1
|
Tsou JC, Tsou CJ, Wang CH, Ko ALA, Wang YH, Liang HH, Sun JC, Huang KF, Ko TP, Lin SY, Wang YS. Site-Specific Histidine Aza-Michael Addition in Proteins Enabled by a Ferritin-Based Metalloenzyme. J Am Chem Soc 2024. [PMID: 39499210 DOI: 10.1021/jacs.4c14446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Histidine modifications of proteins are broadly based on chemical methods triggering N-substitution reactions such as aza-Michael addition at histidine's moderately nucleophilic imidazole side chain. While recent studies have demonstrated chemoselective, histidine-specific modifications by further exploiting imidazole's electrophilic reactivity to overcome interference from the more nucleophilic lysine and cysteine, achieving site-specific histidine modifications remains a major challenge due to the absence of spatial control over chemical processes. Herein, through X-ray crystallography and cryo-electron microscopy structural studies, we describe the rational design of a nature-inspired, noncanonical amino-acid-incorporated, human ferritin-based metalloenzyme that is capable of introducing site-specific post-translational modifications (PTMs) to histidine in peptides and proteins. Specifically, chemoenzymatic aza-Michael additions on single histidine residues were carried out on eight protein substrates ranging from 10 to 607 amino acids including the insulin peptide hormone. By introducing an insulin-targeting peptide into our metalloenzyme, we further directed modifications to be carried out site-specifically on insulin's B-chain histidine 5. The success of this biocatalysis platform outlines a novel approach in introducing residue- and, moreover, site-specific post-translational modifications to peptides and proteins, which may further enable reactions to be carried out in vivo.
Collapse
Affiliation(s)
- Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Ju Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - An-Li A Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hui Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Huan-Hsuan Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Cheng Sun
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
3
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
4
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
6
|
Hutton AE, Foster J, Sanders JEJ, Taylor CJ, Hoffmann SA, Cai Y, Lovelock SL, Green AP. An efficient pyrrolysyl-tRNA synthetase for economical production of MeHis-containing enzymes. Faraday Discuss 2024; 252:295-305. [PMID: 38847587 PMCID: PMC11389853 DOI: 10.1039/d4fd00019f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Genetic code expansion has emerged as a powerful tool in enzyme design and engineering, providing new insights into sophisticated catalytic mechanisms and enabling the development of enzymes with new catalytic functions. In this regard, the non-canonical histidine analogue Nδ-methylhistidine (MeHis) has proven especially versatile due to its ability to serve as a metal coordinating ligand or a catalytic nucleophile with a similar mode of reactivity to small molecule catalysts such as 4-dimethylaminopyridine (DMAP). Here we report the development of a highly efficient aminoacyl tRNA synthetase (G1PylRSMIFAF) for encoding MeHis into proteins, by transplanting five known active site mutations from Methanomethylophilus alvus (MaPylRS) into the single domain PylRS from Methanogenic archaeon ISO4-G1. In contrast to the high concentrations of MeHis (5-10 mM) needed with the Ma system, G1PylRSMIFAF can operate efficiently using MeHis concentrations of ∼0.1 mM, allowing more economical production of a range of MeHis-containing enzymes in high titres. Interestingly G1PylRSMIFAF is also a 'polyspecific' aminoacyl tRNA synthetase (aaRS), enabling incorporation of five different non-canonical amino acids (ncAAs) including 3-pyridylalanine and 2-fluorophenylalanine. This study provides an important step towards scalable production of engineered enzymes that contain non-canonical amino acids such as MeHis as key catalytic elements.
Collapse
Affiliation(s)
- Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Jake Foster
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - James E J Sanders
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Christopher J Taylor
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Yizhi Cai
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Sarah L Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
7
|
Gran-Scheuch A, Hanreich S, Keizer I, W Harteveld J, Ruijter E, Drienovská I. Designing Michaelases: exploration of novel protein scaffolds for iminium biocatalysis. Faraday Discuss 2024; 252:279-294. [PMID: 38842386 PMCID: PMC11389850 DOI: 10.1039/d4fd00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.
Collapse
Affiliation(s)
- Alejandro Gran-Scheuch
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Stefanie Hanreich
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Iris Keizer
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Jaap W Harteveld
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Ivana Drienovská
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Costello A, Peterson AA, Lanster DL, Li Z, Carver GD, Badran AH. Efficient genetic code expansion without host genome modifications. Nat Biotechnol 2024:10.1038/s41587-024-02385-y. [PMID: 39261591 DOI: 10.1038/s41587-024-02385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/13/2024] [Indexed: 09/13/2024]
Abstract
Supplementing translation with noncanonical amino acids (ncAAs) can yield protein sequences with new-to-nature functions but existing ncAA incorporation strategies suffer from low efficiency and context dependence. We uncover codon usage as a previously unrecognized contributor to efficient genetic code expansion using non-native codons. Relying only on conventional Escherichia coli strains with native ribosomes, we develop a plasmid-based codon compression strategy that minimizes context dependence and improves ncAA incorporation at quadruplet codons. We confirm that this strategy is compatible with all known genetic code expansion resources, which allowed us to identify 12 mutually orthogonal transfer RNA (tRNA)-synthetase pairs. Enabled by these findings, we evolved and optimized five tRNA-synthetase pairs to incorporate a broad repertoire of ncAAs at orthogonal quadruplet codons. Lastly, we extend these resources to an in vivo biosynthesis platform that can readily create >100 new-to-nature peptide macrocycles bearing up to three unique ncAAs. Our approach will accelerate innovations in multiplexed genetic code expansion and the discovery of chemically diverse biomolecules.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander A Peterson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - David L Lanster
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Zhiyi Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Doctoral Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Gavriela D Carver
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ahmed H Badran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
9
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
10
|
Hardy FJ, Quesne MG, Gérard EF, Zhao J, Ortmayer M, Taylor CJ, Ali HS, Slater JW, Levy CW, Heyes DJ, Bollinger JM, de Visser SP, Green AP. Probing Ferryl Reactivity in a Nonheme Iron Oxygenase Using an Expanded Genetic Code. ACS Catal 2024; 14:11584-11590. [PMID: 39114090 PMCID: PMC11301626 DOI: 10.1021/acscatal.4c02365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
The ability to introduce noncanonical amino acids as axial ligands in heme enzymes has provided a powerful experimental tool for studying the structure and reactivity of their FeIV=O ("ferryl") intermediates. Here, we show that a similar approach can be used to perturb the conserved Fe coordination environment of 2-oxoglutarate (2OG) dependent oxygenases, a versatile class of enzymes that employ highly-reactive ferryl intermediates to mediate challenging C-H functionalizations. Replacement of one of the cis-disposed histidine ligands in the oxygenase VioC with a less electron donating N δ-methyl-histidine (MeHis) preserves both catalytic function and reaction selectivity. Significantly, the key ferryl intermediate responsible for C-H activation can be accumulated in both the wildtype and the modified protein. In contrast to heme enzymes, where metal-oxo reactivity is extremely sensitive to the nature of the proximal ligand, the rates of C-H activation and the observed large kinetic isotope effects are only minimally affected by axial ligand replacement in VioC. This study showcases a powerful tool for modulating the coordination sphere of nonheme iron enzymes that will enhance our understanding of the factors governing their divergent activities.
