1
|
Kohrt SE, Novak EJ, Tapadar S, Wu B, Strope J, Asante Y, Kim H, Chang MS, Gurdak D, Khalil A, Rood M, Raftery E, Stavreva D, Nguyen HM, Brown LG, Ramser M, Peer C, Meyers WM, Aboreden N, Chakravortee M, Sallari R, Nelson PS, Kelly KK, Graham TGW, Darzacq X, Figg WD, Oyelere AK, Corey E, Adelaiye-Ogala R, Gryder BE. Small-molecule disruption of androgen receptor-dependent chromatin clusters. Proc Natl Acad Sci U S A 2024; 121:e2406239121. [PMID: 39560645 PMCID: PMC11621760 DOI: 10.1073/pnas.2406239121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
Sustained androgen receptor (AR) signaling during relapse is a central driver of metastatic castration-resistant prostate cancer (mCRPC). Current AR antagonists, such as enzalutamide, fail to provide long-term benefit for the mCRPC patients who have dramatic increases in AR expression. Here, we report AR antagonists with efficacy in AR-overexpressing models. These molecules bind to the ligand-binding domain of the AR, promote AR localization to the nucleus, yet potently and selectively down-regulate AR-target genes. The molecules BG-15a and the pharmacokinetically optimized BG-15n elicit a decrease in cell and tumor growth in vitro and in vivo in models of mCRPC. BG-15a/n treatment causes the collapse of chromatin loops between enhancers and promoters at key genes in the AR-driven epigenome. AR binding in the promoter, as well as 3D chromatin clustering, is needed for genes to respond. BG-15a/n represent promising agents for treating patients with relapsed AR-driven mCRPC tumors.
Collapse
Affiliation(s)
- Sarah E. Kohrt
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Emily J. Novak
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Subhashish Tapadar
- Parker H. Petit Institute for Bioengineering and Biosciences, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
| | - Bocheng Wu
- Parker H. Petit Institute for Bioengineering and Biosciences, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
| | - Jonathan Strope
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yaw Asante
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Hyunmin Kim
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
| | - Matthew S. Chang
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Douglas Gurdak
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Athar Khalil
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | | | - Eric Raftery
- Parker H. Petit Institute for Bioengineering and Biosciences, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
| | - Diana Stavreva
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, WA98195
| | - Lisha G. Brown
- Department of Urology, University of Washington, Seattle, WA98195
| | - Maddy Ramser
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Cody Peer
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Warren M. Meyers
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Nicholas Aboreden
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | | | | | - Peter S. Nelson
- Department of Medicine, University of Washington, Seattle, WA98195
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Kathleen K. Kelly
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Thomas G. W. Graham
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - William D. Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Adegboyega K. Oyelere
- Parker H. Petit Institute for Bioengineering and Biosciences, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA98195
| | - Remi Adelaiye-Ogala
- Division of Hematology and Oncology, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY14203
| | - Berkley E. Gryder
- Cancer Genomics and Epigenomics Program, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH44106
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH44106
| |
Collapse
|
2
|
Caggia S, Johnston A, Walunj DT, Moore AR, Peer BH, Everett RW, Oyelere AK, Khan SA. Gα i2 Protein Inhibition Blocks Chemotherapy- and Anti-Androgen-Induced Prostate Cancer Cell Migration. Cancers (Basel) 2024; 16:296. [PMID: 38254786 PMCID: PMC10813862 DOI: 10.3390/cancers16020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
We have previously shown that heterotrimeric G-protein subunit alphai2 (Gαi2) is essential for cell migration and invasion in prostate, ovarian and breast cancer cells, and novel small molecule inhibitors targeting Gαi2 block its effects on migratory and invasive behavior. In this study, we have identified potent, metabolically stable, second generation Gαi2 inhibitors which inhibit cell migration in prostate cancer cells. Recent studies have shown that chemotherapy can induce the cancer cells to migrate to distant sites to form metastases. In the present study, we determined the effects of taxanes (docetaxel), anti-androgens (enzalutamide and bicalutamide) and histone deacetylase (HDAC) inhibitors (SAHA and SBI-I-19) on cell migration in prostate cancer cells. All treatments induced cell migration, and simultaneous treatments with new Gαi2 inhibitors blocked their effects on cell migration. We concluded that a combination treatment of Gαi2 inhibitors and chemotherapy could blunt the capability of cancer cells to migrate and form metastases.
Collapse
Affiliation(s)
- Silvia Caggia
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Alexis Johnston
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Dipak T. Walunj
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Aanya R. Moore
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Benjamin H. Peer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
| | - Ravyn W. Everett
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30318, USA; (A.J.); (D.T.W.); (B.H.P.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Shafiq A. Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr., Atlanta, GA 30314, USA; (S.C.); (A.R.M.); (R.W.E.)
| |
Collapse
|
3
|
Chandrasekaran B, Tapadar S, Wu B, Saran U, Tyagi A, Johnston A, Gaul DA, Oyelere AK, Damodaran C. Antiandrogen-Equipped Histone Deacetylase Inhibitors Selectively Inhibit Androgen Receptor (AR) and AR-Splice Variant (AR-SV) in Castration-Resistant Prostate Cancer (CRPC). Cancers (Basel) 2023; 15:1769. [PMID: 36980655 PMCID: PMC10046692 DOI: 10.3390/cancers15061769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Epigenetic modification influences androgen receptor (AR) activation, often resulting in prostate cancer (PCa) development and progression. Silencing histone-modifying enzymes (histone deacetylases-HDACs) either genetically or pharmacologically suppresses PCa proliferation in preclinical models of PCa; however, results from clinical studies were not encouraging. Similarly, PCa patients eventually become resistant to androgen ablation therapy (ADT). Our goal is to develop dual-acting small molecules comprising antiandrogen and HDAC-inhibiting moieties that may overcome the resistance of ADT and effectively suppress the growth of castration-resistant prostate cancer (CRPC). METHODS Several rationally designed antiandrogen-equipped HDAC inhibitors (HDACi) were synthesized, and their efficacy on CRPC growth was examined both in vitro and in vivo. RESULTS While screening our newly developed small molecules, we observed that SBI-46 significantly inhibited the proliferation of AR+ CRPC cells but not AR- CRPC and normal immortalized prostate epithelial cells (RWPE1) or normal kidney cells (HEK-293 and VERO). Molecular analysis confirmed that SBI-46 downregulated the expressions of both AR+ and AR-splice variants (AR-SVs) in CRPC cells. Further studies revealed the downregulation of AR downstream (PSA) events in CRPC cells. The oral administration of SBI-46 abrogated the growth of C4-2B and 22Rv1 CRPC xenograft tumors that express AR or both AR and AR-SV in xenotransplanted nude mice models. Further, immunohistochemical analysis confirmed that SBI-46 inhibits AR signaling in xenografted tumor tissues. CONCLUSION These results demonstrate that SBI-46 is a potent agent that inhibits preclinical models of CRPC by downregulating the expressions of both AR and AR-SV. Furthermore, these results suggest that SBI-46 may be a potent compound for treating CRPC.
Collapse
Affiliation(s)
| | - Subhasish Tapadar
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Bocheng Wu
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Uttara Saran
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Ashish Tyagi
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| | - Alexis Johnston
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - David A. Gaul
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Adegboyega K. Oyelere
- Parker H. Petit Institute for Bioengineering & Biosciences, School of Chemistry and Biochemistry, Georgia Institute of Technology, 315 Ferst Dr. NW, Atlanta, GA 30332, USA
| | - Chendil Damodaran
- Rangel School of Pharmacy, Texas A&M University, College Station, TX 77845, USA
| |
Collapse
|
4
|
Barrett RRG, Nash C, Diennet M, Cotnoir-White D, Doyle C, Mader S, Thomson AA, Gleason JL. Dual-function antiandrogen/HDACi hybrids based on enzalutamide and entinostat. Bioorg Med Chem Lett 2021; 55:128441. [PMID: 34767912 DOI: 10.1016/j.bmcl.2021.128441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/06/2021] [Accepted: 10/31/2021] [Indexed: 11/02/2022]
Abstract
The combination of androgen receptor antagonists with histone deacetylase inhibitors (HDACi) has been shown to be more effective than antiandrogens alone in halting growth of prostate cancer cell lines. Here we have designed, synthesized and assessed a series of antiandrogen/HDACi hybrids by combining structural features of enzalutamide with either SAHA or entinostat. The hybrids are demonstrated to maintain bifunctionality using a fluorometric HDAC assay and a bioluminescence resonance energy transfer (BRET) antiandrogen assay. Antiproliferative assays showed that hybrids bearing o-aminoanilide-based HDACi motifs outperformed hydroxamic acid based HDACi's. The hybrids demonstrated selectivity for epithelial cell lines vs. stromal cell lines, suggesting a potentially useful therapeutic window.
