1
|
Saladin L, Breton V, Le Berruyer V, Nazac P, Lequeu T, Didier P, Danglot L, Collot M. Targeted Photoconvertible BODIPYs Based on Directed Photooxidation-Induced Conversion for Applications in Photoconversion and Live Super-Resolution Imaging. J Am Chem Soc 2024; 146:17456-17473. [PMID: 38861358 DOI: 10.1021/jacs.4c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Photomodulable fluorescent probes are drawing increasing attention due to their applications in advanced bioimaging. Whereas photoconvertible probes can be advantageously used in tracking, photoswitchable probes constitute key tools for single-molecule localization microscopy to perform super-resolution imaging. Herein, we shed light on a red and far-red BODIPY, namely, BDP-576 and BDP-650, which possess both properties of conversion and switching. Our study demonstrates that these pyrrolyl-BODIPYs convert into typical green- and red-emitting BODIPYs that are perfectly adapted to microscopy. We also showed that this pyrrolyl-BODIPYs undergo Directed Photooxidation Induced Conversion, a photoconversion mechanism that we recently introduced, where the pyrrole moiety plays a central role. These unique features were used to develop targeted photoconvertible probes toward different organelles or subcellular units (plasma membrane, mitochondria, nucleus, actin, Golgi apparatus, etc.) using chemical targeting moieties and a Halo tag. We notably showed that BDP-650 could be used to track intracellular vesicles over more than 20 min in two-color imagings with laser scanning confocal microscopy, demonstrating its robustness. The switching properties of these photoconverters were studied at the single-molecule level and were then successfully used in live single-molecule localization microscopy in epithelial cells and neurons. Both membrane- and mitochondria- targeted probes could be used to decipher membrane 3D architecture and mitochondrial dynamics at the nanoscale. This study builds a bridge between the photoconversion and photoswitching properties of probes undergoing directed photooxidation and shows the versatility and efficacy of this mechanism in advanced live imaging.
Collapse
Affiliation(s)
- Lazare Saladin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Victor Breton
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Valentine Le Berruyer
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in Healthy and Diseased Brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Thiebault Lequeu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane Traffic in healthy and Diseased brain team; NeurImag core facility scientific director, 75014 Paris, France
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Chemistry of Photoresponsive Systems, Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199, CNRS, Université de Strasbourg, F-67400 Illkirch, France
| |
Collapse
|
2
|
Fraix A, Parisi C, Seggio M, Sortino S. Nitric Oxide Photoreleasers with Fluorescent Reporting. Chemistry 2021; 27:12714-12725. [PMID: 34143909 DOI: 10.1002/chem.202101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) plays a multifaceted role in human physiology and pathophysiology, and its controlled delivery has great prospects in therapeutic applications. The light-activated uncaging of NO from NO caging compounds allows this free radical to be released with accurate control of site and dosage, which strictly determine its biological effects. Molecular constructs able to activate fluorescence concomitantly to NO release offer the important advantage of easy and real-time tracking of the amount of NO uncaged in a non-invasive fashion even in the cell environment. This contribution provides an overview of the advances in photoactivatable NO releasers bearing fluorescent reporting functionalities achieved in our and other laboratories, highlighting the rationale design and their potential therapeutic applications.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| |
Collapse
|
3
|
Zhang Y, Raymo FM. Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods Appl Fluoresc 2020; 8:032002. [PMID: 32325443 DOI: 10.1088/2050-6120/ab8c5c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photochemical reactions can be designed to convert either irreversibly or reversibly a nonemissive reactant into an emissive product. The irreversible disconnection of a photocleavable group from an emissive chromophore or the reversible interconversion of a photochromic component is generally exploited to implement these operating principles for fluorescence switching. In both instances, the interplay of activating radiation, to convert the nonemissive state into the emissive species, and exciting radiation, to produce fluorescence from the latter, can be exploited to switch fluorescence on in a given area of interest at a precise interval of time. Such a level of spatiotemporal control provides the opportunity to reconstruct sub-diffraction images with resolution at the nanometer level. Indeed, closely-spaced emitters can be switched on under photochemical control at distinct intervals of time and localized independently at the single-molecule level. In combination with appropriate intracellular targeting strategies, some of these photoactivatable fluorophores can be switched and localized inside live cells to permit the visualization of sub-cellular structures with a spatial resolution that would be impossible to achieve with conventional fluorophores. As a result, photoactivatable fluorophores can become invaluable probes for the implementation of super-resolution imaging schemes aimed at the elucidation of the fundamental factors controlling cellular functions at the molecular level.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, FL, United States of America
