1
|
Dong J, Jassim BA, Milholland KL, Qu Z, Bai Y, Miao Y, Miao J, Ma Y, Lin J, Hall MC, Zhang ZY. Development of Novel Phosphonodifluoromethyl-Containing Phosphotyrosine Mimetics and a First-In-Class, Potent, Selective, and Bioavailable Inhibitor of Human CDC14 Phosphatases. J Med Chem 2024; 67:8817-8835. [PMID: 38768084 DOI: 10.1021/acs.jmedchem.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jiajun Dong
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brenson A Jassim
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kedric L Milholland
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zihan Qu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yunpeng Bai
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yiming Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinmin Miao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuan Ma
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianping Lin
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark C Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
- Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
EswarKumar N, Yang CH, Tewary S, Peng WH, Chen GC, Yeh YQ, Yang HC, Ho MC. An integrative approach unveils a distal encounter site for rPTPε and phospho-Src complex formation. Structure 2023; 31:1567-1577.e5. [PMID: 37794594 DOI: 10.1016/j.str.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
The structure determination of protein tyrosine phosphatase (PTP): phospho-protein complexes, which is essential to understand how specificity is achieved at the amino acid level, remains a significant challenge for protein crystallography and cryoEM due to the transient nature of binding interactions. Using rPTPεD1 and phospho-SrcKD as a model system, we have established an integrative workflow to address this problem, by means of which we generate a protein:phospho-protein complex model using predetermined protein structures, SAXS and pTyr-tailored MD simulations. Our model reveals transient protein-protein interactions between rPTPεD1 and phospho-SrcKD and is supported by three independent experimental validations. Measurements of the association rate between rPTPεD1 and phospho-SrcKD showed that mutations on the rPTPεD1: SrcKD complex interface disrupts these transient interactions, resulting in a reduction in protein-protein association rate and, eventually, phosphatase activity. This integrative approach is applicable to other PTP: phospho-protein complexes and the characterization of transient protein-protein interface interactions.
Collapse
Affiliation(s)
- Nadendla EswarKumar
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Sunilkumar Tewary
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wen-Hsin Peng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsin-Chu 300, Taiwan
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
3
|
Trisciuzzi D, Siragusa L, Baroni M, Cruciani G, Nicolotti O. An Integrated Machine Learning Model To Spot Peptide Binding Pockets in 3D Protein Screening. J Chem Inf Model 2022; 62:6812-6824. [PMID: 36320100 DOI: 10.1021/acs.jcim.2c00583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The prediction of peptide-protein binding sites is of utmost importance to tackle the onset of severe neurodegenerative diseases and cancer. In this work, we detail a novel machine learning model based on Linear Discriminant Analysis (LDA) demonstrating to be highly predictive in detecting the putative protein binding regions of small peptides. Starting from 439 high-quality pockets derived from peptide-protein crystallographic complexes, three sets of well-established peptide-binding regions were first selected through a Partitioning Around Medoids (PAM) clustering algorithm based on morphological and energetic 3D GRID-MIF molecular descriptors. Next, the best combination between all the putative interacting peptide pockets and related GRID-MIF scores was automatically explored by using the LDA-based protocol implemented in BioGPS. This approach proved successful to recognize the actual interacting peptide regions (that is, AUC = 0.86 and partial ROC enrichment at 5% of 0.48) from all the other pockets of the protein. Validated on two external collections sets, including 445 and 347 crystallographic peptide-protein complexes, our LDA-based model could be effective to further run peptide-protein virtual screening campaigns.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Department of Pharmacy-Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125Bari, Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Lydia Siragusa
- Molecular Horizon s.r.l., Via Montelino, 30, 06084Bettona (PG), Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Massimo Baroni
- Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, HertfordshireWD6 4PJ, United Kingdom
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, via Elce di Sotto, 8, 06123Perugia (PG), Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125Bari, Italy
| |
Collapse
|
4
|
Accorsi M, Tiemann M, Wehrhan L, Finn LM, Cruz R, Rautenberg M, Emmerling F, Heberle J, Keller BG, Rademann J. Pentafluorophosphato‐Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine‐Specific Protein Interactions. Angew Chem Int Ed Engl 2022; 61:e202203579. [PMID: 35303375 PMCID: PMC9323422 DOI: 10.1002/anie.202203579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5‐amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine‐specific interactions were studied by NMR and IR spectroscopy, X‐ray diffraction, and in bioactivity assays. The mono‐anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein‐binding sites, exploiting charge and H−F‐bonding interactions. The novel motifs bind 25‐ to 30‐fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations.
