Driven Fragment Screening for the Discovery of New CXCL12 Inhibitors. J Chem Inf Model 2018; 58:683-691. [PMID: 29481075 DOI: 10.1021/acs.jcim.7b00625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragment-based drug discovery (FBDD) has become a mainstream approach in drug design because it allows the reduction of the chemical space and screening libraries while identifying fragments with high protein-ligand efficiency interactions that can later be grown into drug-like leads. In this work, we leverage high-throughput molecular dynamics (MD) simulations to screen a library of 129 fragments for a total of 5.85 ms against the CXCL12 monomer, a chemokine involved in inflammation and diseases such as cancer. Our in silico binding assay was able to recover binding poses, affinities, and kinetics for the selected library and was able to predict 8 mM-affinity fragments with ligand efficiencies higher than 0.3. All of the fragment hits present a similar chemical structure, with a hydrophobic core and a positively charged group, and bind to either sY7 or H1S68 pockets, where they share pharmacophoric properties with experimentally resolved natural binders. This work presents a large-scale screening assay using an exclusive combination of thousands of short MD adaptive simulations analyzed with a Markov state model (MSM) framework.
Collapse
Affiliation(s)
- Gerard Martinez-Rosell
- Computational Biophysics Laboratory (GRIB-IMIM) , Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) , C/Doctor Aiguader 88 , 08003 Barcelona , Spain
| | - Matt J Harvey
- Acellera, Barcelona Biomedical Research Park (PRBB) , C/Doctor Aiguader 88 , 08003 , Barcelona , Spain
| | - Gianni De Fabritiis
- Computational Biophysics Laboratory (GRIB-IMIM) , Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB) , C/Doctor Aiguader 88 , 08003 Barcelona , Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) , Passeig Lluis Companys 23 , Barcelona 08010 , Spain
| |
Collapse
|
19
|
Abstract
G protein-coupled receptors (GPCRs) are cell surface receptors that relay extracellular signals to the inside of the cells. C-X-C chemokine receptor 4 (CXCR4) is a GPCR that undergoes receptor internalization and recycling upon stimulation with its cognate ligand, C-X-C chemokine 12 (CXCL12). Using this receptor/ligand pair we describe the use of two techniques, enzyme-linked immunosorbent assay (ELISA) and flow cytometry, widely used to quantify GPCR internalization from the plasma membrane and its return to the cell surface by recycling.
Collapse
Affiliation(s)
- Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
20
|
Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function. PLoS One 2017; 12:e0187949. [PMID: 29125867 PMCID: PMC5681266 DOI: 10.1371/journal.pone.0187949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3–68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05–0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03–3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3–68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3–68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3–68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
Collapse
|
21
|
Moussouras NA, Getschman AE, Lackner ER, Veldkamp CT, Dwinell MB, Volkman BF. Differences in Sulfotyrosine Binding amongst CXCR1 and CXCR2 Chemokine Ligands. Int J Mol Sci 2017; 18:ijms18091894. [PMID: 28869519 PMCID: PMC5618543 DOI: 10.3390/ijms18091894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022] Open
Abstract
Tyrosine sulfation, a post-translational modification found on many chemokine receptors, typically increases receptor affinity for the chemokine ligand. A previous bioinformatics analysis suggested that a sulfotyrosine (sY)-binding site on the surface of the chemokine CXCL12 may be conserved throughout the chemokine family. However, the extent to which receptor tyrosine sulfation contributes to chemokine binding has been examined in only a few instances. Computational solvent mapping correctly identified the conserved sulfotyrosine-binding sites on CXCL12 and CCL21 detected by nuclear magnetic resonance (NMR) spectroscopy, demonstrating its utility for hot spot analysis in the chemokine family. In this study, we analyzed five chemokines that bind to CXCR2, a subset of which also bind to CXCR1, to identify hot spots that could participate in receptor binding. A cleft containing the predicted sulfotyrosine-binding pocket was identified as a principal hot spot for ligand binding on the structures of CXCL1, CXCL2, CXCL7, and CXCL8, but not CXCL5. Sulfotyrosine titrations monitored via NMR spectroscopy showed specific binding to CXCL8, but not to CXCL5, which is consistent with the predictions from the computational solvent mapping. The lack of CXCL5–sulfotyrosine interaction and the presence of CXCL8–sulfotyrosine binding suggests a role for receptor post-translational modifications regulating ligand selectivity.