| | | |
Collapse
|
4
|
Morozumi A, Kamiya M, Uno SN, Umezawa K, Kojima R, Yoshihara T, Tobita S, Urano Y. Spontaneously Blinking Fluorophores Based on Nucleophilic Addition/Dissociation of Intracellular Glutathione for Live-Cell Super-resolution Imaging. J Am Chem Soc 2020; 142:9625-9633. [PMID: 32343567 DOI: 10.1021/jacs.0c00451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-molecule localization microscopy (SMLM) allows the reconstruction of super-resolution images but generally requires prior intense laser irradiation and in some cases additives to induce blinking of conventional fluorophores. We previously introduced a spontaneously blinking rhodamine fluorophore based on an intramolecular spirocyclization reaction for live-cell SMLM under physiological conditions. Here, we report a novel principle of spontaneous blinking in living cells, which utilizes reversible ground-state nucleophilic attack of intracellular glutathione (GSH) upon a xanthene fluorophore. Structural optimization afforded two pyronine fluorophores with different colors, both of which exhibit equilibrium (between the fluorescent dissociated form and the nonfluorescent GSH adduct form) and blinking kinetics that enable SMLM of microtubules or mitochondria in living cells. Furthermore, by using spontaneously blinking fluorophores working in the near-infrared (NIR) and green ranges, we succeeded in dual-color live-cell SMLM without the need for optimization of the imaging medium.
Collapse
Affiliation(s)
| | - Mako Kamiya
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Ryosuke Kojima
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshitada Yoshihara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Seiji Tobita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Yasuteru Urano
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
5
|
Zhang Y, Raymo FM. Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores. Bioconjug Chem 2020; 31:1052-1062. [PMID: 32150390 DOI: 10.1021/acs.bioconjchem.0c00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
6
|
Ye Z, Yang W, Wang C, Zheng Y, Chi W, Liu X, Huang Z, Li X, Xiao Y. Quaternary Piperazine-Substituted Rhodamines with Enhanced Brightness for Super-Resolution Imaging. J Am Chem Soc 2019; 141:14491-14495. [PMID: 31487156 DOI: 10.1021/jacs.9b04893] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Insufficient brightness of fluorophores poses a major bottleneck for the advancement of super-resolution microscopes. Despite being widely used, many rhodamine dyes exhibit sub-optimal brightness due to the formation of twisted intramolecular charge transfer (TICT) upon photoexcitation. Herein, we have developed a new class of quaternary piperazine-substituted rhodamines with outstanding quantum yields (Φ = 0.93) and superior brightness (ε × Φ = 8.1 × 104 L·mol-1·cm-1), by utilizing the electronic inductive effect to prevent TICT. We have also successfully deployed these rhodamines in the super-resolution imaging of the microtubules of fixed cells and of the cell membrane and lysosomes of live cells. Finally, we demonstrated that this strategy was generalizable to other families of fluorophores, resulting in substantially increased quantum yields.
Collapse
Affiliation(s)
- Zhiwei Ye
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China.,Chemical Analysis and Research Center , Dalian University of Technology , Dalian 116024 , China
| | - Chao Wang
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372
| | - Ying Zheng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Weijie Chi
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372
| | - Xiaogang Liu
- Singapore University of Technology and Design , 8 Somapah Road , Singapore 487372
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xiaoyuan Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
7
|
Lu CH, Tang WC, Liu YT, Chang SW, Wu FCM, Chen CY, Tsai YC, Yang SM, Kuo CW, Okada Y, Hwu YK, Chen P, Chen BC. Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging. Commun Biol 2019; 2:177. [PMID: 31098410 PMCID: PMC6509110 DOI: 10.1038/s42003-019-0403-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Recent advances in super-resolution microscopy allow the localization of single molecules within individual cells but not within multiple whole cells due to weak signals from single molecules and slow acquisition process for point accumulation to reconstruct super-resolution images. Here, we report a fast, large-scale, and three-dimensional super-resolution fluorescence microscope based on single-wavelength Bessel lightsheet to selectively illuminate spontaneous blinking fluorophores tagged to the proteins of interest in space. Critical parameters such as labeling density, excitation power, and exposure time were systematically optimized resulting in a maximum imaging speed of 2.7 × 104 µm3 s-1. Fourier ring correlation analysis revealed a reconstructed image with a lateral resolution of ~75 nm through the accumulation of 250 image volumes on immobilized samples within 15 min. Hence, the designed system could open new insights into the discovery of complex biological structures and live 3D localization imaging.