Collapse
Affiliation(s)
- Matteo Accorsi
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Markus Tiemann
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Leon Wehrhan
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Lauren M. Finn
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Ruben Cruz
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Max Rautenberg
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str.11 12489 Berlin Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str.11 12489 Berlin Germany
| | - Joachim Heberle
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Bettina G. Keller
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Jörg Rademann
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| |
Collapse
|
5
|
Accorsi M, Tiemann M, Wehrhan L, Finn LM, Cruz R, Rautenberg M, Emmerling F, Heberle J, Keller BG, Rademann J. Pentafluorophosphato‐Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine‐Specific Protein Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matteo Accorsi
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy; Institute of Pharmacy GERMANY
| | - Markus Tiemann
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy GERMANY
| | - Leon Wehrhan
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Lauren M. Finn
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Ruben Cruz
- Freie Universität Berlin: Freie Universitat Berlin Department of Physics GERMANY
| | - Max Rautenberg
- Bundesanstalt für Materialforschung und -prüfung: Bundesanstalt fur Materialforschung und -prufung Structure Analysis GERMANY
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung: Bundesanstalt fur Materialforschung und -prufung Structural Analytics GERMANY
| | - Joachim Heberle
- Freie Universität Berlin: Freie Universitat Berlin Department of Physics GERMANY
| | - Bettina G. Keller
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Jörg Rademann
- Freie Universitat Berlin, Institute of Pharmacy Medicinal Chemistry Königin-Luise-Str. 2+4 14195 Berlin GERMANY
| |
Collapse
|
6
|
Tsumagari K, Niinae T, Otaka A, Ishihama Y. Peptide probes containing a non-hydrolyzable phosphotyrosine-mimetic residue for enrichment of protein tyrosine phosphatases. Proteomics 2021; 22:e2100144. [PMID: 34714599 DOI: 10.1002/pmic.202100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/07/2022]
Abstract
We developed peptide probes containing a non-hydrolyzable phosphotyrosine mimetic, 4-[difluoro(phosphono)methyl]-L-phenylalanine (F2 Pmp) for enrichment of protein tyrosine phosphatases (PTPs). We found that different F2 Pmp probes can enrich different PTPs, depending on the probe sequence. Furthermore, proteins containing a Src homology 2 (SH2) domain were enriched together. Importantly, probes containing phosphotyrosine instead of F2 Pmp failed to enrich PTPs due to dephosphorylation during the pulldown step. This enrichment approach using peptides containing F2 Pmp could be a generic tool for tyrosine phosphatome analysis without the use of antibodies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Center for Integrated Medical Research, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tomoya Niinae
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Akira Otaka
- Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.,Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| |
Collapse
|
7
|
Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler G, Han J. Recent Advances in Synthesis of Difluoromethylene Phosphonates for Biological Applications. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001464] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michael Shevchuk
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Qian Wang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jingcheng Xu
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Haibo Mei
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Gerd‐Volker Röschenthaler
- Department of Life Sciences and Chemistry Jacobs University Bremen gGmbH Campus Ring 1 28759 Bremen Germany
| | - Jianlin Han
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
8
|
Cao H, Li J, Zhang F, Cahard D, Ma J. Asymmetric Synthesis of Chiral Amino Carboxylic‐Phosphonic Acid Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001345] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao‐Qiang Cao
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Jun‐Kuan Li
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| | - Dominique Cahard
- CNRS UMR 6014 COBRA Normandie Université 76821 Mont Saint Aignan France
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) and Tianjin Collaborative Innovation Center of Chemical Science & Engineering Tianjin University Tianjin 300072 People's Republic of China
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
9
|
Makukhin N, Ciulli A. Recent advances in synthetic and medicinal chemistry of phosphotyrosine and phosphonate-based phosphotyrosine analogues. RSC Med Chem 2020; 12:8-23. [PMID: 34041480 PMCID: PMC8130623 DOI: 10.1039/d0md00272k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Phosphotyrosine-containing compounds attract significant attention due to their potential to modulate signalling pathways by binding to phospho-writers, erasers and readers such as SH2 and PTB domain containing proteins. Phosphotyrosine derivatives provide useful chemical tools to study protein phosphorylation/dephosphorylation, and as such represent attractive starting points for the development of binding ligands and chemical probes to study biology, and for inhibitor and degrader drug design. To overcome enzymatic lability of the phosphate group, physiologically stable phosphonate-based phosphotyrosine analogues find utility in a wide range of applications. This review covers advances over the last decade in the design of phosphotyrosine and its phosphonate-based derivatives, highlights the improved and expanded synthetic toolbox, and illustrates applications in medicinal chemistry.
