1
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
2
|
Rusina P, Gandalipov E, Abdusheva Y, Panova M, Burdenkova A, Chaliy V, Brachs M, Stroganov O, Guzeeva K, Svitanko I, Shtil A, Novikov F. Imidazole-4-N-acetamide Derivatives as a Novel Scaffold for Selective Targeting of Cyclin Dependent Kinases. Cancers (Basel) 2023; 15:3766. [PMID: 37568583 PMCID: PMC10417023 DOI: 10.3390/cancers15153766] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The rational design of cyclin-dependent protein kinase (CDK) inhibitors presumes the development of approaches for accurate prediction of selectivity and the activity of small molecular weight anticancer drug candidates. Aiming at attenuation of general toxicity of low selectivity compounds, we herein explored the new chemotype of imidazole-4-N-acetamide substituted derivatives of the pan-CDK inhibitor PHA-793887. Newly synthesized compounds 1-4 containing an aliphatic methyl group or aromatic radicals at the periphery of the scaffold were analyzed for the prediction of relative free energies of binding to CDK1, -2, -5, and -9 using a protocol based on non-equilibrium (NEQ) thermodynamics. This methodology allows for the demonstration of a good correlation between the calculated parameters of interaction of 1-4 with individual targets and the values of inhibitory potencies in in vitro kinase assays. We provide evidence in support of NEQ thermodynamics as a time sparing, precise, and productive approach for generating chemical inhibitors of clinically relevant anticancer targets.
Collapse
Affiliation(s)
- Polina Rusina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
| | - Erik Gandalipov
- Laboratory of Solution Chemistry and Advanced Materials Technologies, ITMO University, 9 Lomonosov Street, 191002 Saint Petersburg, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
| | - Yana Abdusheva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Maria Panova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
| | - Alexandra Burdenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Vasiliy Chaliy
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
| | - Maria Brachs
- Treamid Therapeutics GmbH, c/o CoLaborator (Bayer), Building S141, Muellerstraβe 178, 13353 Berlin, Germany
| | | | - Ksenia Guzeeva
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Igor Svitanko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| | - Alexander Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, 115522 Moscow, Russia
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, 31 Kashirskoye Shosse, 115409 Moscow, Russia
| | - Fedor Novikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991 Moscow, Russia
- PHARMENTERPRISES LLC, Skolkovo Innovation Center, 42 (1) Bolshoi Blvd., 143026 Moscow, Russia
- Higher School of Economics, National Research University, 20 Myasnitskaya Street, 101000 Moscow, Russia
| |
Collapse
|
3
|
Shi Z, Tian L, Qiang T, Li J, Xing Y, Ren X, Liu C, Liang C. From Structure Modification to Drug Launch: A Systematic Review of the Ongoing Development of Cyclin-Dependent Kinase Inhibitors for Multiple Cancer Therapy. J Med Chem 2022; 65:6390-6418. [PMID: 35485642 DOI: 10.1021/acs.jmedchem.1c02064] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we discuss more than 50 cyclin-dependent kinase (CDK) inhibitors that have been approved or have undergone clinical trials and their therapeutic application in multiple cancers. This review discusses the design strategies, structure-activity relationships, and efficacy performances of these selective or nonselective CDK inhibitors. The theoretical basis of early broad-spectrum CDK inhibitors is similar to the scope of chemotherapy, but because their toxicity is greater than the benefit, there is no clinical therapeutic window. The notion that selective CDK inhibitors have a safer therapeutic potential than pan-CDK inhibitors has been widely recognized during the research process. Four CDK4/6 inhibitors have been approved for the treatment of breast cancer or for prophylactic administration during chemotherapy to protect bone marrow and immune system function. Furthermore, the emerging strategies in the field of CDK inhibitors are summarized briefly, and CDKs continue to be widely pursued as emerging anticancer drug targets for drug discovery.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, P. R. China
| | - Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.,Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
4
|
Bouchard G, Garcia Marques FJ, Karacosta LG, Zhang W, Bermudez A, Riley NM, Varma S, Mehl LC, Benson JA, Shrager JB, Bertozzi CR, Pitteri S, Giaccia AJ, Plevritis SK. Multiomics Analysis of Spatially Distinct Stromal Cells Reveals Tumor-Induced O-Glycosylation of the CDK4-pRB Axis in Fibroblasts at the Invasive Tumor Edge. Cancer Res 2022; 82:648-664. [PMID: 34853070 PMCID: PMC9075699 DOI: 10.1158/0008-5472.can-21-1705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The invasive leading edge represents a potential gateway for tumor metastasis. The role of fibroblasts from the tumor edge in promoting cancer invasion and metastasis has not been comprehensively elucidated. We hypothesize that cross-talk between tumor and stromal cells within the tumor microenvironment results in activation of key biological pathways depending on their position