Collapse
Affiliation(s)
- Ryan R G Barrett
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - Claire Nash
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Marine Diennet
- Institute for Research in Immunology and Cancer, Pavillon Marcelle Coutu, Université de Montréal, 2950 chemin de Polytechnique, Montreal, QC H3T1J4, Canada
| | - David Cotnoir-White
- Institute for Research in Immunology and Cancer, Pavillon Marcelle Coutu, Université de Montréal, 2950 chemin de Polytechnique, Montreal, QC H3T1J4, Canada
| | - Christopher Doyle
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada
| | - Sylvie Mader
- Institute for Research in Immunology and Cancer, Pavillon Marcelle Coutu, Université de Montréal, 2950 chemin de Polytechnique, Montreal, QC H3T1J4, Canada; Department of Biochemistry and Molecular Medicine, Pavillon Roger Gaudry, Université de Montréal, 2900 bd Edouard Montpetit, Montreal, QC H3T1J4, Canada
| | - Axel A Thomson
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - James L Gleason
- Department of Chemistry, McGill University, 801 Sherbrooke W., Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
5
|
Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol 2021; 10:3104-3116. [PMID: 34430414 PMCID: PMC8350251 DOI: 10.21037/tau-20-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic alterations, including changes in DNA methylation, histone modifications and nucleosome remodeling, result in abnormal gene expression patterns that contribute to prostate tumor initiation and continue to evolve during the course of disease progression. Epigenetic modifications are responsible for silencing tumor-suppressor genes, activating oncogenic drivers, and driving therapy resistance and thus have emerged as promising targets for antineoplastic therapy in prostate cancer. In this review, we discuss the role of epigenetics in prostate cancer with a particular emphasis on clinical implications. We review how epigenetic regulators crosstalk with critical biological pathways, including androgen receptor signaling, and how these interactions dynamically control prostate cancer transcriptional profiles. Because of their potentially reversible nature, restoration of a "normal" epigenome could provide a basis for innovative therapeutic strategies in prostate cancer. We highlight how particular epigenetic alterations are emerging as potential diagnostic and prognostic biomarkers and/or targets for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Judy Hess
- Weill Cornell Medicine, New York, NY, USA
| | - Yasutaka Yamada
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sheng-Yu Ku
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Himisha Beltran
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Chan AM, Fletcher S. Shifting the paradigm in treating multi-factorial diseases: polypharmacological co-inhibitors of HDAC6. RSC Med Chem 2021; 12:178-196. [PMID: 34046608 PMCID: PMC8127619 DOI: 10.1039/d0md00286k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/28/2020] [Indexed: 01/20/2023] Open
Abstract
Multi-factorial diseases are illnesses that exploit multiple cellular processes, or stages within one process, and thus highly targeted therapies often succumb to the disease, losing efficacy as resistance sets in. Combination therapies have become a mainstay to battle these diseases, however these regimens are plagued with caveats. An emerging avenue to treat multi-factorial diseases is polypharmacology, wherein a single drug is rationally designed to bind multiple targets, and is widely touted to be superior to combination therapy by inherently addressing the latter's shortcomings, which include poor patient compliance, narrow therapeutic windows and spiraling healthcare costs. Through its roles in intracellular trafficking, cell motility, mitosis, protein folding and as a back-up to the proteasome pathway, HDAC6 has rapidly become an exciting new target for therapeutics, particularly in the discovery of new drugs to treat Alzheimer's disease and cancer. Herein, we describe recent efforts to marry together HDAC pharmacophores, with a particular emphasis on HDAC6 selectivity, with those of other targets towards the discovery of potent therapeutics to treat these evasive diseases. Such polypharmacological agents may supercede combination therapies through inherent synergism, permitting reduced dosing, wider therapeutic windows and improved compliance.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy 20 N Pine St Baltimore MD 21201 USA
- University of Maryland Greenebaum Cancer Center 22 S Greene St Baltimore MD 21201 USA
| |
Collapse
|
7
|
Zhou M, Zheng H, Li Y, Huang H, Min X, Dai S, Zhou W, Chen Z, Xu G, Chen Y. Discovery of a novel AR/HDAC6 dual inhibitor for prostate cancer treatment. Aging (Albany NY) 2021; 13:6982-6998. [PMID: 33621955 PMCID: PMC7993727 DOI: 10.18632/aging.202554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Androgen receptor (AR) and histone deacetylase 6 (HDAC6) are important targets for cancer therapy. Given that both AR antagonists and HDAC6 inhibitors modulate AR signaling, a novel AR/HDAC6 dual inhibitor is investigated for its anticancer effects in castration-resistant prostate cancer (CRPC). Zeta55 inhibits nuclear translocation of AR and suppresses androgen-induced PSA and TMPRSS2 expression. Meanwhile, Zeta55 selectively inhibits HDAC6 activity, leading to AR degradation. Zeta55 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a CRPC xenograft model. These results provide preclinical proof of principle for Zeta55 as a promising therapeutic in prostate cancer treatment.
Collapse
Affiliation(s)
- Maojun Zhou
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hao Zheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yubin Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Huichao Huang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoli Min
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shuyan Dai
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | | | - Zhuchu Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Guangyu Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Educational of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, State Local Joint Engineering Laboratory for Anticancer Drugs, National Center for Geriatrics Clinical Research, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
8
|
Tapadar S, Fathi S, Wu B, Sun CQ, Raji I, Moore SG, Arnold RS, Gaul DA, Petros JA, Oyelere AK. Liver-Targeting Class I Selective Histone Deacetylase Inhibitors Potently Suppress Hepatocellular Tumor Growth as Standalone Agents. Cancers (Basel) 2020; 12:E3095. [PMID: 33114147 PMCID: PMC7690782 DOI: 10.3390/cancers12113095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023] Open
Abstract
Dysfunctions in epigenetic regulation play critical roles in tumor development and progression. Histone deacetylases (HDACs) and histone acetyl transferase (HAT) are functionally opposing epigenetic regulators, which control the expression status of tumor suppressor genes. Upregulation of HDAC activities, which results in silencing of tumor suppressor genes and uncontrolled proliferation, predominates in malignant tumors. Inhibition of the deacetylase activity of HDACs is a clinically validated cancer therapy strategy. However, current HDAC inhibitors (HDACi) have elicited limited therapeutic benefit against solid tumors. Here, we disclosed a class of HDACi that are selective for sub-class I HDACs and preferentially accumulate within the normal liver tissue and orthotopically implanted liver tumors. We observed that these compounds possess exquisite on-target effects evidenced by their induction of dose-dependent histone H4 hyperacetylation without perturbation of tubulin acetylation status and G0/G1 cell cycle arrest. Representative compounds 2 and 3a are relatively non-toxic to mice and robustly suppressed tumor growths in an orthotopic model of HCC as standalone agents. Collectively, our results suggest that these compounds may have therapeutic advantage against HCC relative to the current systemic HDACi. This prospect merits further comprehensive preclinical investigations.