Collapse
Affiliation(s)
- Nikolai Makukhin
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee Dow Street DD1 5EH Dundee UK
| |
Collapse
|
10
|
Kumar AP, Nguyen MN, Verma C, Lukman S. Structural analysis of protein tyrosine phosphatase 1B reveals potentially druggable allosteric binding sites. Proteins 2018; 86:301-321. [PMID: 29235148 DOI: 10.1002/prot.25440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/16/2017] [Accepted: 12/10/2017] [Indexed: 12/11/2022]
Abstract
Catalytic proteins such as human protein tyrosine phosphatase 1B (PTP1B), with conserved and highly polar active sites, warrant the discovery of druggable nonactive sites, such as allosteric sites, and potentially, therapeutic small molecules that can bind to these sites. Catalyzing the dephosphorylation of numerous substrates, PTP1B is physiologically important in intracellular signal transduction pathways in diverse cell types and tissues. Aberrant PTP1B is associated with obesity, diabetes, cancers, and neurodegenerative disorders. Utilizing clustering methods (based on root mean square deviation, principal component analysis, nonnegative matrix factorization, and independent component analysis), we have examined multiple PTP1B structures. Using the resulting representative structures in different conformational states, we determined consensus clustroids and used them to identify both known and novel binding sites, some of which are potentially allosteric. We report several lead compounds that could potentially bind to the novel PTP1B binding sites and can be further optimized. Considering the possibility for drug repurposing, we discovered homologous binding sites in other proteins, with ligands that could potentially bind to the novel PTP1B binding sites.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Minh N Nguyen
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Wagner S, Accorsi M, Rademann J. Benzyl Mono-P-Fluorophosphonate and Benzyl Penta-P-Fluorophosphate Anions Are Physiologically Stable Phosphotyrosine Mimetics and Inhibitors of Protein Tyrosine Phosphatases. Chemistry 2017; 23:15387-15395. [PMID: 29024172 DOI: 10.1002/chem.201701204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 01/15/2023]
Abstract
α,α-Difluoro-benzyl phosphonates are currently the most popular class of phosphotyrosine mimetics. Structurally derived from the natural substrate phosphotyrosine, they constitute classical bioisosteres and have enabled the development of potent inhibitors of protein tyrosine phosphatases (PTP) and phosphotyrosine recognition sites such as SH2 domains. Being dianions bearing two negative charges, phosphonates, however, do not permeate membranes and thus are often inactive in cells and have not been a successful starting point toward therapeutics, yet. In this work, benzyl phosphonates were modified by replacing phosphorus-bound oxygen atoms with phosphorus-bound fluorine atoms. Surprisingly, mono-P-fluorophosphonates were fully stable under physiological conditions, thus enabling the investigation of their mode of action toward PTP. Three alternative scenarios were tested and mono-P-fluorophosphonates were identified as stable reversible PTP1B inhibitors, despite of the loss of one negative charge and the replacement of one oxygen atom as an H-bond donor by fluorine. In extending this replacement strategy, α,α-difluorobenzyl penta-P-fluorophosphates were synthesized and found to be novel phosphotyrosine mimetics with improved affinity to the phosphotyrosine binding site of PTP1B.
Collapse
Affiliation(s)
- Stefan Wagner
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Matteo Accorsi
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195, Berlin, Germany
| |
Collapse
|
12
|
Jia Y, Lu L, Zhu M, Yuan C, Xing S, Fu X. A dioxidovanadium (V) complex of NNO-donor Schiff base as a selective inhibitor of protein tyrosine phosphatase 1B: Synthesis, characterization, and biological activities. Eur J Med Chem 2017; 128:287-292. [PMID: 28199951 DOI: 10.1016/j.ejmech.2017.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
Abstract
A new dioxidovanadium (V) complex, VO2(HPPCH) (1) (H2PPCH = N'-picolinoylpyridin-1-ium-2-carbohydrazonate) has been synthesized and characterized by elemental analysis, IR, X-ray diffraction analysis and electrospray ionization mass spectra. Complex 1 crystallized in the monoclinic system with space group P21/c. It potently inhibited PTP1B with IC50 of 0.13 μM, about 7, 15 and 125-fold stronger against PTP1B than over TCPTP, SHP-1 and SHP-2, displaying obvious selectivity against PTP1B. Western blotting analysis indicated that complex 1 effectively increased the phosphorylation of PTP1B substrates, especially the phosphorylation of IR/IGF 1R and IRS-1. It exhibited lower cytotoxicity than positive control VOSO4. These results make complex 1 a promising candidate for novel anti-diabetic drug development.
