1
|
Frawley AT, Leslie KG, Wycisk V, Galiani S, Shrestha D, Eggeling C, Anderson HL. A Photoswitchable Solvatochromic Dye for Probing Membrane Ordering by RESOLFT Super-resolution Microscopy. Chemphyschem 2023; 24:e202300125. [PMID: 36946252 DOI: 10.1002/cphc.202300125] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/23/2023]
Abstract
A switchable solvatochromic fluorescent dyad can be used to map ordering of lipids in vesicle membranes at a resolution better than the diffraction limit. Combining a Nile Red fluorophore with a photochromic spironaphthoxazine quencher allows the fluorescence to be controlled using visible light, via photoswitching and FRET quenching. Synthetic lipid vesicles of varying composition were imaged with an average 2.5-fold resolution enhancement, compared to the confocal images. Ratiometric detection was used to probe the membrane polarity, and domains of different lipid ordering were distinguished within the same membrane.
Collapse
Affiliation(s)
- Andrew T Frawley
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Kathryn G Leslie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Virginia Wycisk
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Silvia Galiani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Dilip Shrestha
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien-Platz 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Strasse 9, 07745, Jena, Germany
- Jena Center for Soft Matter (JCSM), Philosophenweg 7, 07743, Jena, Germany
| | - Harry L Anderson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
2
|
Abstract
Lipids are essential cellular components forming membranes, serving as energy reserves, and acting as chemical messengers. Dysfunction in lipid metabolism and signaling is associated with a wide range of diseases including cancer and autoimmunity. Heterogeneity in cell behavior including lipid signaling is increasingly recognized as a driver of disease and drug resistance. This diversity in cellular responses as well as the roles of lipids in health and disease drive the need to quantify lipids within single cells. Single-cell lipid assays are challenging due to the small size of cells (∼1 pL) and the large numbers of lipid species present at concentrations spanning orders of magnitude. A growing number of methodologies enable assay of large numbers of lipid analytes, perform high-resolution spatial measurements, or permit highly sensitive lipid assays in single cells. Covered in this review are mass spectrometry, Raman imaging, and fluorescence-based assays including microscopy and microseparations.
Collapse
Affiliation(s)
- Ming Yao
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| | | | - Nancy L Allbritton
- Department of Bioengineering, University of Washington, Seattle, Washington, USA; , ,
| |
Collapse
|
3
|
Kinnun JJ, Scott HL, Bolmatov D, Collier CP, Charlton TR, Katsaras J. Biophysical studies of lipid nanodomains using different physical characterization techniques. Biophys J 2023; 122:931-949. [PMID: 36698312 PMCID: PMC10111277 DOI: 10.1016/j.bpj.2023.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures. Since most commonly used techniques are sensitive to microscale structural features, it is therefore, not surprising that it took some time to reach a consensus regarding their existence. In this review article, we will discuss studies that have used techniques that are inherently sensitive to nanoscopic structural features (i.e., neutron scatting, nuclear magnetic resonance, and Förster resonance energy transfer). We will also mention techniques that may be of use in the future (i.e., cryoelectron microscopy, droplet interface bilayers, inelastic x-ray scattering, and neutron reflectometry), which can further our understanding of the different and unique physicochemical properties of nanoscopic lipid domains.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Dima Bolmatov
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Timothy R Charlton
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - John Katsaras
- Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
4
|
Niu J, Ma Y, Yang Y, Lv H, Wang J, Wang T, Liu F, Xu S, Jiang Z, Lin W. Lighting up the changes of plasma membranes during apoptosis with fluorescent probes. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Lirussi F, Pyrshev K, Yesylevskyy S, Rivel T, Lopez T, Coppens E, Mura S, Couvreur P, Ramseyer C. Plasma membrane lipid bilayer is druggable: Selective delivery of gemcitabine-squalene nano-medicine to cancer cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166614. [PMID: 36494037 DOI: 10.1016/j.bbadis.2022.166614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Up to now the lipid bilayers were rarely considered as targets in cancer therapy despite pronounced differences in lipid composition between plasma membranes of benign and malignant cells. In this study we demonstrate that the lipid bilayer of the plasma membrane is druggable and suitable for facilitating selective delivery of amphiphilic gemcitabine-squalene nanomedicines to cancer cells. Data from radioactive assays, fluorescent membrane probes and molecular dynamics simulations provide evidence of selective accumulation of gemcitabine-squalene in the plasma membranes with disrupted lipid asymmetry and its subsequent preferential uptake by malignant cells. This causes pronounced cytotoxicity on cancer cells in comparison to their benign counterparts originating from the same tissue.