Collapse
Affiliation(s)
- Subhasish Tapadar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
- Sophia Bioscience, Inc. 311 Ferst Drive NW, Ste. L1325A, Atlanta, GA 30332, USA;
| | - Shaghayegh Fathi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Bocheng Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Carrie Q. Sun
- Department of Urology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (C.Q.S.); (R.S.A.)
| | - Idris Raji
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Samuel G. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
| | - Rebecca S. Arnold
- Department of Urology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (C.Q.S.); (R.S.A.)
| | - David A. Gaul
- Sophia Bioscience, Inc. 311 Ferst Drive NW, Ste. L1325A, Atlanta, GA 30332, USA;
| | - John A. Petros
- Department of Urology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA 30322, USA; (C.Q.S.); (R.S.A.)
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA; (S.T.); (S.F.); (B.W.); (I.R.); (S.G.M.)
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Bass AKA, El-Zoghbi MS, Nageeb ESM, Mohamed MFA, Badr M, Abuo-Rahma GEDA. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur J Med Chem 2020; 209:112904. [PMID: 33077264 DOI: 10.1016/j.ejmech.2020.112904] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/30/2020] [Indexed: 02/08/2023]
Abstract
Despite the encouraging clinical progress of chemotherapeutic agents in cancer treatment, innovation and development of new effective anticancer candidates still represents a challenging endeavor. With 15 million death every year in 2030 according to the estimates, cancer has increased rising of an alarm as a real crisis for public health and health systems worldwide. Therefore, scientist began to introduce innovative solutions to control the cancer global health problem. One of the promising strategies in this issue is the multitarget or smart hybrids having two or more pharmacophores targeting cancer. These rationalized hybrid molecules have gained great interests in cancer treatment as they are capable to simultaneously inhibit more than cancer pathway or target without drug-drug interactions and with less side effects. A prime important example of these hybrids, the HDAC hybrid inhibitors or referred as multitargeting HDAC inhibitors. The ability of HDAC inhibitors to synergistically improve the efficacy of other anti-cancer drugs and moreover, the ease of HDAC inhibitors cap group modification prompt many medicinal chemists to innovate and develop new generation of HDAC hybrid inhibitors. Notably, and during this short period, there are four HDAC inhibitor hybrids have entered different phases of clinical trials for treatment of different types of blood and solid tumors, namely; CUDC-101, CUDC-907, Tinostamustine, and Domatinostat. This review shed light on the most recent hybrids of HDACIs with one or more other cancer target pharmacophore. The designed multitarget hybrids include topoisomerase inhibitors, kinase inhibitors, nitric oxide releasers, antiandrogens, FLT3 and JAC-2 inhibitors, PDE5-inhibitors, NAMPT-inhibitors, Protease inhibitors, BRD4-inhibitors and other targets. This review may help researchers in development and discovery of new horizons in cancer treatment.
Collapse
Affiliation(s)
- Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mona S El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - El-Shimaa M Nageeb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt.
| |
Collapse
|
10
|
Tangadanchu VKR, Gundabathini SR, Bethala L. A. PD, Yedla P, Chityal GK. Isomannide monoundecenoate‐based 1,2,3‐triazoles: Design, synthesis, and in vitro bioactive evaluation. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vijai Kumar Reddy Tangadanchu
- Centre for Lipid Science & Technology CSIR‐Indian Institute of Chemical Technology Hyderabad India
- Department of Radiology Washington University School of Medicine St. Louis Missouri USA
| | | | | | - Poornachandra Yedla
- Organic Synthesis & Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| | - Ganesh Kumar Chityal
- Organic Synthesis & Process Chemistry CSIR‐Indian Institute of Chemical Technology Hyderabad India
| |
Collapse
|
11
|
Kaundal B, Kushwaha AC, Srivastava AK, Karmakar S, Choudhury SR. A non-viral nano-delivery system targeting epigenetic methyltransferase EZH2 for precise acute myeloid leukemia therapy. J Mater Chem B 2020; 8:8658-8670. [PMID: 32844866 DOI: 10.1039/d0tb01177k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML), which is common in the elderly population, accounts for poor long-term survival with a high possibility of relapse. The associated lack of currently developed therapeutics is directing the search for new therapeutic targets relating to AML. EZH2 (Enhancer of Zeste Homolog 2) is a histone methyltransferase member of the polycomb-group (PcG) family, and its significant overexpression in AML means it has emerged as a potential epigenetic target. Here, we propose the human serum albumin (HSA) nanoparticle based delivery of small interfering RNA (siRNA), which can target EZH2-expressing genes in AML. EZH2 specific siRNA loaded in a polyethyleneimine (PEI) conjugated HSA nanocarrier can overcome the systemic instability of siRNA and precisely target the AML cell population for increased EZH2 gene silencing. A stable nanosized complex (HSANPs-PEI@EZH2siRNA), achieved via the electrostatic interaction of PEI and EZH2 siRNA, shows increased systemic stability and hemocompatibility, and enhanced EZH2 gene silencing activity in vitro, compared to conventional transfection reagents. HSANPs-PEI@EZH2siRNA-treated AML cells showed downregulated EZH2, which is associated with a reduced level of Bmi-1 protein, and H3K27me3 and H2AK119ub modification. The ubiquitin-mediated proteasomal degradation pathway plays a critical role in the downregulation of associated proteins following HSANPs-PEI@EZH2siRNA exposure to AML cells. c-Myb is the AML-responsive transcription factor that directly binds on the EZH2 promoter and was downregulated in HSANPs-PEI@EZH2siRNA-treated AML cells. The systemic exposure to HSANPs-PEI@EZH2siRNA of AML engrafted immunodeficient nude mice displayed efficient EZH2 gene silencing and a reduced AML cell population in peripheral blood and bone marrow. The present study demonstrates a non-viral siRNA delivery system for epigenetic targeting based superior anti-leukemic therapy.
Collapse
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | | | | - Surajit Karmakar
- Institute of Nano Science and Technology, Mohali, Punjab, India.
| | | |
Collapse
|
12
|
Vaidya GN, Rana P, Venkatesh A, Chatterjee DR, Contractor D, Satpute DP, Nagpure M, Jain A, Kumar D. Paradigm shift of "classical" HDAC inhibitors to "hybrid" HDAC inhibitors in therapeutic interventions. Eur J Med Chem 2020; 209:112844. [PMID: 33143937 DOI: 10.1016/j.ejmech.2020.112844] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
'Epigenetic' regulation of genes via post-translational modulation of proteins is the current mainstay approach for the disease therapies, particularly explored in the Histone Deacetylase (HDAC) class of enzymes. Mainly sight saw in cancer chemotherapeutics, HDAC inhibitors have also found a promising role in other diseases (neurodegenerative disorders, cardiovascular diseases, and viral infections) and successfully entered in various combination therapies (pre-clinical/clinical stages). The prevalent flexibility in the structural design of HDAC inhibitors makes them easily tuneable to merge with other pharmacophore modules for generating multi-targeted single hybrids as a novel tactic to overcome drawbacks of polypharmacy. Herein, we reviewed the putative role of prevalent HDAC hybrids inhibitors in the current and prospective stage as a translational approach to overcome the limitations of the existing conventional drug candidates (parent molecule) when used either alone (drug resistance, solubility issues, adverse side effects, selectivity profile) or in combination (pharmacokinetic interactions, patient compliance) for treating various diseases.
Collapse
Affiliation(s)
- Gargi Nikhil Vaidya
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Pooja Rana
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Ashwini Venkatesh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Darshan Contractor
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Dinesh Parshuram Satpute
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Mithilesh Nagpure
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India; Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, India.
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
13
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
14
|
Scott DE, Rooney TPC, Bayle ED, Mirza T, Willems HMG, Clarke JH, Andrews SP, Skidmore J. Systematic Investigation of the Permeability of Androgen Receptor PROTACs. ACS Med Chem Lett 2020; 11:1539-1547. [PMID: 32832021 DOI: 10.1021/acsmedchemlett.0c00194] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
Bifunctional molecules known as PROTACs simultaneously bind an E3 ligase and a protein of interest to direct ubiquitination and clearance of that protein, and they have emerged in the past decade as an exciting new paradigm in drug discovery. In order to investigate the permeability and properties of these large molecules, we synthesized two panels of PROTAC molecules, constructed from a range of protein-target ligands, linkers, and E3 ligase ligands. The androgen receptor, which is a well-studied protein in the PROTAC field was used as a model system. The physicochemical properties and permeability of PROTACs are discussed.