Collapse
Affiliation(s)
- Natasha A Moussouras
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Emily R Lackner
- Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, WI 53190, USA.
| | | | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
22
|
Halakou F, Kilic ES, Cukuroglu E, Keskin O, Gursoy A. Enriching Traditional Protein-protein Interaction Networks with Alternative Conformations of Proteins. Sci Rep 2017; 7:7180. [PMID: 28775330 PMCID: PMC5543104 DOI: 10.1038/s41598-017-07351-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Traditional Protein-Protein Interaction (PPI) networks, which use a node and edge representation, lack some valuable information about the mechanistic details of biological processes. Mapping protein structures to these PPI networks not only provides structural details of each interaction but also helps us to find the mutual exclusive interactions. Yet it is not a comprehensive representation as it neglects the conformational changes of proteins which may lead to different interactions, functions, and downstream signalling. In this study, we proposed a new representation for structural PPI networks inspecting the alternative conformations of proteins. We performed a large-scale study by creating breast cancer metastasis network and equipped it with different conformers of proteins. Our results showed that although 88% of proteins in our network has at least two structures in Protein Data Bank (PDB), only 22% of them have alternative conformations and the remaining proteins have different regions saved in PDB. However, using even this small set of alternative conformations we observed a considerable increase in our protein docking predictions. Our protein-protein interaction predictions increased from 54% to 76% using the alternative conformations. We also showed the benefits of investigating structural data and alternative conformations of proteins through three case studies.
Collapse
Affiliation(s)
- Farideh Halakou
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey
| | - Emel Sen Kilic
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey.,Microbiology, Immunology and Cell Biology Department, West Virginia University, Morgantown, 26505, WV, USA
| | - Engin Cukuroglu
- Computational Sciences and Engineering, Graduate School of Sciences and Engineering, Koc University, Istanbul, 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, 34450, Turkey
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul, 34450, Turkey.
| |
Collapse
|
23
|
Sand LGL, Buckle T, van Leeuwen FWB, Corver WE, Kruisselbrink AB, Jochemsen AG, Hogendoorn PCW, Szuhai K. Fluorescent CXCR4 targeting peptide as alternative for antibody staining in Ewing sarcoma. BMC Cancer 2017; 17:383. [PMID: 28549419 PMCID: PMC5446759 DOI: 10.1186/s12885-017-3352-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/12/2017] [Indexed: 01/07/2023] Open
Abstract
Background Ewing sarcoma is an aggressive, highly metastatic primary bone and soft tissue tumor most frequently occurring in the bone of young adolescents. Patients, especially those diagnosed with a metastatic disease, have a poor overall survival. Chemokine receptor CXCR4 has a key pro-tumorigenic role in the tumor microenvironment of Ewing sarcoma and has been suggested to be involved in the increased metastatic propensity. Earlier studies on CXCR4 protein expression in Ewing sarcoma yielded contradictory results when compared to CXCR4 RNA expression studies. Previously, we demonstrated that CXCR4 expression could be detected in vivo using the fluorescently tagged CXCR4-specific peptide MSAP-Ac-TZ14011. Therefore, we studied the membranous CXCR4 expression in Ewing sarcoma cell lines using MSAP-Ac-TZ14011. Methods The CXCR4 membrane expression levels were studied in EWS cell lines by flow cytometry using the hybrid peptide MSAP-Ac-TZ14011 and were correlated to CXCR4 RNA expression levels. The measurements were compared to levels detected using the CXCR4 antibody ab2074 under various cell preparation conditions. In addition, the staining patterns were analyzed by confocal fluorescence microscopy over time. Results The hybrid peptide MSAP-Ac-TZ14011 levels showed a strong and better correlation of CXCR4 membrane expression with the CXCR4 RNA expression levels than observed with the anti-CXCR4 antibody ab2074. With the hybrid peptide MSAP-Ac-TZ14011 using live cell confocal microscopy CXCR4 membrane staining and internalization was detected and the signal intensity correlated well with CXCR4 mRNA expression levels. Conclusions The fluorescently labeled CXCR4 targeting peptide-based method provides a reliable alternative to antibody staining to study the CXCR4 membrane expression in live cells using either flow cytometry or live cell fluorescence microscopy. The fluorescently tagged CXCR4 targeting peptide could enable in vivo detection of CXCR4 expression in Ewing sarcoma which may help to stratify cases for anti-CXCR4 therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3352-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laurens G L Sand
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden, The Netherlands.,Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden, The Netherlands
| | - Willem E Corver
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Aart G Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Postbus 9600, 2300 RC, The Netherlands
| | | | - Károly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Postbus 9600, 2300 RC, The Netherlands.