Collapse
Affiliation(s)
- Florence J. Hardy
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Matthew G. Quesne
- Research
Complex at Harwell, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot, Oxon OX11
0FA, U.K.
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Emilie F. Gérard
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jingming Zhao
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Mary Ortmayer
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Christopher J. Taylor
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Hafiz S. Ali
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Jeffrey W. Slater
- Department
of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Colin W. Levy
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Derren J. Heyes
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - J. Martin Bollinger
- Department
of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sam P. de Visser
- Department
of Chemical Engineering & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Anthony P. Green
- Department
of Chemistry & Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
11
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
12
|
Huang H, Yan T, Liu C, Lu Y, Wu Z, Wang X, Wang J. Genetically encoded Nδ-vinyl histidine for the evolution of enzyme catalytic center. Nat Commun 2024; 15:5714. [PMID: 38977701 PMCID: PMC11231154 DOI: 10.1038/s41467-024-50005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Genetic code expansion has emerged as a powerful tool for precisely introducing unnatural chemical structures into proteins to improve their catalytic functions. Given the high catalytic propensity of histidine in the enzyme pocket, increasing the chemical diversity of catalytic histidine could result in new characteristics of biocatalysts. Herein, we report the genetically encoded Nδ-Vinyl Histidine (δVin-H) and achieve the wild-type-like incorporation efficiency by the evolution of pyrrolysyl tRNA synthetase. As histidine usually acts as the nucleophile or the metal ligand in the catalytic center, we replace these two types of catalytic histidine to δVin-H to improve the performance of the histidine-involved catalytic center. Additionally, we further demonstrate the improvements of the hydrolysis activity of a previously reported organocatalytic esterase (the OE1.3 variant) in the acidic condition and myoglobin (Mb) catalyzed carbene transfer reactions under the aerobic condition. As histidine is one of the most frequently used residues in the enzyme catalytic center, the derivatization of the catalytic histidine by δVin-H holds a great potential to promote the performance of biocatalysts.
Collapse
Affiliation(s)
- Haoran Huang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tao Yan
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang Liu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuxiang Lu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhigang Wu
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xingchu Wang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Wang
- Department of Chemistry, Research Center for Chemical Biology and Omics Analysis, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
14
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C Allen
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| |
Collapse
|
15
|
Denijs E, Unal K, Bevernaege K, Kasmi S, De Geest BG, Winne JM. Thermally Triggered Triazolinedione-Tyrosine Bioconjugation with Improved Chemo- and Site-Selectivity. J Am Chem Soc 2024; 146:12672-12680. [PMID: 38683141 DOI: 10.1021/jacs.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A bioconjugation strategy is reported that allows the derivatization of tyrosine side chains through triazolinedione-based "Y-clicking". Blocked triazolinedione reagents were developed that, in contrast to classical triazolinedione reagents, can be purified before use, can be stored for a long time, and allow functionalization with a wider range of cargoes and labels. These reagents are bench-stable at room temperature but steadily release highly reactive triazolinediones upon heating to 40 °C in buffered media at physiological pH, showing a sharp temperature response over the 0 to 40 °C range. This conceptually interesting strategy, which is complementary to existing photo- or electrochemical bioorthogonal bond-forming methods, not only avoids the classical synthesis and handling difficulties of these highly reactive click-like reagents but also markedly improves the selectivity profile of the tyrosine conjugation reaction itself. It avoids oxidative damage and "off-target" tryptophan labeling, and it even improves site-selectivity in discriminating between different tyrosine side chains on the same protein or different polypeptide chains. In this research article, we describe the stepwise development of these reagents, from their short and modular synthesis to small-molecule model bioconjugation studies and proof-of-principle bioorthogonal chemistry on peptides and proteins.
Collapse
Affiliation(s)
- Elias Denijs
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kamil Unal
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Kevin Bevernaege
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Sabah Kasmi
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
17
|
Hutton AE, Foster J, Crawshaw R, Hardy FJ, Johannissen LO, Lister TM, Gérard EF, Birch-Price Z, Obexer R, Hay S, Green AP. A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme. Nat Commun 2024; 15:1956. [PMID: 38438341 PMCID: PMC10912507 DOI: 10.1038/s41467-024-46123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Directed evolution of computationally designed enzymes has provided new insights into the emergence of sophisticated catalytic sites in proteins. In this regard, we have recently shown that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita-Baylis-Hillman (MBH) reaction with unrivalled efficiency. Here, we show that replacing the catalytic histidine with a non-canonical Nδ-methylhistidine (MeHis23) nucleophile leads to a substantially altered evolutionary outcome in which the catalytic Arg124 has been abandoned. Instead, Glu26 has emerged, which mediates a rate-limiting proton transfer step to deliver an enzyme (BHMeHis1.8) that is more than an order of magnitude more active than our earlier MBHase. Interestingly, although MeHis23 to His substitution in BHMeHis1.8 reduces activity by 4-fold, the resulting His containing variant is still a potent MBH biocatalyst. However, analysis of the BHMeHis1.8 evolutionary trajectory reveals that the MeHis nucleophile was crucial in the early stages of engineering to unlock the new mechanistic pathway. This study demonstrates how even subtle perturbations to key catalytic elements of designed enzymes can lead to vastly different evolutionary outcomes, resulting in new mechanistic solutions to complex chemical transformations.
Collapse
Affiliation(s)
- Amy E Hutton
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Jake Foster
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Rebecca Crawshaw
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Florence J Hardy
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Thomas M Lister
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Emilie F Gérard
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Zachary Birch-Price
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Richard Obexer
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK.
| |
Collapse
|
18
|
Krueger TD, Henderson JN, Breen IL, Zhu L, Wachter RM, Mills JH, Fang C. Capturing excited-state structural snapshots of evolutionary green-to-red photochromic fluorescent proteins. Front Chem 2023; 11:1328081. [PMID: 38144887 PMCID: PMC10748491 DOI: 10.3389/fchem.2023.1328081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
Photochromic fluorescent proteins (FPs) have proved to be indispensable luminous probes for sophisticated and advanced bioimaging techniques. Among them, an interplay between photoswitching and photoconversion has only been observed in a limited subset of Kaede-like FPs that show potential for discovering the key mechanistic steps during green-to-red photoconversion. Various spectroscopic techniques including femtosecond stimulated Raman spectroscopy (FSRS), X-ray crystallography, and femtosecond transient absorption were employed on a set of five related FPs with varying photoconversion and photoswitching efficiencies. A 3-methyl-histidine chromophore derivative, incorporated through amber suppression using orthogonal aminoacyl tRNA synthetase/tRNA pairs, displays more dynamic photoswitching but greatly reduced photoconversion versus the least-evolved ancestor (LEA). Excitation-dependent measurements of the green anionic chromophore reveal that the varying photoswitching efficiencies arise from both the initial transient dynamics of the bright cis state and the final trans-like photoswitched off state, with an exocyclic bridge H-rocking motion playing an active role during the excited-state energy dissipation. This investigation establishes a close-knit feedback loop between spectroscopic characterization and protein engineering, which may be especially beneficial to develop more versatile FPs with targeted mutations and enhanced functionalities, such as photoconvertible FPs that also feature photoswitching properties.