Collapse
Affiliation(s)
- Yuqi Jia
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Miaoli Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China.
| | - Caixia Yuan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan 030006, Shanxi, People's Republic of China
| | - Shu Xing
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China.
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
13
|
Abstract
Phosphatases play key roles in normal physiology and diseases. Studying phosphatases has been both essential and challenging, and the application of conventional genetic and biochemical methods has led to crucial but still limited understanding of their mechanisms, substrates, and exclusive functions within highly intricate networks. With the advances in technologies such as cellular imaging and molecular and chemical biology in terms of sensitive tools and methods, the phosphatase field has thrived in the past years and has set new insights for cell signaling studies and for therapeutic development. In this review, we give an overview of the existing interdisciplinary tools for phosphatases, give examples on how they have been applied to increase our understanding of these enzymes, and suggest how they-and other tools yet barely used in the phosphatase field-might be adapted to address future questions and challenges.
Collapse
Affiliation(s)
- Sara Fahs
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Pablo Lujan
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| |
Collapse
|
14
|
Yates LM, Fiedler D. A Stable Pyrophosphoserine Analog for Incorporation into Peptides and Proteins. ACS Chem Biol 2016; 11:1066-73. [PMID: 26760216 DOI: 10.1021/acschembio.5b00972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein pyrophosphorylation is a covalent modification of proteins, mediated by the inositol pyrophosphate messengers. Although the inositol pyrophosphates have been linked to a range of cellular processes, the role of protein pyrophosphorylation remains minimally characterized in vivo. The inherent instability of the phosphoanhydride bond has hampered the development of useful bioanalytical techniques to interrogate this novel signaling mechanism. Here, we describe the preparation of a pyrophosphoserine analog containing a stable methylene-bisphosphonate group that is compatible with solid-phase peptide synthesis. The resulting peptides demonstrate enhanced stability in Eukaryotic cell lysates and mammalian plasma and display resistance toward chemical degradation, when compared to the corresponding pyrophosphopeptides. In addition, the peptides containing the stable pyrophosphoserine analog are highly compatible with common ligation methods, such as native chemical ligation, maleimide conjugation, and glutaraldehyde ligation. The bisphosphonate-containing peptides will, therefore, be well-suited for future pyrophosphoserine antibody generation and affinity capture of pyrophosphoprotein binding partners and provide a key entry point to study the regulatory role of protein pyrophosphorylation.
Collapse
Affiliation(s)
- Lisa M. Yates
- Department
of Chemistry, Princeton University, Washington Rd, Princeton, New Jersey 08544, United States
| | - Dorothea Fiedler
- Department
of Chemistry, Princeton University, Washington Rd, Princeton, New Jersey 08544, United States
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
15
|
Li X, Köhn M. Prediction and verification of novel peptide targets of protein tyrosine phosphatase 1B. Bioorg Med Chem 2016; 24:3255-8. [PMID: 27025565 PMCID: PMC4957924 DOI: 10.1016/j.bmc.2016.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 11/26/2022]
Abstract
Phosphotyrosine peptides are useful starting points for inhibitor design and for the search for protein tyrosine phosphatase (PTP) phosphoprotein substrates. To identify novel phosphopeptide substrates of PTP1B, we developed a computational prediction protocol based on a virtual library of protein sequences with known phosphotyrosine sites. To these we applied sequence-based methods, biologically meaningful filters and molecular docking. Five peptides were selected for biochemical testing of their potential as PTP1B substrates. All five peptides were equally good substrates for PTP1B compared to a known peptide substrate whereas appropriate control peptides were not recognized, showing that our protocol can be used to identify novel peptide substrates of PTP1B.