Collapse
Affiliation(s)
- Duncan E. Scott
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - Timothy P. C. Rooney
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - Elliott D. Bayle
- Alzheimer’s Research UK UCL Drug Discovery Institute, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, United Kingdom
- The Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, United Kingdom
| | - Tashfina Mirza
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - Henriette M. G. Willems
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - Jonathan H. Clarke
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - Stephen P. Andrews
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| | - John Skidmore
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, United Kingdom
| |
Collapse
|
15
|
Xie H, Liang JJ, Wang YL, Hu TX, Wang JY, Yang RH, Yan JK, Zhang QR, Xu X, Liu HM, Ke Y. The design, synthesis and anti-tumor mechanism study of new androgen receptor degrader. Eur J Med Chem 2020; 204:112512. [PMID: 32736229 DOI: 10.1016/j.ejmech.2020.112512] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022]
Abstract
Targeted protein degradation using small molecules is a novel strategy for drug development. In order to solve the problem of drug resistance in the treatment of prostate cancer, proteolysis-targeting chimeras (PROTAC) was introduced into the design of anti-prostate cancer derivatives. In this work, we synthesized two series of selective androgen receptor degraders (SARDs) containing the hydrophobic degrons with different linker, and then investigated the structure-activity relationships of these hybrid compounds. Most of the synthesized compounds exhibited moderate to good activity against all the cancer cell lines selected. Among them, compound A9 displayed potent inhibitory activity against LNCaP prostate cancer cell line with IC50 values of 1.75 μM, as well as excellent AR degradation activity. Primary mechanism studies elucidated compound A9 arrested cell cycle at G0/G1 phase and induced a mild apoptotic response in LNCaP cells. Further study indicated that the degradation of AR was mediated through proteasome-mediated process. For all these reasons, compound A9 held promising potential as anti-proliferative agent for the development of highly efficient SARDs for drug-resistance prostate cancer therapies.
Collapse
Affiliation(s)
- Hang Xie
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Jian-Jia Liang
- School of Pharmacy, Wuhan University, Wuhan, Hubei, 430072, PR China.
| | - Ya-Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Tian-Xing Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Jin-Yi Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Rui-Hua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Jun-Ke Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Qiu-Rong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China
| | - Xia Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China.
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, PR China.
| |
Collapse
|
16
|
Golobokova TV, Proidakov AG, Kizhnyaev VN. Selective Synthesis of Functionally Substituted
1,2,3-Triazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Pyrimethamine conjugated histone deacetylase inhibitors: Design, synthesis and evidence for triple negative breast cancer selective cytotoxicity. Bioorg Med Chem 2020; 28:115345. [DOI: 10.1016/j.bmc.2020.115345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/12/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
|
18
|
Kaundal B, Srivastava AK, Dev A, Mohanbhai SJ, Karmakar S, Roy Choudhury S. Nanoformulation of EPZ011989 Attenuates EZH2–c-Myb Epigenetic Interaction by Proteasomal Degradation in Acute Myeloid Leukemia. Mol Pharm 2020; 17:604-621. [DOI: 10.1021/acs.molpharmaceut.9b01071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Babita Kaundal
- Institute of Nano Science and Technology, Phase-10, Mohali (Habitat Center), Punjab 160062, India
| | - Anup K. Srivastava
- Institute of Nano Science and Technology, Phase-10, Mohali (Habitat Center), Punjab 160062, India
| | - Atul Dev
- Institute of Nano Science and Technology, Phase-10, Mohali (Habitat Center), Punjab 160062, India
| | - Soni Jignesh Mohanbhai
- Institute of Nano Science and Technology, Phase-10, Mohali (Habitat Center), Punjab 160062, India
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Phase-10, Mohali (Habitat Center), Punjab 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Phase-10, Mohali (Habitat Center), Punjab 160062, India
| |
Collapse
|
19
|
The Development Process: from SAHA to Hydroxamate HDAC Inhibitors with Branched CAP Region and Linear Linker. Chem Biodivers 2019; 17:e1900427. [DOI: 10.1002/cbdv.201900427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
|
20
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
21
|
Hou Q, He C, Lao K, Luo G, You Q, Xiang H. Design and synthesis of novel steroidal imidazoles as dual inhibitors of AR/CYP17 for the treatment of prostate cancer. Steroids 2019; 150:108384. [PMID: 30885648 DOI: 10.1016/j.steroids.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Both AR and CYP17 are important targets for blocking androgen signaling, and it has been accepted that multifunctional drugs have a low risk of drug resistance in the treatment of cancer. Thus, herein a series of steroidal imidazoles were designed, synthesized and evaluated as dual AR/CYP17 ligands. Several compounds displayed good biological profiles in both enzymatic and cellular assays. SAR studies showed that introducing oximino at the C-3 position of steroidal scaffold is beneficial to the enhancement of AR antagonistic activity. Among these compounds, the most potent compound 13a exhibited the best AR inhibition (IC50 = 0.5 μM) that was 27-fold increase compared with the hit compound 5 as well as comparable CYP17 inhibition (IC50 = 11 μM). Additionally, 13a displayed promising anti-proliferative effects on LNCap cell lines with the IC50 value of 23 μM which was superior to positive control Flutamide (IC50 = 28 μM). Furthermore, the docking results of 13a revealed that the oxygen atom at the position of C-3 connected to the heme of CYP17, which may be helpful for its satisfactory dual-target inhibition. In summary, this study provides an efficient strategy for multi-targeting drug discovery in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiangqiang Hou
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Conghui He
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Kejing Lao
- Shanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
22
|
Wang B, Chen X, Gao J, Su L, Zhang L, Xu H, Luan Y. Anti-tumor activity evaluation of novel tubulin and HDAC dual-targeting inhibitors. Bioorg Med Chem Lett 2019; 29:2638-2645. [DOI: 10.1016/j.bmcl.2019.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
|
23
|
Chemical genomics reveals histone deacetylases are required for core regulatory transcription. Nat Commun 2019; 10:3004. [PMID: 31285436 PMCID: PMC6614369 DOI: 10.1038/s41467-019-11046-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/28/2019] [Indexed: 01/08/2023] Open
Abstract
Identity determining transcription factors (TFs), or core regulatory (CR) TFs, are governed by cell-type specific super enhancers (SEs). Drugs to selectively inhibit CR circuitry are of high interest for cancer treatment. In alveolar rhabdomyosarcoma, PAX3-FOXO1 activates SEs to induce the expression of other CR TFs, providing a model system for studying cancer cell addiction to CR transcription. Using chemical genetics, the systematic screening of chemical matter for a biological outcome, here we report on a screen for epigenetic chemical probes able to distinguish between SE-driven transcription and constitutive transcription. We find that chemical probes along the acetylation-axis, and not the methylation-axis, selectively disrupt CR transcription. Additionally, we find that histone deacetylases (HDACs) are essential for CR TF transcription. We further dissect the contribution of HDAC isoforms using selective inhibitors, including the newly developed selective HDAC3 inhibitor LW3. We show HDAC1/2/3 are the co-essential isoforms that when co-inhibited halt CR transcription, making CR TF sites hyper-accessible and disrupting chromatin looping. Core regulatory transcription factors are usually regulated by cell-type specific super enhancers (SEs). Here, the authors screen for chemical probes able to distinguish between SE-driven and promoter-driven transcription and find that histone deacetylases are selectively required for core regulatory transcription.