| |
Collapse
|
24
|
Kufareva I, Gustavsson M, Zheng Y, Stephens BS, Handel TM. What Do Structures Tell Us About Chemokine Receptor Function and Antagonism? Annu Rev Biophys 2017; 46:175-198. [PMID: 28532213 PMCID: PMC5764094 DOI: 10.1146/annurev-biophys-051013-022942] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chemokines and their cell surface G protein-coupled receptors are critical for cell migration, not only in many fundamental biological processes but also in inflammatory diseases and cancer. Recent X-ray structures of two chemokines complexed with full-length receptors provided unprecedented insight into the atomic details of chemokine recognition and receptor activation, and computational modeling informed by new experiments leverages these insights to gain understanding of many more receptor:chemokine pairs. In parallel, chemokine receptor structures with small molecules reveal the complicated and diverse structural foundations of small molecule antagonism and allostery, highlight the inherent physicochemical challenges of receptor:chemokine interfaces, and suggest novel epitopes that can be exploited to overcome these challenges. The structures and models promote unique understanding of chemokine receptor biology, including the interpretation of two decades of experimental studies, and will undoubtedly assist future drug discovery endeavors.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Yi Zheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093; ,
| |
Collapse
|
25
|
Ziarek JJ, Kleist AB, London N, Raveh B, Montpas N, Bonneterre J, St-Onge G, DiCosmo-Ponticello CJ, Koplinski CA, Roy I, Stephens B, Thelen S, Veldkamp CT, Coffman FD, Cohen MC, Dwinell MB, Thelen M, Peterson FC, Heveker N, Volkman BF. Structural basis for chemokine recognition by a G protein-coupled receptor and implications for receptor activation. Sci Signal 2017; 10:10/471/eaah5756. [PMID: 28325822 DOI: 10.1126/scisignal.aah5756] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemokines orchestrate cell migration for development, immune surveillance, and disease by binding to cell surface heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). The array of interactions between the nearly 50 chemokines and their 20 GPCR targets generates an extensive signaling network to which promiscuity and biased agonism add further complexity. The receptor CXCR4 recognizes both monomeric and dimeric forms of the chemokine CXCL12, which is a distinct example of ligand bias in the chemokine family. We demonstrated that a constitutively monomeric CXCL12 variant reproduced the G protein-dependent and β-arrestin-dependent responses that are associated with normal CXCR4 signaling and lead to cell migration. In addition, monomeric CXCL12 made specific contacts with CXCR4 that are not present in the structure of the receptor in complex with a dimeric form of CXCL12, a biased agonist that stimulates only G protein-dependent signaling. We produced an experimentally validated model of an agonist-bound chemokine receptor that merged a nuclear magnetic resonance-based structure of monomeric CXCL12 bound to the amino terminus of CXCR4 with a crystal structure of the transmembrane domains of CXCR4. The large CXCL12:CXCR4 protein-protein interface revealed by this structure identified previously uncharacterized functional interactions that fall outside of the classical "two-site model" for chemokine-receptor recognition. Our model suggests a mechanistic hypothesis for how interactions on the extracellular face of the receptor may stimulate the conformational changes required for chemokine receptor-mediated signal transduction.
Collapse
Affiliation(s)
- Joshua J Ziarek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nir London
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Barak Raveh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicolas Montpas
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Julien Bonneterre
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Geneviève St-Onge
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | | | - Chad A Koplinski
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ishan Roy
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bryan Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 93093, USA
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vela 6, Bellinzona CH-6500, Switzerland
| | | | - Frederick D Coffman
- Department of Pathology and Laboratory Medicine and Center for Biophysical Pathology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Marion C Cohen
- Rutgers Graduate School of Biomedical Sciences, Newark, NJ 07101, USA
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vela 6, Bellinzona CH-6500, Switzerland
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Nikolaus Heveker
- Centre de Recherche, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Quebec H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
26
|
Gustavsson M, Wang L, van Gils N, Stephens BS, Zhang P, Schall TJ, Yang S, Abagyan R, Chance MR, Kufareva I, Handel TM. Structural basis of ligand interaction with atypical chemokine receptor 3. Nat Commun 2017; 8:14135. [PMID: 28098154 PMCID: PMC5253664 DOI: 10.1038/ncomms14135] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
Chemokines drive cell migration through their interactions with seven-transmembrane (7TM) chemokine receptors on cell surfaces. The atypical chemokine receptor 3 (ACKR3) binds chemokines CXCL11 and CXCL12 and signals exclusively through β-arrestin-mediated pathways, without activating canonical G-protein signalling. This receptor is upregulated in numerous cancers making it a potential drug target. Here we collected over 100 distinct structural probes from radiolytic footprinting, disulfide trapping, and mutagenesis to map the structures of ACKR3:CXCL12 and ACKR3:small-molecule complexes, including dynamic regions that proved unresolvable by X-ray crystallography in homologous receptors. The data are integrated with molecular modelling to produce complete and cohesive experimentally driven models that confirm and expand on the existing knowledge of the architecture of receptor:chemokine and receptor:small-molecule complexes. Additionally, we detected and characterized ligand-induced conformational changes in the transmembrane and intracellular regions of ACKR3 that elucidate fundamental structural elements of agonism in this atypical receptor.