Collapse
Affiliation(s)
- Xun Li
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany; European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
16
|
Stadlbauer S, Rios P, Ohmori K, Suzuki K, Köhn M. Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver. PLoS One 2015; 10:e0134336. [PMID: 26226290 PMCID: PMC4520450 DOI: 10.1371/journal.pone.0134336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/08/2015] [Indexed: 01/10/2023] Open
Abstract
Natural polyphenols like oligomeric catechins (procyanidins) derived from green tea and herbal medicines are interesting compounds for pharmaceutical research due to their ability to protect against carcinogenesis in animal models. It is nevertheless still unclear how intracellular pathways are modulated by polyphenols. Monomeric polyphenols were shown to affect the activity of some protein phosphatases (PPs). The three phosphatases of regenerating liver (PRLs) are close relatives and promising therapeutic targets in cancer. In the present study we show that several procyanidins inhibit the activity of all three members of the PRL family in the low micromolar range, whereas monomeric epicatechins show weak inhibitory activity. Increasing the number of catechin units in procyanidins to more than three does not further enhance the potency. Remarkably, the tested procyanidins showed selectivity in vitro when compared to other PPs, and over 10-fold selectivity toward PRL-1 over PRL-2 and PRL-3. As PRL overexpression induces cell migration compared to control cells, the effect of procyanidins on this phenotype was studied. Treatment with procyanidin C2 led to a decrease in cell migration of PRL-1- and PRL-3-overexpressing cells, suggesting the compound-dependent inhibition of PRL-promoted cell migration. Treatment with procyanidin B3 led to selective suppression of PRL-1 overexpressing cells, thereby corroborating the selectivity toward PRL-1- over PRL-3 in vitro. Together, our results show that procyanidins negatively affect PRL activity, suggesting that PRLs could be targets in the polypharmacology of natural polyphenols. Furthermore, they are interesting candidates for the development of PRL-1 inhibitors due to their low cellular toxicity and the selectivity within the PRL family.
Collapse
Affiliation(s)
- Sven Stadlbauer
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
- * E-mail: (SS); (MK)
| | - Pablo Rios
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ken Ohmori
- Tokyo Institute of Technology, Department of Chemistry, O-okayama, Meguro-ku, Tokyo, 152–8551, Japan
| | - Keisuke Suzuki
- Tokyo Institute of Technology, Department of Chemistry, O-okayama, Meguro-ku, Tokyo, 152–8551, Japan
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
- * E-mail: (SS); (MK)
| |
Collapse
|
17
|
Azide-alkyne cycloaddition-mediated cyclization of phosphonopeptides and their evaluation as PTP1B binders and enrichment tools. Bioorg Med Chem 2015; 23:2848-53. [PMID: 25805211 DOI: 10.1016/j.bmc.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are important enzymes in health and disease, and chemical tools are crucial to understand and modulate their biological roles. PTP1B is involved in diabetes, obesity and cancer. One of the main challenges for the design of chemical tools for PTP1B is the homology to TCPTP, making tool selectivity a highly challenging task. Here, we aimed to study if azide-alkyne cycloaddition-mediated cyclization of a peptide inhibitor could increase its selectivity toward PTP1B over TCPTP, and if cyclic and linear peptide binders can be applied as enrichment tools of endogenous PTP1B. While the cyclization of the peptide binders did not improve the selectivity toward PTP1B over TCPTP, it enhanced strongly the efficiency to co-precipitate endogenous PTP1B out of cell lysates. Our results show that fine-tuning the molecular structure of peptidic pull-down baits can greatly enhance their efficiency compared to the parental peptide sequences.
Collapse
|
18
|
Tautz L, Senis YA, Oury C, Rahmouni S. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorg Med Chem 2015; 23:2786-97. [PMID: 25921264 PMCID: PMC4451376 DOI: 10.1016/j.bmc.2015.03.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 11/26/2022]
Abstract
Arterial thrombosis is the primary cause of most cases of myocardial infarction and stroke, the leading causes of death in the developed world. Platelets, highly specialized cells of the circulatory system, are key contributors to thrombotic events. Antiplatelet drugs, which prevent platelets from aggregating, have been very effective in reducing the mortality and morbidity of these conditions. However, approved antiplatelet therapies have adverse side effects, most notably the increased risk of bleeding. Moreover, there remains a considerable incidence of arterial thrombosis in a subset of patients receiving currently available drugs. Thus, there is a pressing medical need for novel antiplatelet agents with a more favorable safety profile and less patient resistance. The discovery of novel antiplatelet targets is the matter of intense ongoing research. Recent findings demonstrate the potential of targeting key signaling molecules, including kinases and phosphatases, to prevent platelet activation and aggregation. Here, we offer perspectives to targeting members of the protein tyrosine phosphatase (PTP) superfamily, a major class of enzymes in signal transduction. We give an overview of previously identified PTPs in platelet signaling, and discuss their potential as antiplatelet drug targets. We also introduce VHR (DUSP3), a PTP that we recently identified as a major player in platelet biology and thrombosis. We review our data on genetic deletion as well as pharmacological inhibition of VHR, providing proof-of-principle for a novel and potentially safer VHR-based antiplatelet therapy.