in the tumor (edge vs. core). Here we highlight phenotypic differences between tumor-adjacent-fibroblasts (TAF) from the invasive edge and tumor core fibroblasts from the tumor core, established from human lung adenocarcinomas. A multiomics approach that includes genomics, proteomics, and O-glycoproteomics was used to characterize cross-talk between TAFs and cancer cells. These analyses showed that O-glycosylation, an essential posttranslational modification resulting from sugar metabolism, alters key biological pathways including the cyclin-dependent kinase 4 (CDK4) and phosphorylated retinoblastoma protein axis in the stroma and indirectly modulates proinvasive features of cancer cells. In summary, the O-glycoproteome represents a new consideration for important biological processes involved in tumor-stroma cross-talk and a potential avenue to improve the anticancer efficacy of CDK4 inhibitors. SIGNIFICANCE A multiomics analysis of spatially distinct fibroblasts establishes the importance of the stromal O-glycoproteome in tumor-stroma interactions at the leading edge and provides potential strategies to improve cancer treatment. See related commentary by De Wever, p. 537.
Collapse
Affiliation(s)
- Gina Bouchard
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
- Department of Radiation Oncology, Stanford, CA 94305, USA
| | | | | | - Weiruo Zhang
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Abel Bermudez
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| | | | - Sushama Varma
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Jalen Anthony Benson
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Joseph B Shrager
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | | | - Sharon Pitteri
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford, CA 94305, USA
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sylvia Katina Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Canary Center for Cancer Early Detection, Palo Alto CA, 94304, USA
| |
Collapse
|
5
|
Liu Y, Fu L, Wu J, Liu M, Wang G, Liu B, Zhang L. Transcriptional cyclin-dependent kinases: Potential drug targets in cancer therapy. Eur J Med Chem 2021; 229:114056. [PMID: 34942431 DOI: 10.1016/j.ejmech.2021.114056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
In the wake of the development of the concept of cell cycle and its limiting points, cyclin-dependent kinases (CDKs) are considered to play a central role in regulating cell cycle progression. Recent studies have strongly demonstrated that CDKs also has multiple functions, especially in response to extracellular and intracellular signals by interfering with transcriptional events. Consequently, how to inhibit their function has been a hot research topic. It is worth noting that the key role of CDKs in regulating transcription has been explored in recent years, but its related pharmacological targets are less developed, and most inhibitors have not entered the clinical stage. Accordingly, this perspective focus on the biological functions of transcription related CDKs and their complexes, some key upstream and downstream signals, and inhibitors for cancer treatment in recent years. In addition, some corresponding combined treatment strategies will provide a more novel perspective for future cancer remedy.
Collapse
Affiliation(s)
- Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China.
| |
Collapse
|
6
|
Wu M, Han J, Liu Z, Zhang Y, Huang C, Li J, Li Z. Identification of novel CDK 9 inhibitors based on virtual screening, molecular dynamics simulation, and biological evaluation. Life Sci 2020; 258:118228. [PMID: 32781071 DOI: 10.1016/j.lfs.2020.118228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
AIMS Cyclin-dependent kinase 9 (CDK9) is a member of the CDK subfamily and plays a major role in the regulation of transcriptional elongation. It has attracted widespread attention as a therapeutic target for cancer. Here, we aimed to explore novel CDK 9 inhibitors by using a hybrid virtual screening strategy. MAIN METHODS A hybrid virtual screening strategy was constructed with computer-aided drug design (CADD). First, compounds were filtered in accordance with Lipinski's rule of five and adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Second, a 3D-QSAR pharmacophore model was built and used as a 3D query to screen the obtained hit compounds. Third, the hit compounds were subjected to molecular docking studies. Fourth, molecular dynamics (MD) simulations were performed on CDK9 in complex with the final hits to examine the structural stability. Finally, CDK9 kinase biochemical assay was performed to identify the biological activity of the hit compounds. KEY FINDINGS Seven hit compounds were screened out. These hit compounds showed drug-like properties in accordance with Lipinski's rule of five and ADMET. Complexes involving the six hit compounds bound to CDK9 exhibited good structural stability in the MD simulation. Furthermore, these six hit compounds had strong inhibitory activity against CDK9 kinase. In particular, hit 3 showed the most promising activity with the percentage of 71%. SIGNIFICANCE The six hit compounds may be promising novel CDK9 inhibitors, and the hybrid virtual screening strategy designed in this study provides an important reference for the design and synthesis of novel CDK9 inhibitors.