Collapse
Affiliation(s)
- Martin Gustavsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0684, La Jolla, California, 92093, USA
| | - Liwen Wang
- Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, 10009 Euclid Avenue, Cleveland, Ohio 44109, USA
| | - Noortje van Gils
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0684, La Jolla, California, 92093, USA
| | - Bryan S Stephens
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0684, La Jolla, California, 92093, USA
| | - Penglie Zhang
- ChemoCentryx Inc., 850 W Maude Avenue, Mountain View, California 94043, USA
| | - Thomas J Schall
- ChemoCentryx Inc., 850 W Maude Avenue, Mountain View, California 94043, USA
| | - Sichun Yang
- Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, 10009 Euclid Avenue, Cleveland, Ohio 44109, USA
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0684, La Jolla, California, 92093, USA
| | - Mark R Chance
- Center for Proteomics and Bioinformatics and Department of Nutrition, Case Western Reserve University School of Medicine, 10009 Euclid Avenue, Cleveland, Ohio 44109, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0684, La Jolla, California, 92093, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0684, La Jolla, California, 92093, USA
| |
Collapse
|
27
|
Duan H, Zhu L, Peng J, Yang M, Xie H, Lin Y, Li W, Liu C, Li X, Guo H, Meng J, Xu H, Wang C, Yang Y. Peptide-binding induced inhibition of chemokine CXCL12. RSC Adv 2017. [DOI: 10.1039/c7ra01735a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A designed peptide (W4) has a significant inhibitory effect on the CXCL12/CXCR4 axis by targeting CXCL12 with high binding affinity.
Collapse
|
28
|
Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:594-603. [PMID: 28040478 DOI: 10.1016/j.bbamcr.2016.12.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.
Collapse
|
29
|
Connell BJ, Sadir R, Baleux F, Laguri C, Kleman JP, Luo L, Arenzana-Seisdedos F, Lortat-Jacob H. Heparan sulfate differentially controls CXCL12α- and CXCL12γ-mediated cell migration through differential presentation to their receptor CXCR4. Sci Signal 2016; 9:ra107. [PMID: 27803285 DOI: 10.1126/scisignal.aaf1839] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemokines stimulate signals in cells by binding to G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors. These chemoattractant cytokines also interact with heparan sulfate (HS), which provides positional information within tissues in the form of haptotactic gradients along which cells can migrate directionally. To investigate the mechanism by which HS modulates chemokine functions, we used the CXC chemokine CXCL12, which exists in different isoforms that all signal through CXCR4 but have distinct HS-binding domains. In experiments with both cell-associated and solubilized CXCR4, we found that although CXCL12γ bound to CXCR4 with a higher affinity than did CXCL12α, CXCL12γ displayed reduced signaling and chemotactic activities. These properties were caused by the specific carboxyl-terminal region of CXCL12γ, which, by interacting with CXCR4 sulfotyrosines, mediated high-affinity, but nonproductive, binding to CXCR4. HS prevented CXCL12γ from interacting with the CXCR4 sulfotyrosines, thereby functionally presenting the chemokine to its receptor such that its activity was similar to that of CXCL12α. HS had no effects on the binding of CXCL12α to CXCR4 or its biological activity, suggesting that this polysaccharide controls CXCL12 in an isoform-specific manner. These data suggest that the HS-dependent regulation of chemokine functions extends beyond the simple process of immobilization and directly modulates receptor ligation and activation.
Collapse
Affiliation(s)
- Bridgette J Connell
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Rabia Sadir
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Françoise Baleux
- Institut Pasteur, Unité de Chimie des Biomolécules, UMR CNRS 3523, Paris, France
| | - Cédric Laguri
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Jean-Philippe Kleman
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France
| | - Lingjie Luo
- Institut Pasteur, INSERM U1108, Paris, France
| | | | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, F-38027 Grenoble, France.
| |
Collapse
|
30
|
Migliorini E, Thakar D, Kühnle J, Sadir R, Dyer DP, Li Y, Sun C, Volkman BF, Handel TM, Coche-Guerente L, Fernig DG, Lortat-Jacob H, Richter RP. Cytokines and growth factors cross-link heparan sulfate. Open Biol 2016; 5:rsob.150046. [PMID: 26269427 PMCID: PMC4554917 DOI: 10.1098/rsob.150046] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors.
Collapse
Affiliation(s)
- Elisa Migliorini
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain
| | - Dhruv Thakar
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - Jens Kühnle
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Rabia Sadir
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Douglas P Dyer
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy M Handel
- University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, CA, USA
| | - Liliane Coche-Guerente
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France CNRS, IBS, Grenoble, France CEA, IBS, Grenoble, France
| | - Ralf P Richter
- Université Grenoble Alpes, Departement de Chimie Moléculaire (DCM), Grenoble, France CNRS, DCM, Grenoble, France CIC biomaGUNE, San Sebastian, Spain Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
31
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
32
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
33
|
Smith EW, Nevins AM, Qiao Z, Liu Y, Getschman AE, Vankayala SL, Kemp MT, Peterson FC, Li R, Volkman BF, Chen Y. Structure-Based Identification of Novel Ligands Targeting Multiple Sites within a Chemokine-G-Protein-Coupled-Receptor Interface. J Med Chem 2016; 59:4342-51. [PMID: 27058821 DOI: 10.1021/acs.jmedchem.5b02042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CXCL12 is a human chemokine that recognizes the CXCR4 receptor and is involved in immune responses and metastatic cancer. Interactions between CXCL12 and CXCR4 are an important drug target but, like other elongated protein-protein interfaces, present challenges for small molecule ligand discovery due to the relatively shallow and featureless binding surfaces. Calculations using an NMR complex structure revealed a binding hot spot on CXCL12 that normally interacts with the I4/I6 residues from CXCR4. Virtual screening was performed against the NMR model, and subsequent testing has verified the specific binding of multiple docking hits to this site. Together with our previous results targeting two other binding pockets that recognize sulfotyrosine residues (sY12 and sY21) of CXCR4, including a new analog against the sY12 binding site reported herein, we demonstrate that protein-protein interfaces can often possess multiple sites for engineering specific small molecule ligands that provide lead compounds for subsequent optimization by fragment based approaches.