Collapse
Affiliation(s)
- Chieh-Han Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Wei-Chun Tang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Yen-Ting Liu
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Shu-Wei Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | | | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Yun-Chi Tsai
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Shun-Min Yang
- Institute of Physics, Academia Sinica, Taipei, 11529 Taiwan
| | - Chiung-Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874 Japan
- Department of Physics, Universal Biology Institute and International Research Center for Neurointelligence, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Yeu-Kuang Hwu
- Institute of Physics, Academia Sinica, Taipei, 11529 Taiwan
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529 Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
8
|
Ye Z, Yu H, Yang W, Zheng Y, Li N, Bian H, Wang Z, Liu Q, Song Y, Zhang M, Xiao Y. Strategy to Lengthen the On-Time of Photochromic Rhodamine Spirolactam for Super-resolution Photoactivated Localization Microscopy. J Am Chem Soc 2019; 141:6527-6536. [PMID: 30938994 DOI: 10.1021/jacs.8b11369] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhodamine derivatives and analogues have been widely used for different super-resolution imaging techniques, including photoactivated localization microscopy (PALM). Among them, rhodamine spirolactams exhibit great superiority for PALM imaging due to a desirable bright-dark contrast during the photochromic switching process. Although considerable attention has been paid to the chemical modifications on rhodamine spirolactams, the on-time of photochromic switching, one of the key characteristics for PALM imaging, has never been optimized in previous developments. In this study, we proposed that simply installing a carboxyl group close to the lactam site could impose an intramolecular acidic environment, stabilize the photoactivated zwitterionic structure, and thus effectively increase the on-time. On the basis of this idea, we have synthesized a new rhodamine spirolactam, Rh-Gly, that demonstrated considerably longer on-time than the other tested analogues, as well as an enhancement of single-molecule brightness, an improvement on signal-to-noise ratio and an enlargement of total collected photons of a single molecule before photobleaching. Finally, super-resolution images of live cell mitochondria stained with Rh-Gly have been obtained with a good temporal resolution of 10 s, as well as a satisfactory localization precision of ∼25 nm. Through self-labeling protein tags, Rh-Gly modified with a HaloTag ligand enabled super-resolution imaging of histone H2B proteins in live HeLa cells; through immunostaining antibodies labeled with an isothiocyanate-substituted Rh-Gly, super-resolution imaging of microtubules was achieved in fixed cells. Therefore, our simple and effective strategy provides novel insight for developing further enhanced rhodamine spirolactams recommendable for PALM imaging.
Collapse
Affiliation(s)
- Zhiwei Ye
- College of Environmental Sciences , Liaoning University , Shenyang 110036 , People's Republic of China.,State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Haibo Yu
- College of Environmental Sciences , Liaoning University , Shenyang 110036 , People's Republic of China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China.,Chemical Analysis and Research Center , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Ying Zheng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Ning Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Hui Bian
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| | - Zechen Wang
- College of Environmental Sciences , Liaoning University , Shenyang 110036 , People's Republic of China
| | - Qiang Liu
- College of Environmental Sciences , Liaoning University , Shenyang 110036 , People's Republic of China
| | - Youtao Song
- College of Environmental Sciences , Liaoning University , Shenyang 110036 , People's Republic of China
| | - Mingyan Zhang
- Liaoning Center of Disease Prevention and Control , Shenyang 110001 , People's Republic of China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , People's Republic of China
| |
Collapse
|
9
|
Sage D, Pham TA, Babcock H, Lukes T, Pengo T, Chao J, Velmurugan R, Herbert A, Agrawal A, Colabrese S, Wheeler A, Archetti A, Rieger B, Ober R, Hagen GM, Sibarita JB, Ries J, Henriques R, Unser M, Holden S. Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat Methods 2019; 16:387-395. [PMID: 30962624 PMCID: PMC6684258 DOI: 10.1038/s41592-019-0364-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/26/2019] [Indexed: 11/24/2022]
Abstract
With the widespread uptake of 2D and 3D single molecule localization microscopy, a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort we designed a competition to extensively characterise and rank the performance of 2D and 3D single molecule localization microscopy software packages. We generated realistic simulated datasets for popular imaging modalities - 2D, astigmatic 3D, biplane 3D, and double helix 3D - and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D single molecule localization microscopy software and provides a holistic view of how the latest 2D and 3D single molecule localization software perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against current state of the art, and provides insight into the current limits of the field. This study reports results from the second community-wide single molecule localization microscopy software challenge, which tested over thirty software packages on realistic simulated data for multiple popular 3D image acquisition modes as well as 2D localization microscopy.