Collapse
Affiliation(s)
- Frédéric Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, F-21000 Dijon, France; UFR des Sciences de Santé, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, F-25000 Besançon, France.
| | - Kyrylo Pyrshev
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauky ave, 03028 Kyiv, Ukraine; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Department of Neurochemistry, Palladin Institute of Biochemistry of the NAS of Ukraine, 9 Leontovycha str., 01601 Kyiv, Ukraine
| | - Semen Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauky ave, 03028 Kyiv, Ukraine; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10, Prague 6, Czech Republic; Receptor.AI Inc, 20-22 Wenlock Road, London N1 7GU, United Kingdom
| | - Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, CZ-62500, Brno, Czech Republic
| | - Tatiana Lopez
- UMR 1231, Lipides Nutrition Cancer, INSERM, F-21000 Dijon, France; UFR des Sciences de Santé, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Eleonore Coppens
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Patrick Couvreur
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| |
Collapse
|
6
|
Huang A, Adler J, Parmryd I. Optimised generalized polarisation analysis of C-laurdan reveals clear order differences between T cell membrane compartments. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184094. [PMID: 36379264 DOI: 10.1016/j.bbamem.2022.184094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Heterogenous packing of plasma membrane lipids is important for cellular processes like signalling, adhesion and sorting of membrane components. Solvatochromic membrane fluorophores that respond to changes from liquid-ordered (lo) phase to liquid-disordered (ld) by red shifts in their emission spectra are often used to assess lipid packing. Their response can be quantified using generalized polarisation (GP) using fluorescence microscopy images from two emission ranges, preferably from a region of interest (ROI) limited to a specific membrane compartment. However, image quality is limited by Poisson noise and convolution by the point spread function of the imaging system. Examining GP-analysis of C-laurdan labelled T cells using the image restoration procedure deconvolution, we demonstrate that deconvolution substantially improves the image resolution by making the plasma membrane clearly discernible and facilitating plasma membrane ROI selection. We conclude that automatic ROI selection has advantages over manual ROI selection when it comes to reproducibility and speed, but reliable GP-measurements can also be obtained by manually demarcated ROIs. We find that deconvolution enhances the difference in GP-values between the plasma and intracellular membranes and demonstrate that moving an intensity defined plasma membrane ROI outwards from the cell further improves this differentiation. By systematically changing the key deconvolution regularization parameter signal to noise, we establish a protocol for deconvolution optimisation applicable to any solvatochromic dye and imaging system. The image processing and ROI selection protocol presented improves both the resolution and precision of GP-measurement and will enable detection of smaller changes in membrane order than is currently achievable.
Collapse
Affiliation(s)
- Ainsley Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
7
|
Abstract
Biomembranes are ubiquitous lipid structures that delimit the cell surface and organelles and operate as platforms for a multitude of biomolecular processes. The development of chemical tools─fluorescent probes─for the sensing and imaging of biomembranes is a rapidly growing research direction, stimulated by a high demand from cell biologists and biophysicists. This Account focuses on advances in these smart molecules, providing a voyage from the cell frontier─plasma membranes (PM)─toward intracellular membrane compartments─organelles. General classification of the membrane probes can be based on targeting principles, sensing profile, and optical response. Probes for PM and organelle membranes are designed based on multiple targeting principles: conjugation with natural lipids or synthetic targeting ligands and in situ cell labeling by bio-orthogonal chemistry, conjugation to protein tags, and receptor-ligand interactions. Thus, to obtain membrane probes targeting PM with selectivity to one leaflet, we designed membrane anchor ligands based on a charged group and an alkyl chain. According to the sensing profile, we define basic membrane markers with constant emission and probes for biophysical and chemical sensing. The markers are built from classical fluorophores, exemplified by a series of bright cyanines and BODIPY dyes bearing the PM anchors (MemBright). Membrane probes for biophysical sensing are based on environment-sensitive fluorophores: (1) polarity-sensitive solvatochromic dyes; (2) viscosity-sensitive fluorescent molecular rotors; (3) mechanosensitive fluorescent flippers; and (4) voltage-sensitive electrochromic dyes. Our solvatochromic probes based on Nile Red (NR12S, NR12A, NR4A), Laurdan (Pro12A), and 3-hydroxyflavone (F2N12S) through polarity-sensing can visualize liquid ordered and disordered phases of lipid membranes, sense lipid order and its heterogeneity in cell PM, detect apoptosis, etc. Chemically sensitive probes, combining a dye, membrane-targeting ligand, and molecular recognition unit, enable the detection of pH, ions, redox species, lipids, and proteins at the biomembrane surface. In terms of the optical response profile, we can identify (1) fluorogenic (turn-on) probes, allowing background-free imaging; (2) ratiometric probes, e.g., solvatochromic probes, which enable ratiometric imaging by changing their emission/excitation color; (3) fluorescence lifetime-responsive probes, e.g., fluorescence molecular rotors and flippers, suitable for fluorescence lifetime imaging (FLIM); and (4) switchable probes, important for single-molecule localization microscopy. We showed that combining solvatochromic probes with on-off switching through a reversible binding specifically to cell PM enables the mapping of their biophysical properties with superior resolution. While the majority of efforts have been focused on PM, the probes for cellular organelles, such as endoplasmic reticulum, mitochondria, Golgi apparatus, etc., emerge rapidly. Thus, nontargeted solvatochromic probes can distinguish organelles by the emission color. Targeted solvatochromic probes based on Nile Red revealed unique signatures of polarity and lipid order of individual organelles and their different sensitivities to oxidative or mechanical stress. Lipid droplets, which are membraneless lipidic structures, constitute another interesting organelle target for probing the cell stress. Currently, we stand at the beginning of a long route with big challenges ahead, in particular (1) to achieve superior organelle specificity; (2) to label specific biomembrane leaflets, notably the inner leaflet of PM; (3) to detect lipid organization in a proximity of specific proteins; and (4) to probe biomembranes in tissues and animals.