Collapse
Affiliation(s)
- Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Zhen Qiao
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, and Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yan Liu
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, and Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Sai L Vankayala
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - M Trent Kemp
- Department of Chemistry, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Rongshi Li
- Department of Pharmaceutical Sciences, Center for Drug Discovery, College of Pharmacy, and Cancer Genes and Molecular Regulation Program, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center , 986805 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin , 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
34
|
Isahak N, Sanchez J, Perrier S, Stone MJ, Payne RJ. Synthesis of polymers and nanoparticles bearing polystyrene sulfonate brushes for chemokine binding. Org Biomol Chem 2016; 14:5652-8. [DOI: 10.1039/c6ob00270f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the synthesis of polymers and silica nanoparticles, both bearing polystyrene sulfonate brushes, and the measurement of their binding affinity for the chemokine monocyte chemoattractant protein-1 (MCP-1) in monomeric and dimeric form.
Collapse
Affiliation(s)
| | - Julie Sanchez
- Department of Biochemistry and Molecular Biology
- Monash University
- Melbourne
- Australia
| | - Sébastien Perrier
- School of Chemistry
- The University of Sydney
- Australia
- Department of Chemistry
- University of Warwick
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology
- Monash University
- Melbourne
- Australia
| | | |
Collapse
|
35
|
Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2015; 99:935-53. [DOI: 10.1189/jlb.3mr0915-440r] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/24/2015] [Indexed: 12/19/2022] Open
|
36
|
Roy I, McAllister DM, Gorse E, Dixon K, Piper CT, Zimmerman NP, Getschman AE, Tsai S, Engle DD, Evans DB, Volkman BF, Kalyanaraman B, Dwinell MB. Pancreatic Cancer Cell Migration and Metastasis Is Regulated by Chemokine-Biased Agonism and Bioenergetic Signaling. Cancer Res 2015; 75:3529-42. [PMID: 26330165 DOI: 10.1158/0008-5472.can-14-2645] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) invariably succumb to metastatic disease, but the underlying mechanisms that regulate PDAC cell movement and metastasis remain little understood. In this study, we investigated the effects of the chemokine gene CXCL12, which is silenced in PDAC tumors, yet is sufficient to suppress growth and metastasis when re-expressed. Chemokines like CXCL12 regulate cell movement in a biphasic pattern, with peak migration typically in the low nanomolar concentration range. Herein, we tested the hypothesis that the biphasic cell migration pattern induced by CXCL12 reflected a biased agonist bioenergetic signaling that might be exploited to interfere with PDAC metastasis. In human and murine PDAC cell models, we observed that nonmigratory doses of CXCL12 were sufficient to decrease oxidative phosphorylation and glycolytic capacity and to increase levels of phosphorylated forms of the master metabolic kinase AMPK. Those same doses of CXCL12 locked myosin light chain into a phosphorylated state, thereby decreasing F-actin polymerization and preventing cell migration in a manner dependent upon AMPK and the calcium-dependent kinase CAMKII. Notably, at elevated concentrations of CXCL12 that were insufficient to trigger chemotaxis of PDAC cells, AMPK blockade resulted in increased cell movement. In two preclinical mouse models of PDAC, administration of CXCL12 decreased tumor dissemination, supporting our hypothesis that chemokine-biased agonist signaling may offer a useful therapeutic strategy. Our results offer a mechanistic rationale for further investigation of CXCL12 as a potential therapy to prevent or treat PDAC metastasis.