Collapse
Affiliation(s)
- Taylor D. Krueger
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - J. Nathan Henderson
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Isabella L. Breen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Rebekka M. Wachter
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Jeremy H. Mills
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
19
|
Taylor CJ, Hardy FJ, Burke AJ, Bednar RM, Mehl RA, Green AP, Lovelock SL. Engineering mutually orthogonal PylRS/tRNA pairs for dual encoding of functional histidine analogues. Protein Sci 2023; 32:e4640. [PMID: 37051694 PMCID: PMC10127257 DOI: 10.1002/pro.4640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
The availability of an expanded genetic code opens exciting new opportunities in enzyme design and engineering. In this regard histidine analogues have proven particularly versatile, serving as ligands to augment metalloenzyme function and as catalytic nucleophiles in designed enzymes. The ability to genetically encode multiple functional residues could greatly expand the range of chemistry accessible within enzyme active sites. Here, we develop mutually orthogonal translation components to selectively encode two structurally similar histidine analogues. Transplanting known mutations from a promiscuous Methanosarcina mazei pyrrolysyl-tRNA synthetase (MmPylRSIFGFF ) into a single domain PylRS from Methanomethylophilus alvus (MaPylRSIFGFF ) provided a variant with improved efficiency and specificity for 3-methyl-L-histidine (MeHis) incorporation. The MaPylRSIFGFF clone was further characterized using in vitro biochemical assays and x-ray crystallography. We subsequently engineered the orthogonal MmPylRS for activity and selectivity for 3-(3-pyridyl)-L-alanine (3-Pyr), which was used in combination with MaPylRSIFGFF to produce proteins containing both 3-Pyr and MeHis. Given the versatile roles played by histidine in enzyme mechanisms, we anticipate that the tools developed within this study will underpin the development of enzymes with new and enhanced functions.
Collapse
Affiliation(s)
- Christopher J. Taylor
- Manchester Institute of Biotechnology, School of Chemistry, University of ManchesterManchesterUK
| | - Florence J. Hardy
- Manchester Institute of Biotechnology, School of Chemistry, University of ManchesterManchesterUK
| | - Ashleigh J. Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of ManchesterManchesterUK
| | - Riley M. Bednar
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Ryan A. Mehl
- Department of Biochemistry and BiophysicsOregon State UniversityCorvallisOregonUSA
| | - Anthony P. Green
- Manchester Institute of Biotechnology, School of Chemistry, University of ManchesterManchesterUK
| | - Sarah L. Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of ManchesterManchesterUK
| |
Collapse
|
20
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
21
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
22
|
Birch-Price Z, Taylor CJ, Ortmayer M, Green AP. Engineering enzyme activity using an expanded amino acid alphabet. Protein Eng Des Sel 2022; 36:6825271. [PMID: 36370045 PMCID: PMC9863031 DOI: 10.1093/protein/gzac013] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022] Open
Abstract
Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.
Collapse
Affiliation(s)
- Zachary Birch-Price
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Christopher J Taylor
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Mary Ortmayer
- School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | | |
Collapse
|
23
|
Engineering of enzymes using non-natural amino acids. Biosci Rep 2022; 42:231590. [PMID: 35856922 PMCID: PMC9366748 DOI: 10.1042/bsr20220168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In enzyme engineering, the main targets for enhancing properties are enzyme activity, stereoselective specificity, stability, substrate range, and the development of unique functions. With the advent of genetic code extension technology, non-natural amino acids (nnAAs) are able to be incorporated into proteins in a site-specific or residue-specific manner, which breaks the limit of 20 natural amino acids for protein engineering. Benefitting from this approach, numerous enzymes have been engineered with nnAAs for improved properties or extended functionality. In this review, we focus on applications and strategies for using nnAAs in enzyme engineering. Notably, approaches to computational modelling of enzymes with nnAAs are also addressed. Finally, we discuss the bottlenecks that currently need to be addressed in order to realise the broader prospects of this genetic code extension technique.
Collapse
|
24
|
Maas MN, Hintzen JCJ, Mecinović J. Probing lysine posttranslational modifications by unnatural amino acids. Chem Commun (Camb) 2022; 58:7216-7231. [PMID: 35678513 DOI: 10.1039/d2cc00708h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Posttranslational modifications, typically small chemical tags attached on amino acids following protein biosynthesis, have a profound effect on protein structure and function. Numerous chemically and structurally diverse posttranslational modifications, including methylation, acetylation, hydroxylation, and ubiquitination, have been identified and characterised on lysine residues in proteins. In this feature article, we focus on chemical tools that rely on the site-specific incorporation of unnatural amino acids into peptides and proteins to probe posttranslational modifications of lysine. We highlight that simple amino acid mimics enable detailed mechanistic and functional assignment of enzymes that install and remove such modifications, and proteins that specifically recognise lysine posttranslational modifications.
Collapse
Affiliation(s)
- Marijn N Maas
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jordi C J Hintzen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| |
Collapse
|
25
|
Yu Y, Marshall NM, Garner DK, Nilges MJ, Lu Y. Tuning reduction potentials of type 1 copper center in azurin by replacing a histidine ligand with its isostructural analogues. J Inorg Biochem 2022; 234:111863. [DOI: 10.1016/j.jinorgbio.2022.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
|
26
|
Hintzen JCJ, Ma H, Deng H, Witecka A, Andersen SB, Drozak J, Guo H, Qian P, Li H, Mecinović J. Histidine methyltransferase SETD3 methylates structurally diverse histidine mimics in actin. Protein Sci 2022; 31:e4305. [PMID: 35481649 PMCID: PMC9004244 DOI: 10.1002/pro.4305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/05/2023]
Abstract
Actin histidine Nτ -methylation by histidine methyltransferase SETD3 plays an important role in human biology and diseases. Here, we report integrated synthetic, biocatalytic, biostructural, and computational analyses on human SETD3-catalyzed methylation of actin peptides possessing histidine and its structurally and chemically diverse mimics. Our enzyme assays supported by biostructural analyses demonstrate that SETD3 has a broader substrate scope beyond histidine, including N-nucleophiles on the aromatic and aliphatic side chains. Quantum mechanical/molecular mechanical molecular dynamics and free-energy simulations provide insight into binding geometries and the free energy barrier for the enzymatic methyl transfer to histidine mimics, further supporting experimental data that histidine is the superior SETD3 substrate over its analogs. This work demonstrates that human SETD3 has a potential to catalyze efficient methylation of several histidine mimics, overall providing mechanistic, biocatalytic, and functional insight into actin histidine methylation by SETD3.