Collapse
Affiliation(s)
- Mingfei Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jianfei Han
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Zhicheng Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Yilong Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
7
|
Bhowmick S, AlFaris NA, ALTamimi JZ, ALOthman ZA, Aldayel TS, Wabaidur SM, Islam MA. Screening and analysis of bioactive food compounds for modulating the CDK2 protein for cell cycle arrest: Multi-cheminformatics approaches for anticancer therapeutics. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128316] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chem Neurosci 2020; 11:1218-1230. [PMID: 32286796 DOI: 10.1021/acschemneuro.0c00096] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine (ser)/threonine (Thr) kinase that has been demonstrated to be one of the most functionally diverse kinases within neurons. Cdk5 is regulated via binding with its neuron-specific regulatory subunits, p35 or p39. Cdk5-p35 activity is critical for a variety of developmental and cellular processes in the brain, including neuron migration, memory formation, microtubule regulation, and cell cycle suppression. Aberrant activation of Cdk5 via the truncated p35 byproduct, p25, is implicated in the pathogenesis of several neurodegenerative diseases. The present review highlights the importance of Cdk5 activity and function in the brain and demonstrates how deregulation of Cdk5 can contribute to the development of neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Additionally, we cover past drug discovery attempts at inhibiting Cdk5-p25 activity and discuss which types of targeting strategies may prove to be the most successful moving forward.
Collapse
|
9
|
The Immobilization of ChEMBL474807 Molecules Using Different Classes of Nanostructures. Symmetry (Basel) 2019. [DOI: 10.3390/sym11080980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Indirubin derivatives and analogues are a large group of compounds which are widely and successfully used in treatment of many cancer diseases. In particular, the ChEMBL474807 molecule, which has confirmed inhibiting abilities against CDK2 and GSK3B enzymes, can be included in this group. The immobilization of inhibitors with the use of nanocarriers is an often used strategy in creation of targeted therapies. Evaluations were made of the possibility of immobilizing ligand molecules on different types of nanocarrier, such as carbon nanotubes (CNT), functionalized fullerene C60 derivatives (FF_X), and functionalized cube rhombellanes, via the use of docking methods. All results were compared with a reference system, namely C60 fullerene. The realized calculations allowed indication of a group of compounds that exhibited significant binding affinity relative to the ligand molecule. Obtained data shows that structural modifications, such as those related to the addition of functional groups or changes of structure symmetry, realized in particular types of considered nanostructures, can contribute to increases of their binding capabilities. The analysis of all obtained nano complexes clearly shows that the dominant role in stabilization of such systems is played by stacking and hydrophobic interactions. The realized research allowed identification of potential nanostructures that, together with the ChEMBL474807 molecule, enable the creation of targeted therapy.