Collapse
Affiliation(s)
- Lutz Tautz
- NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Yotis A Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Cécile Oury
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| |
Collapse
|
19
|
Klingberg R, Jost JO, Schümann M, Gelato KA, Fischle W, Krause E, Schwarzer D. Analysis of phosphorylation-dependent protein-protein interactions of histone h3. ACS Chem Biol 2015; 10:138-45. [PMID: 25330109 DOI: 10.1021/cb500563n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple posttranslational modifications (PTMs) of histone proteins including site-specific phosphorylation of serine and threonine residues govern the accessibility of chromatin. According to the histone code theory, PTMs recruit regulatory proteins or block their access to chromatin. Here, we report a general strategy for simultaneous analysis of both of these effects based on a SILAC MS scheme. We applied this approach for studying the biochemical role of phosphorylated S10 of histone H3. Differential pull-down experiments with H3-tails synthesized from l- and d-amino acids uncovered that histone acetyltransferase 1 (HAT1) and retinoblastoma-binding protein 7 (RBBP7) are part of the protein network, which interacts with the unmodified H3-tail. An additional H3-derived bait containing the nonhydrolyzable phospho-serine mimic phosphonomethylen-alanine (Pma) at S10 recruited several isoforms of the 14-3-3 family and blocked the recruitment of HAT1 and RBBP7 to the unmodified H3-tail. Our observations provide new insights into the many functions of H3S10 phosphorylation. In addition, the outlined methodology is generally applicable for studying specific binding partners of unmodified histone tails.
Collapse
Affiliation(s)
| | - Jan Oliver Jost
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Strasse
4, 72076 Tübingen, Germany
| | | | - Kathy Ann Gelato
- Laboratory
of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory
of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Dirk Schwarzer
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Strasse
4, 72076 Tübingen, Germany
| |
Collapse
|
20
|
Hoeger B, Diether M, Ballester PJ, Köhn M. Biochemical evaluation of virtual screening methods reveals a cell-active inhibitor of the cancer-promoting phosphatases of regenerating liver. Eur J Med Chem 2014; 88:89-100. [PMID: 25159123 PMCID: PMC4255093 DOI: 10.1016/j.ejmech.2014.08.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 11/30/2022]
Abstract
Computationally supported development of small molecule inhibitors has successfully been applied to protein tyrosine phosphatases in the past, revealing a number of cell-active compounds. Similar approaches have also been used to screen for small molecule inhibitors for the cancer-related phosphatases of regenerating liver (PRL) family. Still, selective and cell-active compounds are of limited availability. Since especially PRL-3 remains an attractive drug target due to its clear role in cancer metastasis, such compounds are highly demanded. In this study, we investigated various virtual screening approaches for their applicability to identify novel small molecule entities for PRL-3 as target. Biochemical evaluation of purchasable compounds revealed ligand-based approaches as well suited for this target, compared to docking-based techniques that did not perform well in this context. The best hit of this study, a 2-cyano-2-ene-ester and hence a novel chemotype targeting the PRLs, was further optimized by a structure–activity-relationship (SAR) study, leading to a low micromolar PRL inhibitor with acceptable selectivity over other protein tyrosine phosphatases. The compound is active in cells, as shown by its ability to specifically revert PRL-3 induced cell migration, and exhibits similar effects on PRL-1 and PRL-2. It is furthermore suitable for fluorescence microscopy applications, and it is commercially available. These features make it the only purchasable, cell-active and acceptably selective PRL inhibitor to date that can be used in various cellular applications. Computational ligand- and docking-based approaches were tested for PRL-3 as a target. Ligand-based screening was proven a feasible approach for PRL-3 inhibitor discovery. A low micromolar, non-competitive inhibitor with novel chemotype for PRLs was discovered. The inhibitor efficiently blocks PRL induced cell migration. The inhibitor is non-cytotoxic, commercially available and suitable for fluorescence microscopy applications.
Collapse
Affiliation(s)
- Birgit Hoeger
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Maren Diether
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Pedro J Ballester
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom; Inserm U1068, Centre de Recherche en Cancérologie de Marseille, France.
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|