Collapse
Affiliation(s)
- Jordi C. J. Hintzen
- Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Huida Ma
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
| | - Hao Deng
- Chemistry and Materials Science FacultyShandong Agricultural UniversityTai'anShandongChina
| | - Apolonia Witecka
- Department of Metabolic Regulation, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Steffen B. Andersen
- Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| | - Jakub Drozak
- Department of Metabolic Regulation, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
- UT/ORNL Center for Molecular BiophysicsOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Ping Qian
- Chemistry and Materials Science FacultyShandong Agricultural UniversityTai'anShandongChina
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Medicine, Tsinghua‐Peking Center for Life SciencesTsinghua UniversityBeijingChina
| | - Jasmin Mecinović
- Department of Physics, Chemistry and PharmacyUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
27
|
Koch NG, Baumann T, Budisa N. Efficient Unnatural Protein Production by Pyrrolysyl-tRNA Synthetase With Genetically Fused Solubility Tags. Front Bioeng Biotechnol 2022; 9:807438. [PMID: 35284428 PMCID: PMC8905625 DOI: 10.3389/fbioe.2021.807438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Abstract
Introducing non-canonical amino acids (ncAAs) by engineered orthogonal pairs of aminoacyl-tRNA synthetases and tRNAs has proven to be a highly useful tool for the expansion of the genetic code. Pyrrolysyl-tRNA synthetase (PylRS) from methanogenic archaeal and bacterial species is particularly attractive due to its natural orthogonal reactivity in bacterial and eukaryotic cells. However, the scope of such a reprogrammed translation is often limited, due to low yields of chemically modified target protein. This can be the result of substrate specificity engineering, which decreases the aminoacyl-tRNA synthetase stability and reduces the abundance of active enzyme. We show that the solubility and folding of these engineered enzymes can become a bottleneck for the production of ncAA-containing proteins in vivo. Solubility tags derived from various species provide a strategy to remedy this issue. We find the N-terminal fusion of the small metal binding protein from Nitrosomonas europaea to the PylRS sequence to improve enzyme solubility and to boost orthogonal translation efficiency. Our strategy enhances the production of site-specifically labelled proteins with a variety of engineered PylRS variants by 200–540%, and further allows triple labeling. Even the wild-type enzyme gains up to 245% efficiency for established ncAA substrates.
Collapse
Affiliation(s)
- Nikolaj G Koch
- Biokatalyse, Institut für Chemie, Technische Universität Berlin, Berlin, Germany.,Bioanalytik, Institut für Biotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Tobias Baumann
- Biokatalyse, Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Nediljko Budisa
- Biokatalyse, Institut für Chemie, Technische Universität Berlin, Berlin, Germany.,Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
28
|
Applications of genetic code expansion in studying protein post-translational modification. J Mol Biol 2021; 434:167424. [PMID: 34971673 DOI: 10.1016/j.jmb.2021.167424] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/18/2023]
Abstract
Various post-translational modifications can naturally occur on proteins, regulating the activity, subcellular localization, interaction, or stability of the proteins. However, it can be challenging to decipher the biological implication or physiological roles of site-specific modifications due to their dynamic and sub-stoichiometric nature. Genetic code expansion method, relying on an orthogonal aminoacyl-tRNA synthetase/tRNA pair, enables site-specific incorporation of non-canonical amino acids. Here we focus on the application of genetic code expansion to study site-specific protein post-translational modification in vitro and in vivo. After a brief introduction, we discuss possibilities of incorporating non-canonical amino acids containing post-translational modifications or their mimics into target proteins. This approach is applicable for Ser/Thr/Tyr phosphorylation, Tyr sulfation and nitration, Lys acetylation and acylation, Lys/His mono-methylation, as well as Arg citrullination. The next section describes the use of a precursor non-canonical amino acid followed by chemical and/or enzymatic reactions to afford the desired modification, such as Cys/Lys acylation, ubiquitin and ubiquitin-like modifications, as well as Lys/Gln methylation. We also discuss means for functional regulation of enzymes involving in post-translational modifications through genetically incorporated non-canonical amino acids. Lastly, the limitations and perspectives of genetic code expansion in studying protein post-translational modification are described.
Collapse
|
29
|
Wang YH, Jian ML, Chen PJ, Tsou JC, Truong LP, Wang YS. Ferritin Conjugates With Multiple Clickable Amino Acids Encoded by C-Terminal Engineered Pyrrolysyl-tRNA Synthetase. Front Chem 2021; 9:779976. [PMID: 34900939 PMCID: PMC8655692 DOI: 10.3389/fchem.2021.779976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
This study reports the application of expanding genetic codes in developing protein cage-based delivery systems. The evolved Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)•tRNAPyl pairs derived from directed evolution are examined to probe their recognition for para-substituted phenylalanine analogs. The evolved MmPylRS, AzFRS, harboring a wide range of substrates, is further engineered at the C-terminal region into another variant, AzFRS-MS. AzFRS-MS shows suppression of the elevated sfGFP protein amount up to 10 TAG stop codons when charging p-azido-l-phenylalanine (AzF, 4), which allows the occurrence of click chemistry. Since protein nanocages used as drug delivery systems that encompass multiple drugs through a site-specific loading approach remain largely unexplored, as a proof of concept, the application of AzFRS-MS for the site-specific incorporation of AzF on human heavy chain ferritin (Ftn) is developed. The Ftn-4 conjugate is shown to be able to load multiple fluorescence dyes or a therapeutic agent, doxorubicin (Dox), through the strain-promoted azide-alkyne cycloaddition (SPAAC) click reaction. Aiming to selectively target Her2+ breast cancer cells, Ftn-4-DOX conjugates fused with a HER2 receptor recognition peptide, anti-Her2/neu peptide (AHNP), is developed and demonstrated to be able to deliver Dox into the cell and to prolong the drug release. This work presents another application of evolved MmPylRS systems, whose potential in developing a variety of protein conjugates is noteworthy.