Collapse
|
10
|
Investigation of the Inhibition Potential of New Oxindole Derivatives and Assessment of Their Usefulness for Targeted Therapy. Symmetry (Basel) 2019. [DOI: 10.3390/sym11080974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Oxindole derivatives are a large group of compounds that can play the role of Adenosine triphosphate (ATP) competitive inhibitors. The possibility of modification of such compounds by addition of active groups to both cyclic systems of oxindole allows the obtaining of derivatives showing significant affinity toward cyclin-dependent kinase (CDK) proteins. Overexpression of that enzyme is observed in the case of most cancers. The discovery of new efficient inhibitors, which could be used in the development of targeted therapies, is one of the current goals setting trends in recent research. In this research, an oxindole molecular core was used, which was modified by the addition of different substituents to both side chains. The realized procedure allowed the creation of a set of oxindole derivatives characterized by binding affinity values and molecular descriptors evaluated during docking procedures and QSAR calculations. The most promising structures characterized by best sets of parameters were used during the molecular dynamics stage. The analysis of structural and energetic properties of systems obtained during this stage of computation gives an indication of inhibitors creating the most stable complexes, characterized by the highest affinity. During this stage, two structures were selected, where affinity towards potential nanocarriers was evaluated. Realized calculations confirmed a significant role of stacking interactions in the stabilization of ligand complexes with fullerene molecules. Obtained data indicates that complexes of oxindole derivatives and considered nanocarriers exhibit significant potential in the creation of immobilized drugs, and can be used in the development of targeted therapies.
Collapse
|
11
|
Hafner M, Mills CE, Subramanian K, Chen C, Chung M, Boswell SA, Everley RA, Liu C, Walmsley CS, Juric D, Sorger PK. Multiomics Profiling Establishes the Polypharmacology of FDA-Approved CDK4/6 Inhibitors and the Potential for Differential Clinical Activity. Cell Chem Biol 2019; 26:1067-1080.e8. [PMID: 31178407 DOI: 10.1016/j.chembiol.2019.05.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 11/28/2022]
Abstract
The target profiles of many drugs are established early in their development and are not systematically revisited at the time of FDA approval. Thus, it is often unclear whether therapeutics with the same nominal targets but different chemical structures are functionally equivalent. In this paper we use five different phenotypic and biochemical assays to compare approved inhibitors of cyclin-dependent kinases 4/6-collectively regarded as breakthroughs in the treatment of hormone receptor-positive breast cancer. We find that transcriptional, proteomic, and phenotypic changes induced by palbociclib, ribociclib, and abemaciclib differ significantly; abemaciclib in particular has advantageous activities partially overlapping those of alvocidib, an older polyselective CDK inhibitor. In cells and mice, abemaciclib inhibits kinases other than CDK4/6 including CDK2/cyclin A/E-implicated in resistance to CDK4/6 inhibition-and CDK1/cyclin B. The multifaceted experimental and computational approaches described here therefore uncover underappreciated differences in CDK4/6 inhibitor activities with potential importance in treating human patients.
Collapse
Affiliation(s)
- Marc Hafner
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Chen
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah A Boswell
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert A Everley
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Changchang Liu
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Charlotte S Walmsley
- Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Dejan Juric
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Termeer Center for Targeted Therapies, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA.
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Tadesse S, Caldon EC, Tilley W, Wang S. Cyclin-Dependent Kinase 2 Inhibitors in Cancer Therapy: An Update. J Med Chem 2018; 62:4233-4251. [PMID: 30543440 DOI: 10.1021/acs.jmedchem.8b01469] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclin-dependent kinase 2 (CDK2) drives the progression of cells into the S- and M-phases of the cell cycle. CDK2 activity is largely dispensable for normal development, but it is critically associated with tumor growth in multiple cancer types. Although the role of CDK2 in tumorigenesis has been controversial, emerging evidence proposes that selective CDK2 inhibition may provide a therapeutic benefit against certain tumors, and it continues to appeal as a strategy to exploit in anticancer drug development. Several small-molecule CDK2 inhibitors have progressed to the clinical trials. However, a CDK2-selective inhibitor is yet to be discovered. Here, we discuss the latest understandings of the role of CDK2 in normal and cancer cells, review the core pharmacophores used to target CDK2, and outline strategies for the rational design of CDK2 inhibitors. We attempt to provide an outlook on how CDK2-selective inhibitors may open new avenues for cancer therapy.