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| |
Collapse
|
8
|
Raghunath G, Chen YC, Marin M, Wu H, Melikyan GB. SERINC5-Mediated Restriction of HIV-1 Infectivity Correlates with Resistance to Cholesterol Extraction but Not with Lipid Order of Viral Membrane. Viruses 2022; 14:v14081636. [PMID: 35893701 PMCID: PMC9332783 DOI: 10.3390/v14081636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Serine incorporator 5 (SER5) is a protein that upon incorporation into virions inhibits HIV-1 infectivity by interfering with the ability of the Env glycoprotein to promote viral fusion. The mechanisms by which SER5 antagonizes HIV-1 fusion are not well understood. A recent study of SER5's structure revealed a lipid-binding pocket, suggesting the ability to sequester lipids. This finding, along with the well-documented modulation of HIV-1 infectivity by viral lipids, especially cholesterol, prompted our examination of SER5's effect on the general lipid order of the HIV-1 membrane. Pseudoviruses bearing the SER5-sensitive HXB2-Env and containing SER5 or SER2, a control protein that lacks antiviral activity, were analyzed using two distinct lipid-order probes. We show that SER5 incorporation does not noticeably affect the lipid order of pseudoviruses. Although viral cholesterol extraction reduces HIV-1 infectivity, SER5+ viruses are less sensitive to cholesterol extraction than the control samples. In contrast, the virus' sensitivity to cholesterol oxidation was not affected by SER5 incorporation. The hydrolytic release of sphingomyelin-sequestered cholesterol had a minimal impact on the apparent resistance to cholesterol extraction. Based on these results, we propose that a subpopulation of more stable Env glycoproteins responsible for the residual infectivity of SER5+ viruses is less sensitive to the cholesterol content of the viral membrane.
Collapse
Affiliation(s)
- Gokul Raghunath
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Yen-Cheng Chen
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Hui Wu
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA 30322, USA; (G.R.); (Y.-C.C.); (M.M.); (H.W.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
9
|
Jenni S, Renault K, Dejouy G, Debieu S, Laly M, Romieu A. In Situ Synthesis of Phenoxazine Dyes in Water: Application for "Turn‐On" Fluorogenic and Chromogenic Detection of Nitric Oxide. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sébastien Jenni
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Kévin Renault
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Garance Dejouy
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Sylvain Debieu
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Myriam Laly
- Burgundy Franche-Comté University: Universite Bourgogne Franche-Comte ICMUB - UMR CNRS 6302 FRANCE
| | - Anthony Romieu
- University of Burgundy Franche-Comté ICMUB - UMR CNRS 6302 Faculté des Sciences Mirande9, avenue Alain SavaryBP 47870 21078 Dijon FRANCE
| |
Collapse
|
10
|
Sydor MJ, Anderson DS, Steele HBB, Ross JBA, Holian A. Fluorescence lifetime imaging microscopy and time-resolved anisotropy of nanomaterial-induced changes to red blood cell membranes. Methods Appl Fluoresc 2021; 9. [PMID: 33973872 DOI: 10.1088/2050-6120/abf424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 11/11/2022]
Abstract
With the use of engineered nano-materials (ENM) becoming more prevalent, it is essential to determine potential human health impacts. Specifically, the effects on biological lipid membranes will be important for determining molecular events that may contribute to both toxicity and suitable biomedical applications. To better understand the mechanisms of ENM-induced hemolysis and membrane permeability, fluorescence lifetime imaging microscopy (FLIM) was performed on human red blood cells (RBC) exposed to titanium dioxide ENM, zinc oxide ENM, or micron-sized crystalline silica. In the FLIM images, changes in the intensity-weighted fluorescence lifetime of the lipophilic fluorescence probe Di-4-ANEPPDHQ were used to identify localized changes to membrane. Time-resolved fluorescence anisotropy and FLIM of RBC treated with methyl-ß-cyclodextrin was performed to aid in interpreting how changes to membrane order influence changes in the fluorescence lifetime of the probe. Treatment of RBC with methyl-ß-cyclodextrin caused an increase in the wobble-in-a-cone angle and shorter fluorescence lifetimes of di-4-ANEPPDHQ. Treatment of RBC with titanium dioxide caused a significant increase in fluorescence lifetime compared to non-treated samples, indicating increased membrane order. Crystalline silica also increased the fluorescence lifetime compared to control levels. In contrast, zinc oxide decreased the fluorescence lifetime, representing decreased membrane order. However, treatment with soluble zinc sulfate resulted in no significant change in fluorescence lifetime, indicating that the decrease in order of the RBC membranes caused by zinc oxide ENM was not due to zinc ions formed during potential dissolution of the nanoparticles. These results give insight into mechanisms for how these three materials might disrupt RBC membranes and membranes of other cells. The results also provide evidence for a direct correlation between the size, interaction-available surface area of the nano-material and cell membrane disruption.