Collapse
Affiliation(s)
- Daniel Sage
- Biomedical Imaging Group, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Thanh-An Pham
- Biomedical Imaging Group, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Hazen Babcock
- Harvard Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
| | - Tomas Lukes
- Laboratory of Nanoscale Biology and Laboratoire d'Optique Biomédicale, STI - IBI, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radioelectronics, FEE, Czech Technical University, Prague, Czech Republic
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jerry Chao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, USA
| | - Ramraj Velmurugan
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, USA.,Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alex Herbert
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Silvia Colabrese
- Biomedical Imaging Group, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Istituto Italiano di Tecnologia, Genova, Italy
| | - Ann Wheeler
- Advanced Imaging Resource, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Anna Archetti
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernd Rieger
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| | - Raimund Ober
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.,Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, USA.,Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Guy M Hagen
- UCCS Center for the Biofrontiers Institute, University of Colorado, Colorado Springs, CO, USA
| | - Jean-Baptiste Sibarita
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, Centre National de la Recherche Scientifique (CNRS) UMR 5297, Bordeaux, France
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany
| | - Ricardo Henriques
- Quantitative Imaging and Nanobiophysics Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Michael Unser
- Biomedical Imaging Group, School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Seamus Holden
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK.
| |
Collapse
|
10
|
Wang L, Frei MS, Salim A, Johnsson K. Small-Molecule Fluorescent Probes for Live-Cell Super-Resolution Microscopy. J Am Chem Soc 2019; 141:2770-2781. [PMID: 30550714 DOI: 10.1021/jacs.8b11134] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Super-resolution fluorescence microscopy is a powerful tool to visualize biomolecules and cellular structures at the nanometer scale. Employing these techniques in living cells has opened up the possibility to study dynamic processes with unprecedented spatial and temporal resolution. Different physical approaches to super-resolution microscopy have been introduced over the last years. A bottleneck to apply these approaches for live-cell imaging has become the availability of appropriate fluorescent probes that can be specifically attached to biomolecules. In this Perspective, we discuss the role of small-molecule fluorescent probes for live-cell super-resolution microscopy and the challenges that need to be overcome for their generation. Recent trends in the development of labeling strategies are reviewed together with the required chemical and spectroscopic properties of the probes. Finally, selected examples of the use of small-molecule fluorescent probes in live-cell super-resolution microscopy are given.
Collapse
Affiliation(s)
- Lu Wang
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany
| | - Michelle S Frei
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Aleksandar Salim
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Kai Johnsson
- Department of Chemical Biology , Max Planck Institute for Medical Research , Jahnstrasse 29 , 69120 Heidelberg , Germany.,Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| |
Collapse
|
11
|
Bittel AM, Saldivar IS, Dolman NJ, Nan X, Gibbs SL. Superresolution microscopy with novel BODIPY-based fluorophores. PLoS One 2018; 13:e0206104. [PMID: 30366346 PMCID: PMC6203453 DOI: 10.1371/journal.pone.0206104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023] Open
Abstract
Multicolor single-molecule localization microscopy (SMLM) expands our understanding of subcellular details and enables the study of biomolecular interactions through precise visualization of multiple molecules in a single sample with resolution of ~10–20 nm. Probe selection is vital to multicolor SMLM, as the fluorophores must not only exhibit minimal spectral crosstalk, but also be compatible with the same photochemical conditions that promote fluorophore photoswitching. While there are numerous commercially available photoswitchable fluorophores that are optimally excited in the standard Cy3 channel, they are restricted to short Stokes shifts (<30 nm), limiting the number of colors that can be resolved in a single sample. Furthermore, while imaging buffers have been thoroughly examined for commonly used fluorophore scaffolds including cyanine, rhodamine, and oxazine, optimal conditions have not been found for the BODIPY scaffold, precluding its routine use for multicolor SMLM. Herein, we screened common imaging buffer conditions including seven redox reagents with five additives, resulting in 35 overall imaging buffer conditions to identify compatible combinations for BODIPY-based fluorophores. We then demonstrated that novel, photoswitchable BODIPY-based fluorophores with varied length Stokes shifts provide additional color options for SMLM using a combination of BODIPY-based and commercially available photoswitchable fluorophores.