Collapse
|
24
|
Hu WY, Xu L, Chen B, Ou S, Muzzarelli KM, Hu DP, Li Y, Yang Z, Vander Griend DJ, Prins GS, Qin Z. Targeting prostate cancer cells with enzalutamide-HDAC inhibitor hybrid drug 2-75. Prostate 2019; 79:1166-1179. [PMID: 31135075 DOI: 10.1002/pros.23832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The progression of castration-resistant prostate cancer (CRPC) still relies on the function of androgen receptor (AR), achieved by evolving mechanisms to reactivate AR signaling under hormonal therapy. Histone deacetylase inhibitors (HDACis) disrupt cytoplasmic AR chaperone heat shock protein 90 (Hsp90) via HDAC6 inhibition, leading to AR degradation and growth suppression of prostate cancer (PCa) cells. However, current HDACis are not effective in clinical trials treating CRPC. METHODS We designed hybrid molecules containing partial chemical scaffolds of AR antagonist enzalutamide (Enz) and HDACi suberoylanilide hydroxamic acid (SAHA) as new anti-PCa agents. We previously demonstrated that Enz-HDACi hybrid drug 2-75 targets both AR and Hsp90, which inhibits the growth of Enz-resistant C4-2 cells. In the current study, we further investigate the molecular and cellular actions of 2-75 and test its anti-PCa effects in vivo. RESULTS Compared with Enz, 2-75 had greater AR antagonistic effects by decreasing the stability, transcriptional activity, and nuclear translocation of intracellular AR. In addition to inhibition of full-length AR (FL AR), 2-75 downregulated the AR-V7 variant in multiple PCa cell lines. Mechanistic studies indicated that the AR affinity of 2-75 retains the drug in the cytoplasm of AR + PCa cells and further directs 2-75 to the AR-associated protein complex, which permits localized effects on AR-associated Hsp90. Further, unlike pan-HDACi SAHA, the cytoplasm-retaining property allows 2-75 to significantly inhibit cytoplasmic HDAC6 with limited impact on nuclear HDACs. These selective cytoplasmic actions of 2-75 overcome the unfavorable resistance and toxicity properties associated with classical AR antagonists, HDACis, and Hsp90 inhibitors. Finally, 2-75 showed greater antitumor activities than Enz in vivo on SQ xenografts derived from LNCaP cells. CONCLUSIONS Novel therapeutic strategy using newly designed 2-75 and related AR antagonist-HDACi hybrid drugs has great potential for effective treatment of CRPC.
Collapse
Affiliation(s)
- Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Liping Xu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Bailing Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Siyu Ou
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - Kendall M Muzzarelli
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Dan-Ping Hu
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Ye Li
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Gail S Prins
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhihui Qin
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
25
|
Beretta GL, Zaffaroni N. Androgen Receptor-Directed Molecular Conjugates for Targeting Prostate Cancer. Front Chem 2019; 7:369. [PMID: 31192191 PMCID: PMC6546842 DOI: 10.3389/fchem.2019.00369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Due to its central role in the cellular biology of prostate cancer (PC), androgen receptor (AR) still remains an important therapeutic target for fighting this tumor. Several drugs targeting AR have been reported so far, and many new molecules are expected for the future. In spite of their antitumor efficacy, these drugs are not selective for malignant cells and are subjected to AR-mediated activation of drug resistance mechanisms that are responsible for several drawbacks, including systemic toxicity and disease recurrence and metastasis. Among the several strategies considered to overcome these drawbacks, very appealing appears the design of hybrid small-molecule conjugates targeting AR to drive drug action on receptor-positive PC cells. These compounds are designed around on an AR binder, which selectively engages AR with high potency, coupled with a moiety endowed with different pharmacological properties. In this review we focus on two classes of compounds: a) small-molecules and AR-ligand based conjugates that reduce AR expression, which allow down-regulation of AR levels by activating its proteasome-mediated degradation, and b) AR-ligand-based conjugates for targeting small-molecules, in which the AR binder tethers small-molecules, including conventional antitumor drugs (e.g., cisplatin, doxorubicin, histone deacetylase inhibitors, as well as photo-sensitizers) and selectively directs drug action toward receptor-positive PC cells.
Collapse
Affiliation(s)
- Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
26
|
Jiang X, Yu J, Zhou Z, Kongsted J, Song Y, Pannecouque C, De Clercq E, Kang D, Poongavanam V, Liu X, Zhan P. Molecular design opportunities presented by solvent‐exposed regions of target proteins. Med Res Rev 2019; 39:2194-2238. [PMID: 31002405 DOI: 10.1002/med.21581] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 03/09/2019] [Accepted: 03/16/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Xiangyi Jiang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Ji Yu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Zhongxia Zhou
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Jacob Kongsted
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Odense Denmark
| | - Yuning Song
- Department of Clinical PharmacyQilu Hospital of Shandong University Jinan China
| | - Christophe Pannecouque
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical ResearchLaboratory of Virology and Chemotherapy Leuven Belgium
| | - Dongwei Kang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | | | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University Jinan Shandong People's Republic of China
| |
Collapse
|
27
|
Sangwan R, Rajan R, Mandal PK. HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors. Eur J Med Chem 2018; 158:620-706. [DOI: 10.1016/j.ejmech.2018.08.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/09/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
|
28
|
Yang K, Song Y, Xie H, Wu H, Wu YT, Leisten ED, Tang W. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg Med Chem Lett 2018; 28:2493-2497. [DOI: 10.1016/j.bmcl.2018.05.057] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
|
29
|
Hesham HM, Lasheen DS, Abouzid KA. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev 2018; 38:2058-2109. [DOI: 10.1002/med.21505] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Heba M. Hesham
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| | - Deena S. Lasheen
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| | - Khaled A.M. Abouzid
- Faculty of Pharmacy, Pharmaceutical Chemistry Department; Ain Shams University; Abbassia Cairo Egypt
| |
Collapse
|
30
|
George A, Raji I, Cinar B, Kucuk O, Oyelere AK. Design, synthesis, and evaluation of the antiproliferative activity of hydantoin-derived antiandrogen-genistein conjugates. Bioorg Med Chem 2018; 26:1481-1487. [PMID: 29456113 PMCID: PMC5891370 DOI: 10.1016/j.bmc.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling is vital to the viability of all forms of prostate cancer (PCa). With the goal of investigating the effect of simultaneous inhibition and depletion of AR on viability of PCa cells, we designed, synthesized and characterized the bioactivities of bifunctional agents which incorporate the independent cancer killing properties of an antiandrogen and genistein, and the AR downregulation effect of genistein within a single molecular template. We observed that a representative conjugate, 9b, is much more cytotoxic to both LNCaP and DU145 cells relative to the antiandrogen and genistein building blocks as single agents or their combination. Moreover, conjugate 9b more effectively down regulates cellular AR protein levels relative to genistein and induces S phase cell cycle arrest. The promising bioactivities of these conjugates warrant further investigation.
Collapse
Affiliation(s)
- Alex George
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Idris Raji
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Bekir Cinar
- Department of Biological Sciences, The Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA.
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
31
|
Qin X, Fang L, Zhao J, Gou S. Theranostic Pt(IV) Conjugate with Target Selectivity for Androgen Receptor. Inorg Chem 2018; 57:5019-5029. [DOI: 10.1021/acs.inorgchem.8b00083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Regioselective synthesis of functionalized 1,2,3-triazoles via oxidative [3+2]-cycloaddition using Zn(OAc)2 - tBuOOH or ZnO nanoparticle as catalyst system in aqueous medium. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Dhanju S, Blazejewski BW, Crich D. Synthesis of Trialkylhydroxylamines by Stepwise Reduction of O-Acyl N,N-Disubstituted Hydroxylamines: Substituent Effects on the Reduction of O-(1-Acyloxyalkyl)hydroxylamines and on the Conformational Dynamics of N-Alkoxypiperidines. J Org Chem 2017; 82:5345-5353. [DOI: 10.1021/acs.joc.7b00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandeep Dhanju
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | | | - David Crich
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
34
|
Raji I, Yadudu F, Janeira E, Fathi S, Szymczak L, Kornacki JR, Komatsu K, Li JD, Mrksich M, Oyelere AK. Bifunctional conjugates with potent inhibitory activity towards cyclooxygenase and histone deacetylase. Bioorg Med Chem 2017; 25:1202-1218. [PMID: 28057407 PMCID: PMC5291751 DOI: 10.1016/j.bmc.2016.12.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/17/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
We herein disclose a series of compounds with potent inhibitory activities towards histone deacetylases (HDAC) and cyclooxygenases (COX). These compounds potently inhibited the growth of cancer cell lines consistent with their anti-COX and anti-HDAC activities. While compound 2b showed comparable level of COX-2 selectivity as celecoxib, compound 11b outperformed indomethacin in terms of selectivity towards COX-2 relative to COX-1. An important observation with our lead compounds (2b, 8, 11b, and 17b) is their enhanced cytotoxicity towards androgen dependent prostate cancer cell line (LNCaP) relative to androgen independent prostate cancer cell line (DU-145). Interestingly, compounds 2b and 17b arrested the cell cycle progression of LNCaP in the S-phase, while compound 8 showed a G0/G1 arrest, similar to SAHA. Relative to SAHA, these compounds displayed tumor-selective cytotoxicity as they have low anti-proliferative activity towards healthy cells (VERO); an attribute that makes them attractive candidates for drug development.