Collapse
Affiliation(s)
- Yi-Hui Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mu-Lung Jian
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Jung Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Le P Truong
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
30
|
Koch NG, Goettig P, Rappsilber J, Budisa N. Engineering Pyrrolysyl-tRNA Synthetase for the Incorporation of Non-Canonical Amino Acids with Smaller Side Chains. Int J Mol Sci 2021; 22:11194. [PMID: 34681855 PMCID: PMC8538471 DOI: 10.3390/ijms222011194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
Site-specific incorporation of non-canonical amino acids (ncAAs) into proteins has emerged as a universal tool for systems bioengineering at the interface of chemistry, biology, and technology. The diversification of the repertoire of the genetic code has been achieved for amino acids with long and/or bulky side chains equipped with various bioorthogonal tags and useful spectral probes. Although ncAAs with relatively small side chains and similar properties are of great interest to biophysics, cell biology, and biomaterial science, they can rarely be incorporated into proteins. To address this gap, we report the engineering of PylRS variants capable of incorporating an entire library of aliphatic "small-tag" ncAAs. In particular, we performed mutational studies of a specific PylRS, designed to incorporate the shortest non-bulky ncAA (S-allyl-l-cysteine) possible to date and based on this knowledge incorporated aliphatic ncAA derivatives. In this way, we have not only increased the number of translationally active "small-tag" ncAAs, but also determined key residues responsible for maintaining orthogonality, while engineering the PylRS for these interesting substrates. Based on the known plasticity of PylRS toward different substrates, our approach further expands the reassignment capacities of this enzyme toward aliphatic amino acids with smaller side chains endowed with valuable functionalities.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany;
- Institut für Biotechnologie-Bioanalytik, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Peter Goettig
- Structural Biology Group, Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria;
| | - Juri Rappsilber
- Institut für Biotechnologie-Bioanalytik, Technische Universität Berlin, 10623 Berlin, Germany;
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Nediljko Budisa
- Institut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
31
|
Pott M, Tinzl M, Hayashi T, Ota Y, Dunkelmann D, Mittl PRE, Hilvert D. Noncanonical Heme Ligands Steer Carbene Transfer Reactivity in an Artificial Metalloenzyme*. Angew Chem Int Ed Engl 2021; 60:15063-15068. [PMID: 33880851 DOI: 10.1002/anie.202103437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 11/06/2022]
Abstract
Changing the primary metal coordination sphere is a powerful strategy for tuning metalloprotein properties. Here we used amber stop codon suppression with engineered pyrrolysyl-tRNA synthetases, including two newly evolved enzymes, to replace the proximal histidine in myoglobin with Nδ -methylhistidine, 5-thiazoylalanine, 4-thiazoylalanine and 3-(3-thienyl)alanine. In addition to tuning the heme redox potential over a >200 mV range, these noncanonical ligands modulate the protein's carbene transfer activity with ethyl diazoacetate. Variants with increased reduction potential proved superior for cyclopropanation and N-H insertion, whereas variants with reduced Eo values gave higher S-H insertion activity. Given the functional importance of histidine in many enzymes, these genetically encoded analogues could be valuable tools for probing mechanism and enabling new chemistries.
Collapse
Affiliation(s)
- Moritz Pott
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Matthias Tinzl
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Yusuke Ota
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniel Dunkelmann
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zürich, 8057, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
32
|
Pott M, Tinzl M, Hayashi T, Ota Y, Dunkelmann D, Mittl PRE, Hilvert D. Noncanonical Heme Ligands Steer Carbene Transfer Reactivity in an Artificial Metalloenzyme**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Moritz Pott
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Matthias Tinzl
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Takahiro Hayashi
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Yusuke Ota
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | | | - Peer R. E. Mittl
- Department of Biochemistry University of Zürich 8057 Zürich Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
33
|
Zhao Q, Guo G, Zhu W, Zhu L, Da Y, Han Y, Xu H, Wu S, Cheng Y, Zhou Y, Cai X, Jiang X. Suzuki Cross-Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry 2020; 26:15938-15943. [PMID: 32776653 DOI: 10.1002/chem.202002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Indexed: 11/09/2022]
Abstract
A palladium-catalyzed cross-coupling reaction with aryl halide functionalities has recently emerged as a valuable tool for protein modification. Herein, a new fluorogenic modification methodology for proteins, with genetically encoded fluorosulfate-l-tyrosine, which exhibits high efficiency and biocompatibility in bacterial cells as well as in aqueous medium, is described. Furthermore, the cross-coupling of 4-cyanophenylboronic acid on green fluorescent protein was shown to possess a unique fluorogenic property, which could open up the possibility of a responsive "off/on" switch with great potential to enable spectroscopic imaging of proteins with minimal background noise. Taken together, a convenient and efficient catalytic system has been developed that may provide broad utilities in protein visualization and live-cell imaging.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Guoying Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Liping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Yifan Da
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Ying Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Shuohan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yaping Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yani Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
34
|
Tang J, Yu C, Loredo A, Chen Y, Xiao H. Site-Specific Incorporation of a Photoactivatable Fluorescent Amino Acid. Chembiochem 2020; 22:501-504. [PMID: 32961013 DOI: 10.1002/cbic.202000602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Photoactivatable fluorophores are emerging optical probes for biological applications. Most photoactivatable fluorophores are relatively large in size and need to be activated by ultraviolet light; this dramatically limits their applications. To introduce photoactivatable fluorophores into proteins, recent investigations have explored several protein-labeling technologies, including fluorescein arsenical hairpin (FlAsH) Tag, HaloTag labeling, SNAPTag labeling, and other bioorthogonal chemistry-based methods. However, these technologies require a multistep labeling process. Here, by using genetic code expansion and a single sulfur-for-oxygen atom replacement within an existing fluorescent amino acid, we have site-specifically incorporated the photoactivatable fluorescent amino acid thioacridonylalanine (SAcd) into proteins in a single step. Moreover, upon exposure to visible light, SAcd can be efficiently desulfurized to its oxo derivatives, thus restoring the strong fluorescence of labeled proteins.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Chenfei Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
35
|
Gang D, Park HS. Noncanonical Amino Acids in Synthetic Biosafety and Post-translational Modification Studies. Chembiochem 2020; 22:460-468. [PMID: 32794239 DOI: 10.1002/cbic.202000437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022]
Abstract
The incorporation of noncanonical amino acids (ncAAs) has been extensively studied because of its broad applicability. In the past decades, various in vitro and in vivo ncAA incorporation approaches have been developed to generate synthetic recombinant proteins. Herein, we discuss the methodologies for ncAA incorporation, and their use in diverse research areas, such as in synthetic biosafety and for studies of post-translational modifications.
Collapse
Affiliation(s)
- Donghyeok Gang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 341418, Korea
| |
Collapse
|
36
|
Tinzl M, Hilvert D. Trapping Transient Protein Species by Genetic Code Expansion. Chembiochem 2020; 22:92-99. [PMID: 32810341 DOI: 10.1002/cbic.202000523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Nature employs a limited number of genetically encoded amino acids for the construction of functional proteins. By engineering components of the cellular translation machinery, however, it is now possible to genetically encode noncanonical building blocks with tailored electronic and structural properties. The ability to incorporate unique chemical functionality into proteins provides a powerful tool to probe mechanism and create novel function. In this minireview, we highlight several recent studies that illustrate how noncanonical amino acids have been used to capture and characterize reactive intermediates, fine-tune the catalytic properties of enzymes, and stabilize short-lived protein-protein complexes.