Collapse
Affiliation(s)
- Matthew J Sydor
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States of America
| | - Donald S Anderson
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States of America
| | - Harmen B B Steele
- Department of Chemistry and Biochemistry, University of Montana, Missoula, United States of America.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, United States of America
| | - J B Alexander Ross
- Department of Chemistry and Biochemistry, University of Montana, Missoula, United States of America.,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, United States of America
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, United States of America
| |
Collapse
|
11
|
Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging. Nat Methods 2021; 18:542-550. [PMID: 33859440 PMCID: PMC10161785 DOI: 10.1038/s41592-021-01108-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/03/2021] [Indexed: 02/02/2023]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) and spectral imaging are two broadly applied methods for increasing dimensionality in microscopy. However, their combination is typically inefficient and slow in terms of acquisition and processing. By integrating technological and computational advances, we developed a robust and unbiased spectral FLIM (S-FLIM) system. Our method, Phasor S-FLIM, combines true parallel multichannel digital frequency domain electronics with a multidimensional phasor approach to extract detailed and precise information about the photophysics of fluorescent specimens at optical resolution. To show the flexibility of the Phasor S-FLIM technology and its applications to the biological and biomedical field, we address four common, yet challenging, problems: the blind unmixing of spectral and lifetime signatures from multiple unknown species, the unbiased bleedthrough- and background-free Förster resonance energy transfer analysis of biosensors, the photophysical characterization of environment-sensitive probes in living cells and parallel four-color FLIM imaging in tumor spheroids.
Collapse
|
12
|
Hanser F, Marsol C, Valencia C, Villa P, Klymchenko AS, Bonnet D, Karpenko J. Nile Red-Based GPCR Ligands as Ultrasensitive Probes of the Local Lipid Microenvironment of the Receptor. ACS Chem Biol 2021; 16:651-660. [PMID: 33733725 DOI: 10.1021/acschembio.0c00897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The local lipid microenvironment of transmembrane receptors is an essential factor in G protein coupled receptor (GPCR) signaling. However, tools are currently missing for studying endogenously expressed GPCRs in primary cells and tissues. Here, we introduce fluorescent environment-sensitive GPCR ligands for probing the microenvironment of the receptor in living cells using fluorescence microscopy under no-wash conditions. We designed and synthesized antagonist ligands of the oxytocin receptor (OTR) by conjugating a high-affinity nonpeptidic OTR ligand PF-3274167 to the environment-sensitive fluorescent dye Nile Red. The length of the polar PEG spacer between the pharmacophore and the fluorophore was adjusted to lower the nonspecific interactions of the probe while preserving a strong fluorogenic response. We demonstrated that the new probes embed into the lipid bilayer in the vicinity of the receptor and convey information about the local polarity and the lipid order via the wavelength-shifting emission of the Nile Red fluorophore.
Collapse
Affiliation(s)
- Fabien Hanser
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Claire Marsol
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
- Plate-forme de chimie biologique intégrative de Strasbourg (PCBiS), UMS 3286 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch-Graffenstaden, France
| | - Christel Valencia
- Plate-forme de chimie biologique intégrative de Strasbourg (PCBiS), UMS 3286 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch-Graffenstaden, France
| | - Pascal Villa
- Plate-forme de chimie biologique intégrative de Strasbourg (PCBiS), UMS 3286 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), ESBS Pôle API, Bld Sébastien Brant, 67412 Illkirch-Graffenstaden, France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS/Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Dominique Bonnet
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Julie Karpenko
- Laboratoire d’Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Strasbourg Drug Discovery and Development Institute (IMS), 74 route du Rhin, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
13
|
Danylchuk DI, Sezgin E, Chabert P, Klymchenko AS. Redesigning Solvatochromic Probe Laurdan for Imaging Lipid Order Selectively in Cell Plasma Membranes. Anal Chem 2020; 92:14798-14805. [PMID: 33044816 DOI: 10.1021/acs.analchem.0c03559] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imaging of biological membranes by environmentally sensitive solvatochromic probes, such as Laurdan, provides information about the organization of lipids, their ordering, and their uneven distribution. To address a key drawback of Laurdan linked to its rapid internalization and subsequent labeling of internal membranes, we redesigned it by introducing a membrane anchor group based on negatively charged sulfonate and dodecyl chain. The obtained probe, Pro12A, stains exclusively the outer leaflet of lipid bilayers of liposomes, as evidenced by leaflet-specific fluorescence quenching with a viologen derivative, and shows higher fluorescence brightness than Laurdan. Pro12A also exhibits stronger spectral change between liquid-ordered and liquid-disordered phases in model membranes and distinguishes better lipid domains in giant plasma membrane vesicles (GPMVs) than Laurdan. In live cells, it stains exclusively the cell plasma membranes, in contrast to Laurdan and its carboxylate analogue C-Laurdan. Owing to its outer leaflet binding, Pro12A is much more sensitive to cholesterol extraction than Laurdan, which is redistributed within both plasma membrane leaflets and intracellular membranes. Finally, its operating range in the blue spectral region ensures the absence of crosstalk with a number of orange/red fluorescent proteins and dyes. Thus, Pro12A will enable accurate multicolor imaging of lipid organization of cell plasma membranes in the presence of fluorescently tagged proteins of interest, which will open new opportunities in biomembrane research.