Collapse
Affiliation(s)
- Idris Raji
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Fatima Yadudu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Emily Janeira
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Shaghayegh Fathi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Lindsey Szymczak
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - James Richard Kornacki
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Kensei Komatsu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, USA
| | - Milan Mrksich
- Departments of Chemistry and Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
35
|
de Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics 2016; 8:105. [PMID: 27752293 PMCID: PMC5062873 DOI: 10.1186/s13148-016-0271-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed.
Collapse
Affiliation(s)
- Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IIS Galicia Sur, 36310 Vigo, Spain
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
36
|
Jadhavar PS, Ramachandran SA, Riquelme E, Gupta A, Quinn KP, Shivakumar D, Ray S, Zende D, Nayak AK, Miglani SK, Sathe BD, Raja M, Farias O, Alfaro I, Belmar S, Guerrero J, Bernales S, Chakravarty S, Hung DT, Lindquist JN, Rai R. Targeting prostate cancer with compounds possessing dual activity as androgen receptor antagonists and HDAC6 inhibitors. Bioorg Med Chem Lett 2016; 26:5222-5228. [PMID: 27717544 DOI: 10.1016/j.bmcl.2016.09.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/19/2023]
Abstract
While enzalutamide and abiraterone are approved for treatment of metastatic castration-resistant prostate cancer (mCRPC), approximately 20-40% of patients have no response to these agents. It has been stipulated that the lack of response and the development of secondary resistance to these drugs may be due to the presence of AR splice variants. HDAC6 has a role in regulating the androgen receptor (AR) by modulating heat shock protein 90 (Hsp90) acetylation, which controls the nuclear localization and activation of the AR in androgen-dependent and independent scenarios. With dual-acting AR-HDAC6 inhibitors it should be possible to target patients who don't respond to enzalutamide. Herein, we describe the design, synthesis and biological evaluation of dual-acting compounds which target AR and are also specific towards HDAC6. Our efforts led to compound 10 which was found to have potent dual activity (HDAC6 IC50=0.0356μM and AR binding IC50=<0.03μM). Compound 10 was further evaluated for antagonist and other cell-based activities, in vitro stability and pharmacokinetics.
Collapse
Affiliation(s)
- Pradeep S Jadhavar
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Sreekanth A Ramachandran
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Eduardo Riquelme
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Ashu Gupta
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Kevin P Quinn
- Medivation, 525 Market Street, 36th Floor, San Francisco, CA 94105, USA
| | | | | | - Dnyaneshwar Zende
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Anjan K Nayak
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Sandeep K Miglani
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Balaji D Sathe
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Mohd Raja
- Integral BioSciences Pvt. Ltd, C-64, Hosiery Complex Phase II Extension, Noida, Uttar Pradesh 201306, India
| | - Olivia Farias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Ivan Alfaro
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Sebastián Belmar
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | - Javier Guerrero
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, Santiago 7780272, Chile
| | | | | | - David T Hung
- Medivation, 525 Market Street, 36th Floor, San Francisco, CA 94105, USA
| | | | - Roopa Rai
- Medivation, 525 Market Street, 36th Floor, San Francisco, CA 94105, USA.
| |
Collapse
|
37
|
Graça I, Pereira-Silva E, Henrique R, Packham G, Crabb SJ, Jerónimo C. Epigenetic modulators as therapeutic targets in prostate cancer. Clin Epigenetics 2016; 8:98. [PMID: 27651838 PMCID: PMC5025578 DOI: 10.1186/s13148-016-0264-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/07/2016] [Indexed: 01/24/2023] Open
Abstract
Prostate cancer is one of the most common non-cutaneous malignancies among men worldwide. Epigenetic aberrations, including changes in DNA methylation patterns and/or histone modifications, are key drivers of prostate carcinogenesis. These epigenetic defects might be due to deregulated function and/or expression of the epigenetic machinery, affecting the expression of several important genes. Remarkably, epigenetic modifications are reversible and numerous compounds that target the epigenetic enzymes and regulatory proteins were reported to be effective in cancer growth control. In fact, some of these drugs are already being tested in clinical trials. This review discusses the most important epigenetic alterations in prostate cancer, highlighting the role of epigenetic modulating compounds in pre-clinical and clinical trials as potential therapeutic agents for prostate cancer management.
Collapse
Affiliation(s)
- Inês Graça
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Eva Pereira-Silva
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| | - Graham Packham
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Simon J Crabb
- Cancer Research UK Centre, Cancer Sciences, The Somers Cancer Research Building, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, S016 6YD UK
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group-Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal ; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
38
|
Rosati R, Chen B, Patki M, McFall T, Ou S, Heath E, Ratnam M, Qin Z. Hybrid Enzalutamide Derivatives with Histone Deacetylase Inhibitor Activity Decrease Heat Shock Protein 90 and Androgen Receptor Levels and Inhibit Viability in Enzalutamide-Resistant C4-2 Prostate Cancer Cells. Mol Pharmacol 2016; 90:225-37. [PMID: 27382012 PMCID: PMC4998664 DOI: 10.1124/mol.116.103416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) can disrupt the viability of prostate cancer (PCa) cells through modulation of the cytosolic androgen receptor (AR) chaperone protein heat shock protein 90 (HSP90). However, toxicities associated with their pleiotropic effects could contribute to the ineffectiveness of HDACIs in PCa treatment. We designed hybrid molecules containing partial chemical scaffolds of enzalutamide and suberoylanilide hydroxamic acid (SAHA), with weakened intrinsic pan-HDACI activities, to target HSP90 and AR in enzalutamide-resistant PCa cells. The potency of the new molecules, compounds 2-75 [4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluoro-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide] and 1005 [(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-hydroxyacrylamide], as inhibitors of nuclear and cytosolic histone deacetylases was substantially lower than that of SAHA in cell-free and in situ assays. Compounds 2-75 and 1005 antagonized gene activation by androgen without inducing chromatin association of AR. Enzalutamide had no effect on the levels of AR or HSP90, whereas the hybrid compounds induced degradation of both AR and HSP90, similar to (compound 1005) or more potently than (compound 2-75) SAHA. Similar to SAHA, compounds 2-75 and 1005 decreased the level of HSP90 and induced acetylation in a predicted approximately 55 kDa HSP90 fragment. Compared with SAHA, compound 2-75 induced greater hyperacetylation of the HDAC6 substrate α-tubulin. In contrast with SAHA, neither hybrid molecule caused substantial hyperacetylation of histones H3 and H4. Compounds 2-75 and 1005 induced p21 and caused loss of viability in the enzalutamide-resistant C4-2 cells, with efficacies that were comparable to or better than SAHA. The results suggest the potential of the new compounds as prototype antitumor drugs that would downregulate HSP90 and AR in enzalutamide-resistant PCa cells with weakened effects on nuclear HDACI targets.