Collapse
Affiliation(s)
- Ishan Roy
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Donna M McAllister
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Egal Gorse
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kate Dixon
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Clinton T Piper
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Noah P Zimmerman
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin. MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Susan Tsai
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Douglas B Evans
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin. MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin. MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
37
|
Seibert C, Sanfiz A, Sakmar TP, Veldkamp CT. Preparation and Analysis of N-Terminal Chemokine Receptor Sulfopeptides Using Tyrosylprotein Sulfotransferase Enzymes. Methods Enzymol 2015; 570:357-88. [PMID: 26921955 DOI: 10.1016/bs.mie.2015.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In most chemokine receptors, one or multiple tyrosine residues have been identified within the receptor N-terminal domain that are, at least partially, modified by posttranslational tyrosine sulfation. For example, tyrosine sulfation has been demonstrated for Tyr-3, -10, -14, and -15 of CCR5, for Tyr-3, -14, and -15 of CCR8, and for Tyr-7, -12, and -21 of CXCR4. While there is evidence for several chemokine receptors that tyrosine sulfation is required for optimal interaction with the chemokine ligands, the precise role of tyrosine sulfation for chemokine receptor function remains unclear. Furthermore, the function of the chemokine receptor N-terminal domain in chemokine binding and receptor activation is also not well understood. Sulfotyrosine peptides corresponding to the chemokine receptor N-termini are valuable tools to address these important questions both in structural and functional studies. However, due to the lability of the sulfotyrosine modification, these peptides are difficult to obtain using standard peptide chemistry methods. In this chapter, we provide methods to prepare sulfotyrosine peptides by enzymatic in vitro sulfation of peptides using purified recombinant tyrosylprotein sulfotransferase (TPST) enzymes. In addition, we also discuss alternative approaches for the generation of sulfotyrosine peptides and methods for sulfopeptide analysis.
Collapse
Affiliation(s)
- Christoph Seibert
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, USA
| | - Anthony Sanfiz
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, USA
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, USA
| | - Christopher T Veldkamp
- Department of Chemistry, University of Wisconsin-Whitewater, Whitewater, Wisconsin, USA.
| |
Collapse
|
38
|
Sand LGL, Jochemsen AG, Beletkaia E, Schmidt T, Hogendoorn PCW, Szuhai K. Novel splice variants of CXCR4 identified by transcriptome sequencing. Biochem Biophys Res Commun 2015; 466:89-94. [PMID: 26321665 DOI: 10.1016/j.bbrc.2015.08.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Chemokine receptor CXCR4 is involved in tumor growth, angiogenesis and metastasis. Its function is regulated in many ways and one of them is alternative splicing. We identified two novel coding splice variants (CXCR4-3 and CXCR4-4) of CXCR4 in Ewing sarcoma (EWS) cell lines by whole transcriptome sequencing and validated these with reverse transcriptase- PCR and Sanger sequencing. The novel splice variants were expressed at RNA level in Ewing sarcoma samples and in other tumor cell lines and placenta, but not in lung. Due to inclusion of an additional exon the new isoforms have a 70 and 33 amino acid elongation of the N-terminal end of CXCR4. For validation at protein and functional level, the identified isoforms and normal CXCR4 were cloned into an EYFP tagged vector and ectopically expressed in HEK293T cell line and EWS cell line A673. Of the novel isoforms CXCR4-3 showed cell membrane localization and a functional response after addition of CXCR4 ligand CXCL12a. CXCR4-4 showed strong cytoplasmic accumulation and no response to ligand treatment. The role of the newly discovered isoforms in CXCR4 signaling is likely to be limited. Our data stresses the importance of functional validation of newly identified isoforms.
Collapse
Affiliation(s)
- L G L Sand
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - A G Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Beletkaia
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - T Schmidt
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - P C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - K Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
39
|
Stone MJ, Payne RJ. Homogeneous sulfopeptides and sulfoproteins: synthetic approaches and applications to characterize the effects of tyrosine sulfation on biochemical function. Acc Chem Res 2015. [PMID: 26196117 DOI: 10.1021/acs.accounts.5b00255] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Post-translational modification of proteins plays critical roles in regulating structure, stability, localization, and function. Sulfation of the phenolic side chain of tyrosine residues to form sulfotyrosine (sTyr) is a widespread modification of extracellular and integral membrane proteins, influencing the activities of these proteins in cellular adhesion, blood clotting, inflammatory responses, and pathogen infection. Tyrosine sulfation commonly occurs in sequences containing clusters of tyrosine residues and is incomplete at each site, resulting in heterogeneous mixtures of sulfoforms. Purification of individual sulfoforms is typically impractical. Therefore, the most promising approach to elucidate the influence of sulfation at each site is to prepare homogeneously sulfated proteins (or peptides) synthetically. This Account describes our recent progress in both development of such synthetic approaches and application of the resulting sulfopeptides and sulfoproteins to characterize the functional consequences of tyrosine sulfation. Initial synthetic studies used a cassette-based solid-phase peptide synthesis (SPPS) approach in which the side chain sulfate ester was protected to enable it to withstand Fmoc-based SPPS conditions. Subsequently, to address the need for efficient access to multiple sulfoforms of the same peptide, we developed a divergent solid-phase synthetic approach utilizing orthogonally side chain protected tyrosine residues. Using this methodology, we have carried out orthogonal deprotection and sulfation of up to three tyrosine residues within a given sequence, allowing access to all eight sulfoforms of a given target from a single solid-phase synthesis. With homogeneously sulfated peptides in hand, we have been able to probe the influence of tyrosine sulfation on biochemical function. Several of these studies focused on sulfated fragments of chemokine receptors, key mediators of leukocyte trafficking and inflammation. For the receptor CCR3, we showed that tyrosine sulfation enhances affinity and selectivity for binding to chemokine ligands, and we determined the structural basis of these affinity enhancements by NMR spectroscopy. Using a library of CCR5 sulfopeptides, we demonstrated the critical importance of sulfation at one specific site for supporting HIV-1 infection. Demonstrating the feasibility of producing homogeneously tyrosine-sulfated proteins, in addition to smaller peptides, we have used SPPS and native chemical ligation methods to synthesize the leech-derived antithrombotic protein hirudin P6, containing both tyrosine sulfation and glycosylation. Sulfation greatly enhanced inhibitory activity against thrombin, whereas addition of glycans to the sulfated protein decreased inhibition, indicating functional interplay between different post-translational modifications. In addition, the success of the ligation approach suggests that larger sulfoproteins could potentially be obtained by ligation of synthetic sulfopeptides to expressed proteins, using intein-based technology.