Collapse
Affiliation(s)
- Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, U.K.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Philippe Chabert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
14
|
Wu CH, Chen Y, Pyrshev KA, Chen YT, Zhang Z, Chang KH, Yesylevskyy SO, Demchenko AP, Chou PT. Fluorescence Probes Exhibit Photoinduced Structural Planarization: Sensing In Vitro and In Vivo Microscopic Dynamics of Viscosity Free from Polarity Interference. ACS Chem Biol 2020; 15:1862-1873. [PMID: 32543829 DOI: 10.1021/acschembio.0c00100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics. Moreover, the application of probes with increased affinity toward biological membranes allowed detecting the differences in dynamics between the plasma membrane and intracellular membrane structures. Such λ-ratiometric microviscosity imaging was extended for mapping the living tissues and observing their inflammation-dependent changes.
Collapse
Affiliation(s)
- Cheng-Ham Wu
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Yi Chen
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Kyrylo A. Pyrshev
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv 01030, Ukraine
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Yi-Ting Chen
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Zhiyun Zhang
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| | - Semen O. Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Universite′ de Bourgogne Franche-Comte′, 16 route de Gray, 25030 Besançon Cedex, France
- Institute of Physics, National Academy of Sciences of Ukraine, Kyiv 03028, Ukraine
| | - Alexander P. Demchenko
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv 01030, Ukraine
- Yuriy Fedkovych National University, 58012 Chernivtsi, Ukraine
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10607, Taiwan
| |
Collapse
|
15
|
Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol 2020; 30:341-353. [PMID: 32302547 DOI: 10.1016/j.tcb.2020.01.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
The lipid raft hypothesis postulates that lipid-lipid interactions can laterally organize biological membranes into domains of distinct structures, compositions, and functions. This proposal has in equal measure exhilarated and frustrated membrane research for decades. While the physicochemical principles underlying lipid-driven domains has been explored and is well understood, the existence and relevance of such domains in cells remains elusive, despite decades of research. Here, we review the conceptual underpinnings of the raft hypothesis and critically discuss the supporting and contradicting evidence in cells, focusing on why controversies about the composition, properties, and even the very existence of lipid rafts remain unresolved. Finally, we highlight several recent breakthroughs that may resolve existing controversies and suggest general approaches for moving beyond questions of the existence of rafts and towards understanding their physiological significance.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA.
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 33830, USA
| |
Collapse
|
16
|
Danylchuk DI, Moon S, Xu K, Klymchenko AS. Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019; 58:14920-14924. [PMID: 31392763 DOI: 10.1002/anie.201907690] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Indexed: 12/25/2022]
Abstract
Visualization of the nanoscale organization of cell membranes remains challenging because of the lack of appropriate fluorescent probes. Herein, we introduce a new design concept for super-resolution microscopy probes that combines specific membrane targeting, on/off switching, and environment sensing functions. A functionalization strategy for solvatochromic dye Nile Red that improves its photostability is presented. The dye is grafted to a newly developed membrane-targeting moiety composed of a sulfonate group and an alkyl chain of varied lengths. While the long-chain probe with strong membrane binding, NR12A, is suitable for conventional microscopy, the short-chain probe NR4A, owing to the reversible binding, enables first nanoscale cartography of the lipid order exclusively at the surface of live cells. The latter probe reveals the presence of nanoscopic protrusions and invaginations of lower lipid order in plasma membranes, suggesting a subtle connection between membrane morphology and lipid organization.
Collapse
Affiliation(s)
- Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
17
|
Switchable Solvatochromic Probes for Live‐Cell Super‐resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907690] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Iuliano V, Talotta C, Gaeta C, Soriente A, De Rosa M, Geremia S, Hickey N, Mennucci B, Neri P. Negative Solvatochromism in a N-Linked p-Pyridiniumcalix[4]arene Derivative. Org Lett 2019; 21:2704-2707. [DOI: 10.1021/acs.orglett.9b00683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Veronica Iuliano
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Annunziata Soriente
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Margherita De Rosa
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Neal Hickey
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, via L. Giorgieri 1, I-34127 Trieste, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
19
|
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Extensive studies on nanomedicines have been conducted for drug delivery and disease diagnosis (especially for cancer therapy). However, the intracellular and in vivo biofate of nanomedicines, which is significantly associated with their clinical therapeutic effect, is poorly understood at present. This is because of the technical challenges to quantify the disassembly and behaviour of nanomedicines. As a fluorescence- and distance-based approach, the Förster Resonance Energy Transfer (FRET) technique is very successful to study the interaction of nanomedicines with biological systems. In this review, principles on how to select a FRET pair and construct FRET-based nanomedicines have been described first, followed by their application to study structural integrity, biodistribution, disassembly kinetics, and elimination of nanomedicines at intracellular and in vivo levels, especially with drug nanocarriers including polymeric micelles, polymeric nanoparticles, and lipid-based nanoparticles. FRET is a powerful tool to reveal changes and interaction of nanoparticles after delivery, which will be very useful to guide future developments of nanomedicine.