Collapse
Affiliation(s)
- Matthias Tinzl
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| |
Collapse
|
37
|
Chen Y, Tang J, Wang L, Tian Z, Cardenas A, Fang X, Chatterjee A, Xiao H. Creation of Bacterial cells with 5-Hydroxytryptophan as a 21 st Amino Acid Building Block. Chem 2020; 6:2717-2727. [PMID: 33102928 DOI: 10.1016/j.chempr.2020.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While most organisms utilize 20 canonical amino acid building blocks for protein synthesis, adding additional candidates to the amino acid repertoire can greatly facilitate the investigation and manipulation of protein structures and functions. In this study, we report the generation of completely autonomous organisms with a 21st ncAA, 5-hydroxytryptophan (5HTP). Like 20 canonical amino acids, 5-hydroxytryptophan can be biosynthesized in vivo from simple carbon sources and is subsequently incorporated into proteins in response to the amber stop codon. Using this unnatural organism, we have prepared a single-chain immunoglobulin variable fragment conjugated with a fluorophore and demonstrated the utility of these autonomous cells to monitor oxidative stress. Creation of this and other cells containing the 21st amino acid will provide an opportunity to generate proteins and organisms with novel activities, as well as to determine the evolutionary consequences of using additional amino acid buildings.
Collapse
Affiliation(s)
- Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Lushun Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Zeru Tian
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Adam Cardenas
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Xinlei Fang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA, 02467, U.S.A
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas, 77005. U.S.A.,Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas, 77005, U.S.A.,Lead Contact
| |
Collapse
|
38
|
Carminati DM, Moore EJ, Fasan R. Strategies for the expression and characterization of artificial myoglobin-based carbene transferases. Methods Enzymol 2020; 644:35-61. [PMID: 32943150 DOI: 10.1016/bs.mie.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myoglobin has recently emerged as a versatile metalloprotein scaffold for the design of efficient and selective biocatalysts for abiological carbene transfer reactions, including asymmetric cyclopropanation reactions. Over the past few years, our group has explored several strategies to modulate the carbene transfer reactivity of myoglobin-based catalysts, including the substitution of the native heme cofactor and conserved histidine axial ligand with non-native porphynoid ligands and alternative natural and unnatural amino acids as the metal-coordinating ligands, respectively. Herein, we report protocols for the generation and reconstitution in vitro and in vivo of myoglobin-based artificial carbene transferases incorporating non-native iron-porphynoid cofactors, also in combination with unnatural amino acids as the proximal ligand. These strategies are effective for imparting these myoglobin-based cyclopropanation biocatalysts with altered and improved function, including tolerance to aerobic conditions and improved reactivity toward electrondeficient olefins.
Collapse
Affiliation(s)
- Daniela M Carminati
- Department of Chemistry, University of Rochester, Rochester, NY, United States
| | - Eric J Moore
- Department of Chemistry, University of Rochester, Rochester, NY, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
39
|
Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Front Bioeng Biotechnol 2020; 8:863. [PMID: 32793583 PMCID: PMC7387428 DOI: 10.3389/fbioe.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has emerged as a novel protein expression platform. Especially the incorporation of non-canonical amino acids (ncAAs) has led to the development of numerous flexible methods for efficient and extensive expression of artificial proteins. Approaches were developed to eliminate the endogenous competition for ncAAs and engineer translation factors, which significantly enhanced the incorporation efficiency. Furthermore, in vitro aminoacylation methods can be conveniently combined with cell-free systems, extensively expanding the available ncAAs with novel and unique moieties. In this review, we summarize the recent progresses on the efficient and extensive incorporation of ncAAs by different strategies based on the elimination of competition by endogenous factors, translation factors engineering and extensive incorporation of novel ncAAs coupled with in vitro aminoacylation methods in CFPS. We also aim to offer new ideas to researchers working on ncAA incorporation techniques in CFPS and applications in various emerging fields.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiangrong Shu
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
40
|
Wróblewska A, Śniechowska J, Kaźmierski S, Wielgus E, Bujacz GD, Mlostoń G, Chworos A, Suwara J, Potrzebowski MJ. Application of 1-Hydroxy-4,5-Dimethyl-Imidazole 3-Oxide as Coformer in Formation of Pharmaceutical Cocrystals. Pharmaceutics 2020; 12:pharmaceutics12040359. [PMID: 32326428 PMCID: PMC7238160 DOI: 10.3390/pharmaceutics12040359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
Two, well defined binary crystals with 1-Hydroxy-4,5-Dimethyl-Imidazole 3-Oxide (HIMO) as coformer and thiobarbituric acid (TBA) as well barbituric acid (BA) as Active Pharmaceutical Ingredients (APIs) were obtained by cocrystallization (from methanol) or mechanochemically by grinding. The progress of cocrystal formation in a ball mill was monitored by means of high-resolution, solid state NMR spectroscopy. The 13C CP/MAS, 15N CP/MAS and 1H Very Fast (VF) MAS NMR procedures were employed to inspect the tautomeric forms of the APIs, structure elucidation of the coformer and the obtained cocrystals. Single crystal X-ray studies allowed us to define the molecular structure and crystal packing for the coformer as well as the TBA/HIMO and BA/HIMO cocrystals. The intermolecular hydrogen bonding, π-π interactions and CH-π contacts responsible for higher order organization of supramolecular structures were determined. Biological studies of HIMO and the obtained cocrystals suggest that these complexes are not cytotoxic and can potentially be considered as therapeutic materials.
Collapse
Affiliation(s)
- Aneta Wróblewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.W.); (J.Ś.); (S.K.); (E.W.); (A.C.); (J.S.)
| | - Justyna Śniechowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.W.); (J.Ś.); (S.K.); (E.W.); (A.C.); (J.S.)
| | - Sławomir Kaźmierski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.W.); (J.Ś.); (S.K.); (E.W.); (A.C.); (J.S.)
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.W.); (J.Ś.); (S.K.); (E.W.); (A.C.); (J.S.)
| | - Grzegorz D. Bujacz
- Institute of Technical Biochemistry, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz, Poland;
| | - Grzegorz Mlostoń
- Department of Organic and Applied Chemistry, University of Lodz, Tamka 12, 91-403 Lodz, Poland;
| | - Arkadiusz Chworos
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.W.); (J.Ś.); (S.K.); (E.W.); (A.C.); (J.S.)
| | - Justyna Suwara
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.W.); (J.Ś.); (S.K.); (E.W.); (A.C.); (J.S.)
| | - Marek J. Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (A.W.); (J.Ś.); (S.K.); (E.W.); (A.C.); (J.S.)