Collapse
Affiliation(s)
- Martin J. Stone
- Department
of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Richard J. Payne
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
40
|
Nussinov R, Tsai CJ, Liu J. Principles of allosteric interactions in cell signaling. J Am Chem Soc 2014; 136:17692-701. [PMID: 25474128 PMCID: PMC4291754 DOI: 10.1021/ja510028c] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Linking cell signaling events to the fundamental physicochemical basis of the conformational behavior of single molecules and ultimately to cellular function is a key challenge facing the life sciences. Here we outline the emerging principles of allosteric interactions in cell signaling, with emphasis on the following points. (1) Allosteric efficacy is not a function of the chemical composition of the allosteric pocket but reflects the extent of the population shift between the inactive and active states. That is, the allosteric effect is determined by the extent of preferred binding, not by the overall binding affinity. (2) Coupling between the allosteric and active sites does not decide the allosteric effect; however, it does define the propagation pathways, the allosteric binding sites, and key on-path residues. (3) Atoms of allosteric effectors can act as "driver" or "anchor" and create attractive "pulling" or repulsive "pushing" interactions. Deciphering, quantifying, and integrating the multiple co-occurring events present daunting challenges to our scientific community.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research,
National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler
Institute of Molecular Medicine, Department of Human Genetics and
Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research,
National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jin Liu
- Department
of Biophysics, University of Texas Southwestern
Medical Center, 5323
Harry Hines Boulevard, Dallas, Texas 75390, United
States
- Department
of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4),
and Center for Scientific Computation, Southern
Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275, United
States
| |
Collapse
|
41
|
Stoichiometry and geometry of the CXC chemokine receptor 4 complex with CXC ligand 12: molecular modeling and experimental validation. Proc Natl Acad Sci U S A 2014; 111:E5363-72. [PMID: 25468967 DOI: 10.1073/pnas.1417037111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chemokines and their receptors regulate cell migration during development, immune system function, and in inflammatory diseases, making them important therapeutic targets. Nevertheless, the structural basis of receptor:chemokine interaction is poorly understood. Adding to the complexity of the problem is the persistently dimeric behavior of receptors observed in cell-based studies, which in combination with structural and mutagenesis data, suggest several possibilities for receptor:chemokine complex stoichiometry. In this study, a combination of computational, functional, and biophysical approaches was used to elucidate the stoichiometry and geometry of the interaction between the CXC-type chemokine receptor 4 (CXCR4) and its ligand CXCL12. First, relevance and feasibility of a 2:1 stoichiometry hypothesis was probed using functional complementation experiments with multiple pairs of complementary nonfunctional CXCR4 mutants. Next, the importance of dimers of WT CXCR4 was explored using the strategy of dimer dilution, where WT receptor dimerization is disrupted by increasing expression of nonfunctional CXCR4 mutants. The results of these experiments were supportive of a 1:1 stoichiometry, although the latter could not simultaneously reconcile existing structural and mutagenesis data. To resolve the contradiction, cysteine trapping experiments were used to derive residue proximity constraints that enabled construction of a validated 1:1 receptor:chemokine model, consistent with the paradigmatic two-site hypothesis of receptor activation. The observation of a 1:1 stoichiometry is in line with accumulating evidence supporting monomers as minimal functional units of G protein-coupled receptors, and suggests transmission of conformational changes across the dimer interface as the most probable mechanism of altered signaling by receptor heterodimers.
Collapse
|
42
|
Jones LH, Narayanan A, Hett EC. Understanding and applying tyrosine biochemical diversity. MOLECULAR BIOSYSTEMS 2014; 10:952-69. [PMID: 24623162 DOI: 10.1039/c4mb00018h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review highlights some of the recent advances made in our understanding of the diversity of tyrosine biochemistry and shows how this has inspired novel applications in numerous areas of molecular design and synthesis, including chemical biology and bioconjugation. The pathophysiological implications of tyrosine biochemistry will be presented from a molecular perspective and the opportunities for therapeutic intervention explored.