Collapse
Affiliation(s)
- Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
20
|
Pyrshev KA, Yesylevskyy SO, Demchenko AP. Double-exponential kinetics of binding and redistribution of the fluorescent dyes in cell membranes witness for the existence of lipid microdomains. Biochem Biophys Res Commun 2019; 508:1139-1144. [PMID: 30554653 DOI: 10.1016/j.bbrc.2018.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
New technique of detecting lateral heterogeneity of the plasma membrane of living cells by means of membrane-binding fluorescent dyes is proposed. The kinetics of dye incorporation into the membrane or its lateral diffusion inside the membrane is measured and decomposed into exponential components by means of the Maximum Entropy Method. Two distinct exponential components are obtained consistently in all cases for several fluorescent dyes, two different cell lines and in different types of experiments including spectroscopy, flow cytometry and fluorescence recovery after photobleaching. These components are attributed to the liquid-ordered and disordered phases in the plasma membrane of studied cells in their dynamic equilibrium.
Collapse
Affiliation(s)
- Kyrylo A Pyrshev
- Laboratory of Nanobiotechnologies, O.V. Palladin Institute of Biochemistry of the NAS of Ukraine, Leontovicha Str. 9, Kyiv, 01030, Ukraine; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Nauky Ave. 46, Kyiv, 03028, Ukraine.
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Nauky Ave. 46, Kyiv, 03028, Ukraine; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 Route de Gray, 25030, Besançon Cedex, France
| | - Alexander P Demchenko
- Laboratory of Nanobiotechnologies, O.V. Palladin Institute of Biochemistry of the NAS of Ukraine, Leontovicha Str. 9, Kyiv, 01030, Ukraine
| |
Collapse
|
21
|
He B, Shi Y, Liang Y, Yang A, Fan Z, Yuan L, Zou X, Chang X, Zhang H, Wang X, Dai W, Wang Y, Zhang Q. Single-walled carbon-nanohorns improve biocompatibility over nanotubes by triggering less protein-initiated pyroptosis and apoptosis in macrophages. Nat Commun 2018; 9:2393. [PMID: 29921862 PMCID: PMC6008334 DOI: 10.1038/s41467-018-04700-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Single-walled carbon-nanohorns (SNH) exhibit huge application prospects. Notably, spherical SNH possess different morphology from conventional carbon nanotubes (CNT). However, there is a tremendous lack of studies on the nanotoxicity and mechanism of SNH, and their comparison with nanotubes. Here, the dissimilarity between SNH and CNT is found in many aspects including necrosis, pyroptosis, apoptosis, protein expression, hydrolases leakage, lysosome stress, membrane disturbance and the interaction with membrane proteins. The improved biocompatibility of SNH over four types of established CNT is clearly demonstrated in macrophages. Importantly, a key transmembrane protein, glycoprotein nonmetastatic melanoma protein B (GPNMB) is discovered to initiate the nanotoxicity. Compared to CNT, the weaker nano-GPNMB interaction in SNH group induces lower degree of cascade actions from nano/membrane interplay to final cell hypotoxicity. In conclusion, the geometry of single-construct unit, but not that of dispersive forms or intracellular levels of nanocarbons make the most difference.
Collapse
Affiliation(s)
- Bing He
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yujie Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanqin Liang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Anpu Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhipu Fan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lan Yuan
- Centre of Medical and Health Analysis, Peking University, Beijing, 100191, China
| | - Xiajuan Zou
- Centre of Medical and Health Analysis, Peking University, Beijing, 100191, China
| | - Xin Chang
- Centre of Medical and Health Analysis, Peking University, Beijing, 100191, China
| | - Hua Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xueqing Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Wenbin Dai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yiguang Wang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China. .,State Key Laboratory of Natural and Biomimetic Drugs, Beijing, 100191, China. .,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
22
|
Apoptosis and eryptosis: Striking differences on biomembrane level. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1362-1371. [DOI: 10.1016/j.bbamem.2018.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 01/09/2023]
|
23
|
Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: Current insights into membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2018-2031. [PMID: 29752898 DOI: 10.1016/j.bbamem.2018.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
It has been two decades since the lipid raft hypothesis was first presented. Even today, whether these nanoscale cholesterol-rich domains are present in cell membranes is not completely resolved. However, especially in the last few years, a rich body of literature has demonstrated both the presence and the importance of non-random distribution of biomolecules on the membrane, which is the focus of this review. These new developments have pushed the experimental limits of detection and have brought us closer to observing lipid domains in the plasma membrane of live cells. Characterization of biomolecules associated with lipid rafts has revealed a deep connection between biological regulation and function and membrane compositional heterogeneities. Finally, tantalizing new developments in the field have demonstrated that lipid domains might not just be associated with the plasma membrane of eukaryotes but could potentially be a ubiquitous membrane-organizing principle in several other biological systems. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Krishnan Raghunathan
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, PA 15224, USA.
| | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Shaya J, Collot M, Bénailly F, Mahmoud N, Mély Y, Michel BY, Klymchenko AS, Burger A. Turn-on Fluorene Push-Pull Probes with High Brightness and Photostability for Visualizing Lipid Order in Biomembranes. ACS Chem Biol 2017; 12:3022-3030. [PMID: 29053920 DOI: 10.1021/acschembio.7b00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rational design of environmentally sensitive dyes with superior properties is critical for elucidating the fundamental biological processes and understanding the biophysical behavior of cell membranes. In this study, a novel group of fluorene-based push-pull probes was developed for imaging membrane lipids. The design of these fluorogenic conjugates is based on a propioloyl linker to preserve the required spectroscopic features of the core dye. This versatile linker allowed the introduction of a polar deoxyribosyl head, a lipophilic chain, and an amphiphilic/anchoring group to tune the cell membrane binding and internalization. It was found that the deoxyribosyl head favored cell internalization and staining of intracellular membranes, whereas an amphiphilic anchor group ensured specific plasma membrane staining. The optimized fluorene probes presented a set of improvements as compared to commonly used environmentally sensitive membrane probe Laurdan such as red-shifted absorption matching the 405 nm diode laser excitation, a blue-green emission range complementary to the red fluorescent proteins, enhanced brightness and photostability, as well as preserved sensitivity to lipid order, as shown in model membranes and living cells.