Collapse
Affiliation(s)
- Amy M. Bittel
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Isaac S. Saldivar
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Nick J. Dolman
- Thermo Fisher Scientific, Pittsburg, Pennsylvania, United States of America
| | - Xiaolin Nan
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Summer L. Gibbs
- Biomedical Engineering Department, Oregon Health & Science University, Portland, Oregon, United States of America
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
13
|
Ermakova YG, Sen T, Bogdanova YA, Smirnov AY, Baleeva NS, Krylov AI, Baranov MS. Pyridinium Analogues of Green Fluorescent Protein Chromophore: Fluorogenic Dyes with Large Solvent-Dependent Stokes Shift. J Phys Chem Lett 2018; 9:1958-1963. [PMID: 29589942 DOI: 10.1021/acs.jpclett.8b00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Novel fluorogenic dyes based on the GFP chromophore are developed. The compounds contain a pyridinium ring instead of phenolate and feature large Stokes shifts and solvent-dependent variations in the fluorescence quantum yield. Electronic structure calculations explain the trends in solvatochromic behavior in terms of the increase of the dipole moment upon excited-state relaxation in polar solvents associated with the changes in bonding pattern in the excited state. A unique combination of such optical characteristics and lipophilic properties enables using one of the new dyes for imaging the membrane structure of endoplasmic reticulum. An extremely high photostability (due to a dynamic exchange between the free and absorbed states) and selectivity make this compound a promising label for this type of cellular organelles.
Collapse
Affiliation(s)
- Yulia G Ermakova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
- European Molecular Biology Laboratory , 69117 Heidelberg , Germany
| | - Tirthendu Sen
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
| | - Anna I Krylov
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry , Russian Academy of Sciences , Miklukho-Maklaya 16/10 , 117997 Moscow , Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1 , 117997 Moscow , Russia
| |
Collapse
|
14
|
He H, Ye Z, Zheng Y, Xu X, Guo C, Xiao Y, Yang W, Qian X, Yang Y. Super-resolution imaging of lysosomes with a nitroso-caged rhodamine. Chem Commun (Camb) 2018; 54:2842-2845. [PMID: 29393323 DOI: 10.1039/c7cc08886h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Caged-fluorophores are potentially suitable for photo-activated localization microscopy (PALM) for super-resolution imaging. N-Nitroso is a simple and robust photo-cage with biocompatible nitric oxide as the only byproduct upon photolysis. We herein reported a novel PALM probe (NOR535) for super-resolution imaging of lysosomes with high localization precision.
Collapse
Affiliation(s)
- Haihong He
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
He H, Ye Z, Xiao Y, Yang W, Qian X, Yang Y. Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide. Anal Chem 2018; 90:2164-2169. [PMID: 29316789 DOI: 10.1021/acs.analchem.7b04510] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) potentially plays a regulatory role in mitochondrial fusion and fission, which are vital to cell survival and implicated in health, disease, and aging. Molecular tools facilitating the study of the relationship between NO and mitochondrial dynamics are in need. We have recently developed a novel NO donor (NOD550). Upon photoactivation, NOD550 decomposes to release two NO molecules and a fluorophore. The NO release could be spatially mapped with subdiffraction resolution and with a temporal resolution of 10 s. Due to the preferential localization of NOD550 at mitochondria, morphology and dynamics of mitochondria could be monitored upon NO release from NOD550.
Collapse
Affiliation(s)
- Haihong He
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian, Liaoning 116024, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology , Shanghai, 200237, China
| |
Collapse
|
16
|
Uno SN, Kamiya M, Morozumi A, Urano Y. A green-light-emitting, spontaneously blinking fluorophore based on intramolecular spirocyclization for dual-colour super-resolution imaging. Chem Commun (Camb) 2018; 54:102-105. [DOI: 10.1039/c7cc07783a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed the first green-light-emitting, spontaneously blinking fluorophore (SBF), HEtetTFER.