Collapse
Affiliation(s)
- Solomon Tadesse
- Centre for Drug Discovery and Development , University of South Australia Cancer Research Institute , Adelaide , SA 5000 , Australia
| | - Elizabeth C Caldon
- The Kinghorn Cancer Centre , Garvan Institute of Medical Research , Darlinghurst , NSW 2010 , Australia.,St Vincent's Clinical School, UNSW Medicine , UNSW Sydney , Darlinghurst , NSW 2010 , Australia
| | - Wayne Tilley
- Adelaide Medical School , University of Adelaide , Adelaide , SA 5000 , Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development , University of South Australia Cancer Research Institute , Adelaide , SA 5000 , Australia
| |
Collapse
|
13
|
Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V. How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases? J Med Chem 2018; 61:9105-9120. [PMID: 30234987 DOI: 10.1021/acs.jmedchem.8b00049] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Collapse
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Denisa Hendrychová
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Eva Řezníčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Tomáš Gucký
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| |
Collapse
|
14
|
Abstract
Inhibition of CDKs is an attractive approach to cancer therapy due to their vital role in cell growth and transcription. Pan-CDK inhibitors have shown some clinical benefit, and trials are ongoing. Selective CDK4 and CDK6 inhibitors have been licensed for the treatment of hormone responsive, RB-positive breast cancer in combination with antihormonal agents. Selective inhibitors of CDKs 5, 7, 8, 9 and 12 have been identified across a range of chemotypes.
Collapse
|
15
|
Martin MP, Endicott JA, Noble MEM. Structure-based discovery of cyclin-dependent protein kinase inhibitors. Essays Biochem 2017; 61:439-452. [PMID: 29118092 PMCID: PMC6248306 DOI: 10.1042/ebc20170040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023]
Abstract
The cell fate-determining roles played by members of the cyclin-dependent protein kinase (CDK) family explain why their dysregulation can promote proliferative diseases, and identify them as potential targets for drug discovery in oncology and beyond. After many years of research, the first efficacious CDK inhibitors have now been registered for clinical use in a defined segment of breast cancer. Research is underway to identify inhibitors with appropriate CDK-inhibitory profiles to recapitulate this success in other disease settings. Here, we review the structural data that illustrate the interactions and properties that confer upon inhibitors affinity and/or selectivity toward different CDK family members. We conclude that where CDK inhibitors display selectivity, that selectivity derives from exploiting active site sequence peculiarities and/or from the capacity of the target CDK(s) to access conformations compatible with optimizing inhibitor-target interactions.
Collapse
Affiliation(s)
- Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K
| | - Martin E M Noble
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| |
Collapse
|
16
|
Stetz G, Tse A, Verkhivker GM. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone. PLoS One 2017; 12:e0186089. [PMID: 29095844 PMCID: PMC5667858 DOI: 10.1371/journal.pone.0186089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK family are of particular interest as functional diversification among these kinases may be related to variations in chaperone dependencies and can be exploited in drug discovery of personalized therapeutic agents. In this work, we report the results of a computational investigation of several members of CDK family (CDK5, CDK6, CDK9) that represented a broad repertoire of chaperone dependencies—from nonclient CDK5, to weak client CDK6, and strong client CDK9. By using molecular simulations of multiple crystal structures we characterized conformational ensembles and collective dynamics of CDK proteins. We found that the elevated dynamics of CDK9 can trigger imbalances in cooperative collective motions and reduce stability of the active fold, thus creating a cascade of favorable conditions for chaperone intervention. The ensemble-based modeling of residue interaction networks and community analysis determined how differences in modularity of allosteric networks and topography of communication pathways can be linked with the client status of CDK proteins. This analysis unveiled depleted modularity of the allosteric network in CDK9 that alters distribution of communication pathways and leads to impaired signaling in the client kinase. According to our results, these network features may uniquely define chaperone dependencies of CDK clients. The perturbation response scanning and rigidity decomposition approaches identified regulatory hotspots that mediate differences in stability and cooperativity of allosteric interaction networks in the CDK structures. By combining these synergistic approaches, our study revealed dynamic and network signatures that can differentiate kinase clients and rationalize subtle divergences in the activation mechanisms of CDK family members. The therapeutic implications of these results are illustrated by identifying structural hotspots of pathogenic mutations that preferentially target regions of the increased flexibility to enable modulation of activation changes. Our study offers a network-based perspective on dynamic kinase mechanisms and drug design by unravelling relationships between protein kinase dynamics, allosteric communications and chaperone dependencies.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Amanda Tse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Selective abrogation of cyclin-dependent kinases (CDK) activity is a highly promising strategy in cancer treatment. The atypical CDK, CDK5 has long been known for its role in neurodegenerative diseases, and is becoming an attractive drug target for cancer therapy. Myriads of recent studies have uncovered that aberrant expression of CDK5 contributes to the oncogenic initiation and progression of multiple solid and hematological malignancies. CDK5 is also implicated in the regulation of cancer stem cell biology. In this review, we present the current state of knowledge of CDK5 as a druggable target for cancer treatment. We also provide a detailed outlook of designing selective and potent inhibitors of this enzyme.