Collapse
Affiliation(s)
- Janah Shaya
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Mayeul Collot
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Frédéric Bénailly
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Najiba Mahmoud
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Yves Mély
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Benoît Y. Michel
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| | - Andrey S. Klymchenko
- Laboratoire
de Biophotonique et Pharmacologie, UMR 7213, Faculté de Pharmacie, Université de Strasbourg, CNRS, 74 Route du Rhin, 67401 Illkirch, France
| | - Alain Burger
- Université Côte d’Azur, CNRS, Institut de Chimie de Nice, UMR 7272 − Parc Valrose, 06108 Nice cedex 2, France
| |
Collapse
|
25
|
Kinoshita M, Ano H, Murata M, Shigetomi K, Ikenouchi J, Matsumori N. Emphatic visualization of sphingomyelin-rich domains by inter-lipid FRET imaging using fluorescent sphingomyelins. Sci Rep 2017; 7:16801. [PMID: 29196620 PMCID: PMC5711942 DOI: 10.1038/s41598-017-16361-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/10/2017] [Indexed: 11/11/2022] Open
Abstract
Imaging the distribution of sphingomyelin (SM) in membranes is an important issue in lipid-raft research. Recently we developed novel fluorescent SM analogs that exhibit partition and dynamic behaviors similar to native SM, and succeeded in visualizing lateral domain-segregation between SM-rich liquid-ordered (Lo) and SM-poor liquid-disordered (Ld) domains. However, because the fluorescent contrast between these two domains depends directly on their partition ratio for the fluorescent SMs, domain-separation becomes indeterminate when the distribution difference is not great enough. In this study, we propose the use of inter-lipid Förster resonance energy transfer (FRET) imaging between fluorescent SMs to enhance the contrast of the two domains in cases in which the inter-domain difference in SM distribution is inadequate for conventional monochromic imaging. Our results demonstrate that inter-lipid FRET intensity was significantly higher in the Lo domain than in the Ld domain, resulting in a clear and distinguishable contrast between the two domains even in poorly phase-separated giant unilamellar vesicles. In addition, we show that inter-lipid FRET imaging is useful for selective visualization of highly condensed assemblies and/or clusters of SM molecules in living cell membranes. Thus, the inter-lipid FRET imaging technique can selectively emphasize the SM-condensed domains in both artificial and biological membranes.
Collapse
Affiliation(s)
- Masanao Kinoshita
- JST-ERATO Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan. .,Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan. .,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Hikaru Ano
- JST-ERATO Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Michio Murata
- JST-ERATO Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Project Research Center for Fundamental Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kenta Shigetomi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- JST-ERATO Lipid Active Structure Project, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan. .,Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
26
|
Pyrshev KA, Yesylevskyy SO, Mély Y, Demchenko AP, Klymchenko AS. Caspase-3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2123-2132. [PMID: 28784460 DOI: 10.1016/j.bbamem.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
In this research we investigate the connection between the cytoplasmic machinery of apoptosis and the plasma membrane organization by studying the coupling of caspase-3 activation and inhibition with PS exposure and the change of lipid order in plasma membrane sensed by a fluorescent membrane probe NR12S. First, we performed in silico molecular dynamics simulations, which suggest that the mechanism of response of NR12S to lipid order may combine both sensitivity to membrane polarity/hydration and change in the fluorophore orientation. Second, cellular studies revealed that upon triggering apoptosis with IPA-3 and camptothecin the NR12S response is similar to that observed after decrease of lipid order induced by cholesterol depletion, 7-ketocholesterol enrichment or sphingomyelin hydrolysis. NR12S response can be influenced by a caspase-3 inhibitor Z-DEVD-FMK. Flow cytometry data further indicate that the NR12S response correlates with the response of FITC-labeled DEVD-FMK peptide and GFP-labeled Annexin V on the whole time scale (0-24h) of apoptosis induction by camptothecin. We conclude that fine changes in lipid order observed by NR12S are coupled with early steps of cellular events in apoptosis.
Collapse
Affiliation(s)
- Kyrylo A Pyrshev
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France; Laboratory of Nanobiotechnologies, Department of Molecular Immunology, O.V. Palladin Institute of Biochemistry of NASU, Kyiv 01601, Ukraine.