Collapse
Affiliation(s)
- Rayna Rosati
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Bailing Chen
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Mugdha Patki
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Thomas McFall
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Siyu Ou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Elisabeth Heath
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Zhihui Qin
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| |
Collapse
|
39
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
40
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
CUDC-101, a Novel Inhibitor of Full-Length Androgen Receptor (flAR) and Androgen Receptor Variant 7 (AR-V7) Activity: Mechanism of Action and In Vivo Efficacy. Discov Oncol 2016; 7:196-210. [PMID: 26957440 DOI: 10.1007/s12672-016-0257-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/12/2016] [Indexed: 12/29/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is an androgen receptor (AR)-dependent disease expected to cause the death of more than 27,000 Americans in 2015. There are only a few available treatments for CRPC, making the discovery of new drugs an urgent need. We report that CUDC-101 (an inhibitor od HER2/NEU, EGFR and HDAC) inhibits both the full length AR (flAR) and the AR variant AR-V7. This observation prompted experiments to discover which of the known activities of CUDC-101 is responsible for the inhibition of flAR/AR-V7 signaling. We used pharmacologic and genetic approaches, and found that the effect of CUDC-101 on flAR and AR-V7 was duplicated only by other HDAC inhibitors, or by silencing the HDAC isoforms HDAC5 and HDAC10. We observed that CUDC-101 treatment or AR-V7 silencing by RNAi equally reduced transcription of the AR-V7 target gene, PSA, without affecting viability of 22Rv1 cells. However, when cellular proliferation was used as an end point, CUDC-101 was more effective than AR-V7 silencing, raising the prospect that CUDC-101 has additional targets beside AR-V7. In support of this, we found that CUDC-101 increased the expression of the cyclin-dependent kinase inhibitor p21, and decreased that of the oncogene HER2/NEU. To determine if CUDC-101 reduces growth in a xenograft model of prostate cancer, this drug was given for 14 days to castrated male SCID mice inoculated with 22Rv1 cells. Compared to vehicle, CUDC-101 reduced xenograft growth in a statistically significant way, and without macroscopic side effects. These studies demonstrate that CUDC-101 inhibits wtAR and AR-V7 activity and growth of 22Rv1 cells in vitro and in vivo. These effects result from the ability of CUDC-101 to target not only HDAC signaling, which was associated with decreased flAR and AR-V7 activity, but multiple additional oncogenic pathways. These observations raise the possibility that treatment of CRPC may be achieved by using similarly multi-targeted approaches.
Collapse
|
42
|
González-Calderón D, Mejía-Dionicio MG, Morales-Reza MA, Ramírez-Villalva A, Morales-Rodríguez M, Jauregui-Rodríguez B, Díaz-Torres E, González-Romero C, Fuentes-Benítes A. Azide-enolate 1,3-dipolar cycloaddition in the synthesis of novel triazole-based miconazole analogues as promising antifungal agents. Eur J Med Chem 2016; 112:60-65. [PMID: 26890112 DOI: 10.1016/j.ejmech.2016.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/19/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
Seven miconazole analogs involving 1,4,5-tri and 1,5-disubstituted triazole moieties were synthesized by azide-enolate 1,3-dipolar cycloaddition. The antifungal activity of these compounds was evaluated in vitro against four filamentous fungi, including Aspergillus fumigatus, Trichosporon cutaneum, Rhizopus oryzae, and Mucor hiemalis as well as three species of Candida spp. as yeast specimens. These pre-clinical studies suggest that compounds 4b, 4d and 7b can be considered as drug candidates for future complementary biological studies due to their good/excellent antifungal activities.
Collapse
Affiliation(s)
- Davir González-Calderón
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico.
| | - María G Mejía-Dionicio
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Marco A Morales-Reza
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Alejandra Ramírez-Villalva
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Macario Morales-Rodríguez
- Departamento de Microbiología, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Bertha Jauregui-Rodríguez
- Departamento de Microbiología, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Eduardo Díaz-Torres
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Carlos González-Romero
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico
| | - Aydeé Fuentes-Benítes
- Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón/Paseo Tollocan s/n, Toluca, Estado de México, 50120, Mexico.
| |
Collapse
|
43
|
Shu C, Sabi-mouka EMB, Yang W, Li Z, Ding L. Effects of paclitaxel (PTX) prodrug-based self-assembly peptide hydrogels combined with suberoylanilide hydroxamic acid (SAHA) for PTX-resistant cancer and synergistic antitumor therapy. RSC Adv 2016. [DOI: 10.1039/c6ra19917h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of PTX prodrug-based self-assembly peptide hydrogels encapsulated SAHA for drug combination.
Collapse
Affiliation(s)
- Chang Shu
- Department of Pharmaceutical Analysis
- Key Laboratory on Protein Chemistry and Structural Biology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Eboka Majolene B. Sabi-mouka
- Department of Pharmaceutical Analysis
- Key Laboratory on Protein Chemistry and Structural Biology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Wen Yang
- Department of Pharmaceutical Analysis
- Key Laboratory on Protein Chemistry and Structural Biology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhongyang Li
- Nanjing Hicin Pharmaceutical Co., Ltd
- Research and Development Center
- Economic and Technological Development Zones
- Nanjing
- P. R. China
| | - Li Ding
- Department of Pharmaceutical Analysis
- Key Laboratory on Protein Chemistry and Structural Biology
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
44
|
Tapadar S, Fathi S, Raji I, Omesiete W, Kornacki JR, Mwakwari SC, Miyata M, Mitsutake K, Li JD, Mrksich M, Oyelere AK. A structure-activity relationship of non-peptide macrocyclic histone deacetylase inhibitors and their anti-proliferative and anti-inflammatory activities. Bioorg Med Chem 2015; 23:7543-64. [PMID: 26585275 DOI: 10.1016/j.bmc.2015.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/21/2015] [Accepted: 10/31/2015] [Indexed: 10/22/2022]
Abstract
Inhibition of the enzymatic activity of histone deacetylase (HDAC) is a promising therapeutic strategy for cancer treatment and several distinct small molecule histone deacetylase inhibitors (HDACi) have been reported. We have previously identified a new class of non-peptide macrocyclic HDACi derived from 14- and 15-membered macrolide skeletons. In these HDACi, the macrocyclic ring is linked to the zinc chelating hydroxamate moiety through a para-substituted aryl-triazole cap group. To further delineate the depth of the SAR of this class of HDACi, we have synthesized series of analogous compounds and investigated the influence of various substitution patterns on their HDAC inhibitory, anti-proliferative and anti-inflammatory activities. We identified compounds 25b and 38f with robust anti-proliferative activities and compound 26f (IC50 47.2 nM) with superior anti-inflammatory (IC50 88 nM) activity relative to SAHA.