- Correspondence: ; Tel.: +48-42-680-3240
| |
Collapse
|
41
|
Jiang HK, Lee MN, Tsou JC, Chang KW, Tseng HW, Chen KP, Li YK, Wang YS. Linker and N-Terminal Domain Engineering of Pyrrolysyl-tRNA Synthetase for Substrate Range Shifting and Activity Enhancement. Front Bioeng Biotechnol 2020; 8:235. [PMID: 32322577 PMCID: PMC7156790 DOI: 10.3389/fbioe.2020.00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
The Methanosarcina mazei pyrrolysyl-tRNA synthetase (PylRS)⋅tRNAPyl pair can be used to incorporate non-canonical amino acids (ncAAs) into proteins at installed amber stop codons. Although engineering of the PylRS active site generates diverse binding pockets, the substrate ranges are found similar in charging lysine and phenylalanine analogs. To expand the diversity of the ncAA side chains that can be incorporated via the PylRS⋅tRNAPyl pair, exploring remote interactions beyond the active site is an emerging approach in expanding the genetic code research. In this work, remote interactions between tRNAPyl, the tRNA binding domain of PylRS, and/or an introduced non-structured linker between the N- and C-terminus of PylRS were studied. The substrate range of the PylRS⋅tRNAPyl pair was visualized by producing sfGFP-UAG gene products, which also indicated amber suppression efficiencies and substrate specificity. The unstructured loop linking the N-terminal and C-terminal domains (CTDs) of PylRS has been suggested to regulate the interaction between PylRS and tRNAPyl. In exploring the detailed role of the loop region, different lengths of the linker were inserted into the junction between the N-terminal and the C-terminal domains of PylRS to unearth the impact on remote effects. Our findings suggest that the insertion of a moderate-length linker tunes the interface between PylRS and tRNAPyl and subsequently leads to improved suppression efficiencies. The suppression activity and the substrate specificity of PylRS were altered by introducing three mutations at or near the N-terminal domain of PylRS (N-PylRS). Using a N-PylRS⋅tRNAPyl pair, three ncAA substrates, two S-benzyl cysteine and a histidine analog, were incorporated into the protein site specifically.
Collapse
Affiliation(s)
- Han-Kai Jiang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Man-Nee Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jo-Chu Tsou
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuan-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Wei Tseng
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Kuang-Po Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | - Yane-Shih Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
42
|
Ortmayer M, Fisher K, Basran J, Wolde-Michael EM, Heyes DJ, Levy C, Lovelock SL, Anderson JLR, Raven EL, Hay S, Rigby SEJ, Green AP. Rewiring the "Push-Pull" Catalytic Machinery of a Heme Enzyme Using an Expanded Genetic Code. ACS Catal 2020; 10:2735-2746. [PMID: 32550044 PMCID: PMC7273622 DOI: 10.1021/acscatal.9b05129] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/22/2020] [Indexed: 01/14/2023]
Abstract
![]()
Nature
employs a limited number of genetically encoded axial ligands
to control diverse heme enzyme activities. Deciphering the functional
significance of these ligands requires a quantitative understanding of how their electron-donating
capabilities modulate the structures and reactivities of the iconic
ferryl intermediates compounds I and II. However, probing these relationships
experimentally has proven to be challenging as ligand substitutions
accessible via conventional mutagenesis do not allow fine tuning of
electron donation and typically abolish catalytic function. Here,
we exploit engineered translation components to replace the histidine
ligand of cytochrome c peroxidase (CcP) by a less electron-donating Nδ-methyl histidine (Me-His) with little effect on the enzyme structure.
The rate of formation (k1) and the reactivity
(k2) of compound I are unaffected by ligand
substitution. In contrast, proton-coupled electron transfer to compound
II (k3) is 10-fold slower in CcP Me-His, providing a direct link between electron donation
and compound II reactivity, which can be explained by weaker electron
donation from the Me-His ligand (“the push”) affording
an electron-deficient ferryl oxygen with reduced proton affinity (“the
pull”). The deleterious effects of the Me-His ligand can be
fully compensated by introducing a W51F mutation designed to increase
“the pull” by removing a hydrogen bond to the ferryl
oxygen. Analogous substitutions in ascorbate peroxidase lead to similar
activity trends to those observed in CcP, suggesting
that a common mechanistic strategy is employed by enzymes using distinct
electron transfer pathways. Our study highlights how noncanonical
active site substitutions can be used to directly probe and deconstruct
highly evolved bioinorganic mechanisms.
Collapse
Affiliation(s)
- Mary Ortmayer
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Karl Fisher
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Emmanuel M. Wolde-Michael
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Derren J. Heyes
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Sarah L. Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - J. L. Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Emma L. Raven
- School of Chemistry, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Sam Hay
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Anthony P. Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
43
|
Chen Y, Wu KL, Tang J, Loredo A, Clements J, Pei J, Peng Z, Gupta R, Fang X, Xiao H. Addition of Isocyanide-Containing Amino Acids to the Genetic Code for Protein Labeling and Activation. ACS Chem Biol 2019; 14:2793-2799. [PMID: 31682403 DOI: 10.1021/acschembio.9b00678] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific introduction of bioorthogonal handles into biomolecules provides powerful tools for studying and manipulating the structures and functions of proteins. Recent advances in bioorthogonal chemistry demonstrate that tetrazine-based bioorthogonal cycloaddition is a particularly useful methodology due to its high reactivity, biological selectivity, and turn-on property for fluorescence imaging. Despite its broad applications in protein labeling and imaging, utilization of tetrazine-based bioorthogonal cycloaddition has been limited to date by the requirement of a hydrophobic strained alkene reactive moiety. Circumventing this structural requirement, we report the site-specific incorporation of noncanonical amino acids (ncAAs) with a small isocyanide (or isonitrile) group into proteins in both bacterial and mammalian cells. We showed that under physiological conditions and in the absence of a catalyst these isocyanide-containing ncAAs could react selectively with tetrazine molecules via [4 + 1]-cycloaddition, thus providing a versatile bioorthogonal handle for site-specific protein labeling and protein decaging. Significantly, these bioorthogonal reactions between isocyanides and tetrazines also provide a unique mechanism for the activation of tetrazine-quenched fluorophores. The addition of these isocyanide-containing ncAAs to the list of 20 commonly used, naturally occurring amino acids expands our repertoire of reagents for bioorthogonal chemistry, therefore enabling new biological applications ranging from protein labeling and imaging studies to the chemical activation of proteins.