Collapse
Affiliation(s)
- Shin-nosuke Uno
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Mako Kamiya
- Graduate School of Medicine
- The University of Tokyo
- Tokyo 113-0033
- Japan
- PRESTO
| | - Akihiko Morozumi
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences
- The University of Tokyo
- Tokyo 113-0033
- Japan
- Graduate School of Medicine
| |
Collapse
|
17
|
Wang Y, Li Y, Wei F, Duan Y. Optical Imaging Paves the Way for Autophagy Research. Trends Biotechnol 2017; 35:1181-1193. [PMID: 28916049 PMCID: PMC7114199 DOI: 10.1016/j.tibtech.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/02/2023]
Abstract
Autophagy is a degradation process in eukaryotic cells that recycles cellular components for nutrition supply under environmental stress and plays a double-edged role in development of major human diseases. Noninvasive optical imaging enables us to clearly visualize various classes of structures involved in autophagy at macroscopic and microscopic dynamic levels. In this review, we discuss important trends of emerging optical imaging technologies used to explore autophagy and provide insights into the mechanistic investigation and structural study of autophagy in mammalian cells. Some exciting new prospects and future research directions regarding optical imaging techniques in this field are also highlighted.
Collapse
Affiliation(s)
- Yimin Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yu Li
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Fujing Wei
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
18
|
Thompson AD, Bewersdorf J, Toomre D, Schepartz A. HIDE Probes: A New Toolkit for Visualizing Organelle Dynamics, Longer and at Super-Resolution. Biochemistry 2017; 56:5194-5201. [PMID: 28792749 PMCID: PMC5854879 DOI: 10.1021/acs.biochem.7b00545] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Living cells are complex and dynamic assemblies that carefully sequester and orchestrate multiple diverse processes that enable growth, division, regulation, movement, and communication. Membrane-bound organelles such as the endoplasmic reticulum, mitochondria, plasma membrane, and others are integral to these processes, and their functions demand dynamic reorganization in both space and time. Visualizing these dynamics in live cells over long time periods demands probes that label discrete organelles specifically, at high density, and withstand long-term irradiation. Here we describe the evolution of our work on the development of a set of high-density environmentally sensitive (HIDE) membrane probes that enable long-term, live-cell nanoscopy of the dynamics of multiple organelles in live cells using single-molecule switching and stimulated emission depletion imaging modalities.
Collapse
Affiliation(s)
- Alexander D Thompson
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Joerg Bewersdorf
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Derek Toomre
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, ‡Department of Molecular, Cellular and Developmental Biology, §Department of Cell Biology, and ∥Department of Biomedical Engineering, Yale University , New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
19
|
Moon S, Yan R, Kenny SJ, Shyu Y, Xiang L, Li W, Xu K. Spectrally Resolved, Functional Super-Resolution Microscopy Reveals Nanoscale Compositional Heterogeneity in Live-Cell Membranes. J Am Chem Soc 2017; 139:10944-10947. [DOI: 10.1021/jacs.7b03846] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Seonah Moon
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rui Yan
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Samuel J. Kenny
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Yennie Shyu
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Limin Xiang
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wan Li
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Xu
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Division
of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Abstract
Super-resolution fluorescence imaging by photoactivation or photoswitching of single fluorophores and position determination (single-molecule localization microscopy, SMLM) provides microscopic images with subdiffraction spatial resolution. This technology has enabled new insights into how proteins are organized in a cellular context, with a spatial resolution approaching virtually the molecular level. A unique strength of SMLM is that it delivers molecule-resolved information, along with super-resolved images of cellular structures. This allows quantitative access to cellular structures, for example, how proteins are distributed and organized and how they interact with other biomolecules. Ultimately, it is even possible to determine protein numbers in cells and the number of subunits in a protein complex. SMLM thus has the potential to pave the way toward a better understanding of how cells function at the molecular level. In this review, we describe how SMLM has contributed new knowledge in eukaryotic biology, and we specifically focus on quantitative biological data extracted from SMLM images.