Collapse
|
18
|
Verkhivker GM. Network-based modelling and percolation analysis of conformational dynamics and activation in the CDK2 and CDK4 proteins: dynamic and energetic polarization of the kinase lobes may determine divergence of the regulatory mechanisms. MOLECULAR BIOSYSTEMS 2017; 13:2235-2253. [DOI: 10.1039/c7mb00355b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Network modeling and percolation analysis of conformational dynamics and energetics of regulatory mechanisms in cyclin-dependent kinases.
Collapse
Affiliation(s)
- G. M. Verkhivker
- Graduate Program in Computational and Data Sciences
- Department of Computational Biosciences
- Schmid College of Science and Technology
- Chapman University
- Orange
| |
Collapse
|
19
|
Recent progress of cyclin-dependent kinase inhibitors as potential anticancer agents. Future Med Chem 2016; 8:2047-2076. [DOI: 10.4155/fmc-2016-0129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Deregulation of the cell cycle is a common feature in human cancer. The inhibition of cyclin-dependent kinases (CDKs), which play a crucial role in control of the cell cycle, has always been one of the most promising areas in cancer chemotherapy. This review first summarizes the biology of CDKs and then focuses on the recent advances in both broad-range and selective CDK inhibitors during the last 5 years. The design rationale, structural optimization and structure–activity relationships analysis of these small molecules have been discussed in detail and the key interactions with the amino-acid residues of the most important compounds are highlighted. Future perspectives for CDKs inhibitors will be defined in the development of highly selective CDK inhibitors, an accurate knowledge of gene control mechanism and further predictive biomarker research.
Collapse
|
20
|
Rye CS, Chessum NEA, Lamont S, Pike KG, Faulder P, Demeritt J, Kemmitt P, Tucker J, Zani L, Cheeseman MD, Isaac R, Goodwin L, Boros J, Raynaud F, Hayes A, Henley AT, de Billy E, Lynch CJ, Sharp SY, Te Poele R, Fee LO, Foote KM, Green S, Workman P, Jones K. Discovery of 4,6-disubstituted pyrimidines as potent inhibitors of the heat shock factor 1 (HSF1) stress pathway and CDK9. MEDCHEMCOMM 2016; 7:1580-1586. [PMID: 27746890 PMCID: PMC5048338 DOI: 10.1039/c6md00159a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
Heat shock factor 1 (HSF1) is a transcription factor that plays key roles in cancer, including providing a mechanism for cell survival under proteotoxic stress. Therefore, inhibition of the HSF1-stress pathway represents an exciting new opportunity in cancer treatment. We employed an unbiased phenotypic screen to discover inhibitors of the HSF1-stress pathway. Using this approach we identified an initial hit (1) based on a 4,6-pyrimidine scaffold (2.00 μM). Optimisation of cellular SAR led to an inhibitor with improved potency (25, 15 nM) in the HSF1 phenotypic assay. The 4,6-pyrimidine 25 was also shown to have high potency against the CDK9 enzyme (3 nM).
Collapse
Affiliation(s)
- Carl S Rye
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Nicola E A Chessum
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Scott Lamont
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Kurt G Pike
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Paul Faulder
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Julie Demeritt
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Paul Kemmitt
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Julie Tucker
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Lorenzo Zani
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Matthew D Cheeseman
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Rosie Isaac
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Louise Goodwin
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Joanna Boros
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Florence Raynaud
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Alan T Henley
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Emmanuel de Billy
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Christopher J Lynch
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Swee Y Sharp
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Robert Te Poele
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Lisa O' Fee
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Kevin M Foote
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Stephen Green
- AstraZeneca , Alderley Park , Macclesfield , Cheshire , SK10 4TG , UK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| | - Keith Jones
- Cancer Research UK Cancer Therapeutics Unit , The Institute of Cancer Research , London SW7 3RP , UK . ;
| |
Collapse
|
21
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|