Collapse
Affiliation(s)
- Yuda Chen
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Kuan-Lin Wu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Juan Tang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Axel Loredo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jordan Clements
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jingqi Pei
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zane Peng
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ruchi Gupta
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Xinlei Fang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
44
|
Carminati DM, Fasan R. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. ACS Catal 2019; 9:9683-9697. [PMID: 32257582 DOI: 10.1021/acscatal.9b02272] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Engineered myoglobins and other hemoproteins have recently emerged as promising catalysts for asymmetric olefin cyclopropanation reactions via carbene transfer chemistry. Despite this progress, the transformation of electron-poor alkenes has proven very challenging using these systems. Here, we describe the design of a myoglobin-based carbene transferase incorporating a non-native iron-porphyrin cofactor and axial ligand, as an efficient catalyst for the asymmetric cyclopropanation of electron-deficient alkenes. Using this metalloenzyme, a broad range of both electron-rich and electron-deficient alkenes are cyclopropanated with high efficiency and high diastereo- and enantioselectivity (up to >99% de and ee). Mechanistic studies revealed that the expanded reaction scope of this carbene transferase is dependent upon the acquisition of metallocarbene radical reactivity as a result of the reconfigured coordination environment around the metal center. The radical-based reactivity of this system diverges from the electrophilic reactivity of myoglobin and most of known organometallic carbene transfer catalysts. This work showcases the value of cofactor redesign toward tuning and expanding the reactivity of metalloproteins in abiological reactions and it provides a biocatalytic solution to the asymmetric cyclopropanation of electrodeficient alkenes. The metallocarbene radical reactivity exhibited by this biocatalyst is anticipated to prove useful in the context of a variety of other synthetic transformations.
Collapse
Affiliation(s)
- Daniela M. Carminati
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
45
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
46
|
Burke AJ, Lovelock SL, Frese A, Crawshaw R, Ortmayer M, Dunstan M, Levy C, Green AP. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 2019; 570:219-223. [PMID: 31132786 DOI: 10.1038/s41586-019-1262-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/13/2019] [Indexed: 11/09/2022]
Abstract
The combination of computational design and laboratory evolution is a powerful and potentially versatile strategy for the development of enzymes with new functions1-4. However, the limited functionality presented by the genetic code restricts the range of catalytic mechanisms that are accessible in designed active sites. Inspired by mechanistic strategies from small-molecule organocatalysis5, here we report the generation of a hydrolytic enzyme that uses Nδ-methylhistidine as a non-canonical catalytic nucleophile. Histidine methylation is essential for catalytic function because it prevents the formation of unreactive acyl-enzyme intermediates, which has been a long-standing challenge when using canonical nucleophiles in enzyme design6-10. Enzyme performance was optimized using directed evolution protocols adapted to an expanded genetic code, affording a biocatalyst capable of accelerating ester hydrolysis with greater than 9,000-fold increased efficiency over free Nδ-methylhistidine in solution. Crystallographic snapshots along the evolutionary trajectory highlight the catalytic devices that are responsible for this increase in efficiency. Nδ-methylhistidine can be considered to be a genetically encodable surrogate of the widely employed nucleophilic catalyst dimethylaminopyridine11, and its use will create opportunities to design and engineer enzymes for a wealth of valuable chemical transformations.
Collapse
Affiliation(s)
- Ashleigh J Burke
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Sarah L Lovelock
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Amina Frese
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Rebecca Crawshaw
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Mary Ortmayer
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Mark Dunstan
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Colin Levy
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK
| | - Anthony P Green
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
47
|
Moore EJ, Fasan R. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin. Tetrahedron 2019; 75:2357-2363. [PMID: 31133770 PMCID: PMC6534480 DOI: 10.1016/j.tet.2019.03.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineered myoglobins were recently shown to be effective catalysts for abiological carbene and nitrene transfer reactions. Here, we investigated the impact of substituting the conserved heme-coordinating histidine residue with both proteinogenic (Cys, Ser, Tyr, Asp) and non-proteinogenic Lewis basic amino acids (3-(3'-pyridyl)-alanine, p-aminophenylalanine, and β-(3-thienyl)-alanine), on the reactivity of this metalloprotein toward these abiotic transformations. These studies showed that mutation of the proximal histidine residue with both natural and non-natural amino acids result in stable myoglobin variants that can function as both carbene and nitrene transferases. In addition, substitution of the proximal histidine with an aspartate residue led to a myoglobin-based catalyst capable of promoting stereoselective olefin cyclopropanation under nonreducing conditions. Overall, these studies demonstrate that proximal ligand substitution provides a promising strategy to tune the reactivity of myoglobin-based carbene and nitrene transfer catalysts and provide a first, proof-of-principle demonstration of the viability of pyridine-, thiophene-, and aniline-based unnatural amino acids for metalloprotein engineering.
Collapse
Affiliation(s)
- Eric J Moore
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, NY 14627, United States.
| |
Collapse
|
48
|
Kaur J, Yadav NS, Singh MK, Khan MJ, Sen S, Dixit A, Choudhury D. Role of Ser65, His148 and Thr203 in the Organic Solvent-dependent Spectral Shift in Green Fluorescent Protein. Photochem Photobiol 2018; 95:543-555. [PMID: 30240005 DOI: 10.1111/php.13018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/04/2018] [Indexed: 01/10/2023]
Abstract
The photophysics of green fluorescent protein (GFP) is remarkable because of its exceptional property of excited state proton transfer (ESPT) and the presence of a functional proton wire. Another interesting property of wild-type GFP is that its absorption and fluorescence excitation spectra are sensitive to the presence of polar organic solvents even at very low concentrations. Here, we use a combination of methodologies including site-specific mutagenesis, absorption spectroscopy, steady-state and time-resolved fluorescence measurements and all-atom molecular dynamics simulations in explicit solvent, to uncover the mechanism behind the unique spectral sensitivity of GFP toward organic solvents. Based on the evidences provided herein, we suggest that organic solvent-induced changes in the proton wire prevent ground state movement of a proton through the wire and thus bring about the spectral changes observed. The present study can not only help to understand the mechanism of proton transfer by further dissecting the intricate steps in GFP photophysics but also encourages to develop GFP-based organic solvent biosensors.
Collapse
Affiliation(s)
- Jasvir Kaur
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Neetu Singh Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Mohd Jahir Khan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sobhan Sen
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
49
|
Abstract
Expanding the genetic code to enable the incorporation of unnatural amino acids into proteins in biological systems provides a powerful tool for studying protein structure and function. While this technology has been mostly developed and applied in bacterial and mammalian cells, it recently expanded into animals, including worms, fruit flies, zebrafish, and mice. In this review, we highlight recent advances toward the methodology development of genetic code expansion in animal model organisms. We further illustrate the applications, including proteomic labeling in fruit flies and mice and optical control of protein function in mice and zebrafish. We summarize the challenges of unnatural amino acid mutagenesis in animals and the promising directions toward broad application of this emerging technology.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15237, United States
| | - Jihe Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15237, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15237, United States
| |
Collapse
|
50
|
Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme. Nat Catal 2018. [DOI: 10.1038/s41929-018-0105-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|