Collapse
Affiliation(s)
- Markus Sauer
- Department of Biotechnology & Biophysics, Julius-Maximilian-University of Würzburg , 97074 Würzburg, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt , 60438 Frankfurt, Germany
| |
Collapse
|
21
|
Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat Commun 2016; 7:13693. [PMID: 27991512 PMCID: PMC5187410 DOI: 10.1038/ncomms13693] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Live-cell imaging of focal adhesions requires a sufficiently high temporal resolution, which remains a challenge for super-resolution microscopy. Here we address this important issue by combining photoactivated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI). Using simulations and fixed-cell focal adhesion images, we investigate the complementarity between PALM and SOFI in terms of spatial and temporal resolution. This PALM-SOFI framework is used to image focal adhesions in living cells, while obtaining a temporal resolution below 10 s. We visualize the dynamics of focal adhesions, and reveal local mean velocities around 190 nm min−1. The complementarity of PALM and SOFI is assessed in detail with a methodology that integrates a resolution and signal-to-noise metric. This PALM and SOFI concept provides an enlarged quantitative imaging framework, allowing unprecedented functional exploration of focal adhesions through the estimation of molecular parameters such as fluorophore densities and photoactivation or photoswitching kinetics.
Live cell super-resolution imaging requires a high temporal resolution, which remains a challenge. Here the authors combine photo-activated localization microscopy (PALM) with super-resolution optical fluctuation imaging (SOFI) to achieve high spatiotemporal resolution and quantitative imaging of focal adhesion dynamics.
Collapse
|
22
|
van der Zwaag D, Vanparijs N, Wijnands S, De Rycke R, De Geest BG, Albertazzi L. Super Resolution Imaging of Nanoparticles Cellular Uptake and Trafficking. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6391-9. [PMID: 26905516 DOI: 10.1021/acsami.6b00811] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Understanding the interaction between synthetic nanostructures and living cells is of crucial importance for the development of nanotechnology-based intracellular delivery systems. Fluorescence microscopy is one of the most widespread tools owing to its ability to image multiple colors in native conditions. However, due to the limited resolution, it is unsuitable to address individual diffraction-limited objects. Here we introduce a combination of super-resolution microscopy and single-molecule data analysis to unveil the behavior of nanoparticles during their entry into mammalian cells. Two-color Stochastic Optical Reconstruction Microscopy (STORM) addresses the size and positioning of nanoparticles inside cells and probes their interaction with the cellular machineries at nanoscale resolution. Moreover, we develop image analysis tools to extract quantitative information about internalized particles from STORM images. To demonstrate the potential of our methodology, we extract previously inaccessible information by the direct visualization of the nanoparticle uptake mechanism and the intracellular tracking of nanoparticulate model antigens by dendritic cells. Finally, a direct comparison between STORM, confocal microscopy, and electron microscopy is presented, showing that STORM can provide novel and complementary information on nanoparticle cellular uptake.
Collapse
Affiliation(s)
| | - Nane Vanparijs
- Department of Pharmaceutics, Ghent University , 9000 Ghent, Belgium
| | | | - Riet De Rycke
- Inflammation Research Centre, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University , 9052 Ghent, Belgium
| | | | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| |
Collapse
|
23
|
Żurek-Biesiada D, Szczurek AT, Prakash K, Best G, Mohana GK, Lee HK, Roignant JY, Dobrucki JW, Cremer C, Birk U. Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycle™ Violet fluorescent probe. Data Brief 2016; 7:157-71. [PMID: 27054149 PMCID: PMC4802433 DOI: 10.1016/j.dib.2016.01.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/07/2016] [Accepted: 01/20/2016] [Indexed: 02/02/2023] Open
Abstract
Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al., 2015) [1]. Here we provide quantitative information on the influence of the chemical environment on the behavior of the dye, discuss the variability in the DNA-associated signal density, and demonstrate direct proof of enhanced structural resolution. Furthermore, we compare different visualization approaches. Finally, we describe various opportunities of multicolor DNA/SMLM imaging in eukaryotic cell nuclei.