Collapse
Affiliation(s)
- Lyn H Jones
- Pfizer R&D, Chemical Biology Group, BioTherapeutics Chemistry, WorldWide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|
43
|
Smith EW, Liu Y, Getschman AE, Peterson FC, Ziarek JJ, Li R, Volkman BF, Chen Y. Structural analysis of a novel small molecule ligand bound to the CXCL12 chemokine. J Med Chem 2014; 57:9693-9. [PMID: 25356720 PMCID: PMC4255719 DOI: 10.1021/jm501194p] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CXCL12 binds to CXCR4, promoting both chemotaxis of lymphocytes and metastasis of cancer cells. We previously identified small molecule ligands that bind CXCL12 and block CXCR4-mediated chemotaxis. We now report a 1.9 Å resolution X-ray structure of CXCL12 bound by such a molecule at a site normally bound by sY21 of CXCR4. The complex structure reveals binding hot spots for future inhibitor design and suggests a new approach to targeting CXCL12-CXCR4 signaling in drug discovery.
Collapse
Affiliation(s)
- Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Role of 3D Structures in Understanding, Predicting, and Designing Molecular Interactions in the Chemokine Receptor Family. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/7355_2014_77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Well-defined biomimetic surfaces to characterize glycosaminoglycan-mediated interactions on the molecular, supramolecular and cellular levels. Biomaterials 2014; 35:8903-15. [DOI: 10.1016/j.biomaterials.2014.07.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022]
|
46
|
Tsai CJ, Nussinov R. The free energy landscape in translational science: how can somatic mutations result in constitutive oncogenic activation? Phys Chem Chem Phys 2014; 16:6332-41. [PMID: 24445437 PMCID: PMC7667491 DOI: 10.1039/c3cp54253j] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The free energy landscape theory has transformed the field of protein folding. The significance of perceiving function in terms of conformational heterogeneity is gradually shifting the interest in the community from folding to function. From the free energy landscape standpoint the principles are unchanged: rather than considering the entire protein conformational landscape, the focus is on the ensemble around the bottom of the folding funnel. The protein can be viewed as populating one of two states: active or inactive. The basins of the two states are separated by a surmountable barrier, which allows the conformations to switch between the states. Unless the protein is a repressor, under physiological conditions it typically populates the inactive state. Ligand binding (or post-translational modification) triggers a switch to the active state. Constitutive allosteric mutations work by shifting the population from the inactive to the active state and keeping it there. This can happen by either destabilizing the inactive state, stabilizing the active state, or both. Identification of the mechanism through which they work is important since it may assist in drug discovery. Here we spotlight the usefulness of the free energy landscape in translational science, illustrating how oncogenic mutations can work in key proteins from the EGFR/Ras/Raf/Erk/Mek pathway, the main signaling pathway in cancer. Finally, we delineate the key components which are needed in order to trace the mechanism of allosteric events.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| | | |
Collapse
|
47
|
Verkaar F, van Offenbeek J, van der Lee MMC, van Lith LHCJ, Watts AO, Rops ALWMM, Aguilar DC, Ziarek JJ, van der Vlag J, Handel TM, Volkman BF, Proudfoot AEI, Vischer HF, Zaman GJR, Smit MJ. Chemokine cooperativity is caused by competitive glycosaminoglycan binding. THE JOURNAL OF IMMUNOLOGY 2014; 192:3908-3914. [PMID: 24639348 DOI: 10.4049/jimmunol.1302159] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokines comprise a family of secreted proteins that activate G protein-coupled chemokine receptors and thereby control the migration of leukocytes during inflammation or immune surveillance. The positional information required for such migratory behavior is governed by the binding of chemokines to membrane-tethered glycosaminoglycans (GAGs), which establishes a chemokine concentration gradient. An often observed but incompletely understood behavior of chemokines is the ability of unrelated chemokines to enhance the potency with which another chemokine subtype can activate its cognate receptor. This phenomenon has been demonstrated to occur between many chemokine combinations and across several model systems and has been dubbed chemokine cooperativity. In this study, we have used GAG binding-deficient chemokine mutants and cell-based functional (migration) assays to demonstrate that chemokine cooperativity is caused by competitive binding of chemokines to GAGs. This mechanistic explanation of chemokine cooperativity provides insight into chemokine gradient formation in the context of inflammation, in which multiple chemokines are secreted simultaneously.
Collapse
Affiliation(s)
- Folkert Verkaar
- Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.,Merck Research Laboratories, Molecular Pharmacology & DMPK, Oss, The Netherlands
| | - Jody van Offenbeek
- Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands.,Merck Research Laboratories, Molecular Pharmacology & DMPK, Oss, The Netherlands
| | | | | | - Anne O Watts
- Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | | | - David C Aguilar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA, USA
| | - Joshua J Ziarek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA, USA
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Henry F Vischer
- Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V. (NTRC), Oss, The Netherlands
| | - Martine J Smit
- Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|