Collapse
Affiliation(s)
- Subhasish Tapadar
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Shaghayegh Fathi
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Idris Raji
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Wilson Omesiete
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - James R Kornacki
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Sandra C Mwakwari
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Masanori Miyata
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Kazunori Mitsutake
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jian-Dong Li
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| |
Collapse
|
45
|
Keil KP, Altmann HM, Abler LL, Hernandez LL, Vezina CM. Histone acetylation regulates prostate ductal morphogenesis through a bone morphogenetic protein-dependent mechanism. Dev Dyn 2015; 244:1404-14. [PMID: 26283270 DOI: 10.1002/dvdy.24321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/01/2015] [Accepted: 08/06/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Epigenetic factors influence stem cell function and other developmental events but their role in prostate morphogenesis is not completely known. We tested the hypothesis that histone deacetylase (HDAC) activity is required for prostate morphogenesis. RESULTS We identified the presence of class I nuclear HDACs in the mouse urogenital sinus (UGS) during prostate development and found that Hdac 2 mRNA abundance diminishes as development proceeds which is especially evident in prostatic epithelium. Blockade of HDACs with the inhibitor trichostatin A (TSA) decreased the number of prostatic buds formed in UGS explant cultures but not the number of buds undergoing branching morphogenesis. In the latter, TSA promoted an extensive branching phenotype that was reversed by exogenous NOGGIN protein, which functions as a bone morphogenetic protein (BMP) inhibitor. TSA also increased Bmp2 promoter H3K27ac abundance, Bmp2 and Bmp4 mRNA abundance, and the percentage of epithelial cells marked by BMP-responsive phosphorylated SMAD1/5/8 protein. TSA exposed UGS explants grafted under the kidney capsule of untreated host mice for continued development achieved a smaller size without an obvious difference in glandular histology compared with control treated grafts. CONCLUSIONS These results are consistent with an active role for HDACs in shaping prostate morphogenesis by regulating Bmp abundance.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Helene M Altmann
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lisa L Abler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Chad M Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
46
|
Knauer SK, Mahendrarajah N, Roos WP, Krämer OH. The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev 2015; 26:405-13. [DOI: 10.1016/j.cytogfr.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
|
47
|
Seo YH. Dual Inhibitors Against Topoisomerases and Histone Deacetylases. J Cancer Prev 2015; 20:85-91. [PMID: 26151040 PMCID: PMC4492363 DOI: 10.15430/jcp.2015.20.2.85] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/01/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022] Open
Abstract
Topoisomerases and histone deacetylases (HDACs) are considered as important therapeutic targets for a wide range of cancers, due to their association with the initiation, proliferation and survival of cancer cells. Topoisomerases are involved in the cleavage and religation processes of DNA, while HDACs regulate a dynamic epigenetic modification of the lysine amino acid on various proteins. Extensive studies have been undertaken to discover small molecule inhibitor of each protein and thereby, several drugs have been transpired from this effort and successfully approved for clinical use. However, the inherent heterogeneity and multiple genetic abnormalities of cancers challenge the clinical application of these single targeted drugs. In order to overcome the limitations of a single target approach, a novel approach, simultaneously targeting topoisomerases and HDACs with a single molecule has been recently employed and attracted much attention of medicinal chemists in drug discovery. This review highlights the current studies on the discovery of dual inhibitors against topoisomerases and HDACs, provides their pharmacological aspects and advantages, and discusses the challenges and promise of the dual inhibitors.
Collapse
Affiliation(s)
- Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, Korea
| |
Collapse
|
48
|
Rapozzi V, Ragno D, Guerrini A, Ferroni C, della Pietra E, Cesselli D, Castoria G, Di Donato M, Saracino E, Benfenati V, Varchi G. Androgen Receptor Targeted Conjugate for Bimodal Photodynamic Therapy of Prostate Cancer in Vitro. Bioconjug Chem 2015; 26:1662-71. [PMID: 26108715 DOI: 10.1021/acs.bioconjchem.5b00261] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostate cancer (PC) represents the most common type of cancer among males and is the second leading cause of cancer death in men in Western society. Current options for PC therapy remain unsatisfactory, since they often produce uncomfortable long-term side effects, such as impotence (70%) and incontinence (5-20%) even in the first stages of the disease. Light-triggered therapies, such as photodynamic therapy, have the potential to provide important advances in the treatment of localized and partially metastasized prostate cancer. We have designed a novel molecular conjugate (DR2) constituted of a photosensitizer (pheophorbide a, Pba), connected to a nonsteroidal anti-androgen molecule through a small pegylated linker. This study aims at investigating whether DR2 represents a valuable approach for PC treatment based on light-induced production of single oxygen and nitric oxide (NO) in vitro. Besides being able to efficiently bind the androgen receptor (AR), the 2-trifluoromethylnitrobenzene ring on the DR2 backbone is able to release cytotoxic NO under the exclusive control of light, thus augmenting the general photodynamic effect. Although DR2 is similarly internalized in cells expressing different levels of androgen receptor, the AR ligand prevents its efflux through the ABCG2-pump. In vitro phototoxicity experiments demonstrated the ability of DR2 to kill cancer cells more efficiently than Pba, while no dark toxicity was observed. Overall, the presented approach is very promising for further development of AR-photosensitizer conjugates in the multimodal photodynamic treatment of prostate cancer.
Collapse
Affiliation(s)
- Valentina Rapozzi
- ‡Department of Medical and Biological Sciences University of Udine, Piazzale Kolbe, 4, 33100 Udine, Italy
| | - Daniele Ragno
- ∥Department of Chemistry University of Ferrara, Via Fossato di Mortara, 17, 44121 Ferrara, Italy
| | - Andrea Guerrini
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Claudia Ferroni
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Emilia della Pietra
- ‡Department of Medical and Biological Sciences University of Udine, Piazzale Kolbe, 4, 33100 Udine, Italy
| | - Daniela Cesselli
- ‡Department of Medical and Biological Sciences University of Udine, Piazzale Kolbe, 4, 33100 Udine, Italy
| | - Gabriella Castoria
- §Department of Biochemistry, Biophysics and General Pathology - II University of Naples , Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Marzia Di Donato
- §Department of Biochemistry, Biophysics and General Pathology - II University of Naples , Via L. De Crecchio, 7, 80138 Naples, Italy
| | - Emanuela Saracino
- ⊥Institute for the Study of Nanostructured Materials, Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Valentina Benfenati
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Greta Varchi
- †Institute of the Organic Synthesis and Photoreactivity Italian National Research Council, Via P. Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
49
|
Daniel KB, Sullivan ED, Chen Y, Chan JC, Jennings PA, Fierke CA, Cohen SM. Dual-Mode HDAC Prodrug for Covalent Modification and Subsequent Inhibitor Release. J Med Chem 2015; 58:4812-21. [PMID: 25974739 PMCID: PMC4467547 DOI: 10.1021/acs.jmedchem.5b00539] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Histone deacetylase inhibitors (HDACi)
target abnormal epigenetic
states associated with a variety of pathologies, including cancer.
Here, the development of a prodrug of the canonical broad-spectrum
HDACi suberoylanilide hydroxamic acid (SAHA) is described. Although
hydroxamic acids are utilized universally in the development of metalloenzyme
inhibitors, they are considered to be poor pharmacophores with reduced
activity in vivo. We developed a prodrug of SAHA by appending a promoiety,
sensitive to thiols, to the hydroxamic acid warhead (termed SAHA-TAP).
After incubation of SAHA-TAP with an HDAC, the thiol of a conserved
HDAC cysteine residue becomes covalently tagged with the promoiety,
initiating a cascade reaction that leads to the release of SAHA. Mass
spectrometry and enzyme kinetics experiments validate that the cysteine
residue is covalently appended with the TAP promoiety. SAHA-TAP demonstrates
cytotoxicity activity against various cancer cell lines. This strategy
represents an original prodrug design with a dual mode of action for
HDAC inhibition.
Collapse
Affiliation(s)
- Kevin B Daniel
- †Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Yao Chen
- †Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Joshua C Chan
- †Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Patricia A Jennings
- †Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Seth M Cohen
- †Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
50
|
Design and structure activity relationship of tumor-homing histone deacetylase inhibitors conjugated to folic and pteroic acids. Eur J Med Chem 2015; 96:340-59. [PMID: 25899338 DOI: 10.1016/j.ejmech.2015.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 01/02/2023]
Abstract
Histone deacetylase (HDAC) inhibition has recently emerged as a novel therapeutic approach for the treatment of various pathological conditions including cancer. Currently, two HDAC inhibitors (HDACi) – Vorinostat and Romidepsin – have been approved for the treatment of cutaneous T-cell lymphoma. However, HDACi remain ineffective against solid tumors and are associated with adverse events including cardiotoxicity. Targeted delivery may enhance the therapeutic indices of HDACi and enable them to be efficacious against solid tumors. We showed herein that morphing of folic and pteroic acids into the surface recognition group of HDACi results in hydroxamate and benzamide HDACi which derived tumor homing by targeting folate receptor (FR), a receptor commonly overexpressed in solid tumors. We observed a correlation between the potency of HDAC1 inhibition and cytotoxicity as only the potent pteroate hydroxamates, 11d and 11e, displayed antiproliferative activity against two representative FR-expression cancer cells. Our observation further supports the previous results which suggest that for a drug to be successfully targeted using the FR, it must be extremely potent against its primary target as the FR has a low delivery efficiency.
Collapse
|