Collapse
Affiliation(s)
- Dominika Żurek-Biesiada
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | | - Kirti Prakash
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Gerrit Best
- Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany
| | - Giriram K Mohana
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Hyun-Keun Lee
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz, Germany
| | - Jean-Yves Roignant
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Jurek W Dobrucki
- Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany; Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany; Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz, Germany
| | - Udo Birk
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany; Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany; Department of Physics, University of Mainz (JGU), Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
24
|
Ma Z, Lin Y, Chen H, Du L, Li M. A novel NBD-based pH “on–off” fluorescent probe equipped with the N-phenylpiperazine group for lysosome imaging. RSC Adv 2016. [DOI: 10.1039/c6ra16996a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A novel PET-based fluorescent probe (LN6) targeting to lysosome was found from the synthesized NBD derivatives.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Yuxing Lin
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Hui Chen
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Lupei Du
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| | - Minyong Li
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (MOE)
- School of Pharmacy
- Shandong University
- Jinan
| |
Collapse
|
25
|
Light-induced cell damage in live-cell super-resolution microscopy. Sci Rep 2015; 5:15348. [PMID: 26481189 PMCID: PMC4611486 DOI: 10.1038/srep15348] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/22/2015] [Indexed: 12/11/2022] Open
Abstract
Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20–24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of ~1 kW cm−2 at 640 nm for several minutes, the maximum dose at 405 nm is only ~50 J cm−2, emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities.
Collapse
|
26
|
Kharabi Masouleh B, Chevet E, Panse J, Jost E, O'Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol 2015; 8:87. [PMID: 26179601 PMCID: PMC4504168 DOI: 10.1186/s13045-015-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
Collapse
Affiliation(s)
- Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Eric Chevet
- Université Rennes 1 - ER_440 "Oncogenesis, Stress & Signaling", Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael O'Dwyer
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Medicine, National University of Ireland, Galway, Ireland
| | - Tim H Bruemmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Afshin Samali
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
27
|
Uno SN, Tiwari DK, Kamiya M, Arai Y, Nagai T, Urano Y. A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxf) 2015; 64:263-77. [PMID: 26152215 DOI: 10.1093/jmicro/dfv037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022] Open
Abstract
Recent advances in nanoscopy, which breaks the diffraction barrier and can visualize structures smaller than the diffraction limit in cells, have encouraged biologists to investigate cellular processes at molecular resolution. Since nanoscopy depends not only on special optics but also on 'smart' photophysical properties of photocontrollable fluorescent probes, including photoactivatability, photoswitchability and repeated blinking, it is important for biologists to understand the advantages and disadvantages of fluorescent probes and to choose appropriate ones for their specific requirements. Here, we summarize the characteristics of currently available fluorescent probes based on both proteins and synthetic compounds applicable to nanoscopy and provide a guideline for selecting optimal probes for specific applications.
Collapse
Affiliation(s)
- Shin-Nosuke Uno
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dhermendra K Tiwari
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshiyuki Arai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J, Toomre DK, Schepartz A. Super-resolution imaging of the Golgi in live cells with a bioorthogonal ceramide probe. Angew Chem Int Ed Engl 2014; 53:10242-6. [PMID: 25081303 PMCID: PMC4593319 DOI: 10.1002/anie.201403349] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Indexed: 01/18/2023]
Abstract
We report a lipid-based strategy to visualize Golgi structure and dynamics at super-resolution in live cells. The method is based on two novel reagents: a trans-cyclooctene-containing ceramide lipid (Cer-TCO) and a highly reactive, tetrazine-tagged near-IR dye (SiR-Tz). These reagents assemble via an extremely rapid "tetrazine-click" reaction into Cer-SiR, a highly photostable "vital dye" that enables prolonged live-cell imaging of the Golgi apparatus by 3D confocal and STED microscopy. Cer-SiR is nontoxic at concentrations as high as 2 μM and does not perturb the mobility of Golgi-resident enzymes or the traffic of cargo from the endoplasmic reticulum through the Golgi and to the plasma membrane.
Collapse
Affiliation(s)
- Roman S. Erdmann
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT 06511 (USA), Fax: (+1) 203-432-3486. Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Hideo Takakura
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Alexander D. Thompson
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT 06511 (USA), Fax: (+1) 203-432-3486
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Edward S. Allgeyer
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Derek K. Toomre
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520 (USA)
| | - Alanna Schepartz
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven CT 06511 (USA), Fax: (+1) 203-432-3486
| |
Collapse
|
29
|
Erdmann RS, Takakura H, Thompson AD, Rivera-Molina F, Allgeyer ES, Bewersdorf J, Toomre D, Schepartz A. Hochaufgelöste Visualisierung des Golgi-Apparats in lebenden Zellen mit einem bioorthogonalen Ceramid. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403349] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|