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of NASU, Kyiv 03680, Ukraine
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France
| | - Alexander P Demchenko
- Laboratory of Nanobiotechnologies, Department of Molecular Immunology, O.V. Palladin Institute of Biochemistry of NASU, Kyiv 01601, Ukraine
| | - Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie UMR 7213 CNRS/Université de Strasbourg, Illkirch, France
| |
Collapse
|
27
|
Chevalier A, Renard PY, Romieu A. Azo-Based Fluorogenic Probes for Biosensing and Bioimaging: Recent Advances and Upcoming Challenges. Chem Asian J 2017; 12:2008-2028. [DOI: 10.1002/asia.201700682] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Pierre-Yves Renard
- Normandie Université, CNRS, UNIROUEN, INSA Rouen; COBRA (UMR 6014), IRCOF; rue Tesnières 76000 Rouen France
| | - Anthony Romieu
- ICMUB, UMR 6302, CNRS; University Bourgogne Franche-Comté; 9, Avenue Alain Savary 21078 Dijon cedex France
- Institut Universitaire de France; 103, Boulevard Saint-Michel 75005 Paris France
| |
Collapse
|
28
|
Lipid Driven Nanodomains in Giant Lipid Vesicles are Fluid and Disordered. Sci Rep 2017; 7:5460. [PMID: 28710349 PMCID: PMC5511215 DOI: 10.1038/s41598-017-05539-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/30/2017] [Indexed: 11/30/2022] Open
Abstract
It is a fundamental question in cell biology and biophysics whether sphingomyelin (SM)- and cholesterol (Chol)- driven nanodomains exist in living cells and in model membranes. Biophysical studies on model membranes revealed SM and Chol driven micrometer-sized liquid-ordered domains. Although the existence of such microdomains has not been proven for the plasma membrane, such lipid mixtures have been often used as a model system for ‘rafts’. On the other hand, recent super resolution and single molecule results indicate that the plasma membrane might organize into nanocompartments. However, due to the limited resolution of those techniques their unambiguous characterization is still missing. In this work, a novel combination of Förster resonance energy transfer and Monte Carlo simulations (MC-FRET) identifies directly 10 nm large nanodomains in liquid-disordered model membranes composed of lipid mixtures containing SM and Chol. Combining MC-FRET with solid-state wide-line and high resolution magic angle spinning NMR as well as with fluorescence correlation spectroscopy we demonstrate that these nanodomains containing hundreds of lipid molecules are fluid and disordered. In terms of their size, fluidity, order and lifetime these nanodomains may represent a relevant model system for cellular membranes and are closely related to nanocompartments suggested to exist in cellular membranes.
Collapse
|
29
|
Kim JH, Singh A, Del Poeta M, Brown DA, London E. The effect of sterol structure upon clathrin-mediated and clathrin-independent endocytosis. J Cell Sci 2017; 130:2682-2695. [PMID: 28655854 DOI: 10.1242/jcs.201731] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
Ordered lipid domains (rafts) in plasma membranes have been hypothesized to participate in endocytosis based on inhibition of endocytosis by removal or sequestration of cholesterol. To more carefully investigate the role of the sterol in endocytosis, we used a substitution strategy to replace cholesterol with sterols that show various raft-forming abilities and chemical structures. Both clathrin-mediated endocytosis of transferrin and clathrin-independent endocytosis of clustered placental alkaline phosphatase were measured. A subset of sterols reversibly inhibited both clathrin-dependent and clathrin-independent endocytosis. The ability of a sterol to support lipid raft formation was necessary for endocytosis. However, it was not sufficient, because a sterol lacking a 3β-OH group did not support endocytosis even though it had the ability to support ordered domain formation. Double bonds in the sterol rings and an aliphatic tail structure identical to that of cholesterol were neither necessary nor sufficient to support endocytosis. This study shows that substitution using a large number of sterols can define the role of sterol structure in cellular functions. Hypotheses for how sterol structure can similarly alter clathrin-dependent and clathrin-independent endocytosis are discussed.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashutosh Singh
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Dept. of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Deborah A Brown
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
30
|
Yavas S, Macháň R, Wohland T. The Epidermal Growth Factor Receptor Forms Location-Dependent Complexes in Resting Cells. Biophys J 2017; 111:2241-2254. [PMID: 27851946 DOI: 10.1016/j.bpj.2016.09.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a prototypical receptor tyrosine kinase involved in cell growth and proliferation and associated with various cancers. It is commonly assumed that after activation by binding of epidermal growth factor to the extracellular domain it dimerizes, followed by autophosphorylation of tyrosine residues at the intracellular domain. However, its oligomerization state before activation is controversial. In the absence of ligands, EGFR has been found in various, inconsistent amounts of monomeric, inactive dimeric, and oligomeric forms. In addition, evidence suggests that the active conformation is not a simple dimer but contains higher oligomers. As experiments in the past have been conducted at different conditions, we investigate here the influence of cell lines (HEK293, COS-7, and CHO-K1), temperature (room temperature and 37°C), and membrane localization on the quantitation of preformed dimers using SW-FCCS, DC-FCCS, quasi PIE-FCCS, and imaging FCCS. While measurement modality, temperature, and localization on upper or lower membranes have only a limited influence on the dimerization amount observed, the cell line and location to periphery versus center of the cell can change dimerization results significantly. The observed dimerization amount is strongly dependent on the expression level of endogenous EGFR in a cell line and shows a strong cell-to-cell variability even within the same cell line. In addition, using imaging FCCS, we find that dimers have a tendency to be found at the periphery of cells compared to central positions.
Collapse
Affiliation(s)
- Sibel Yavas
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Radek Macháň
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Department of Chemistry, National University of Singapore, Singapore, Singapore; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 2017; 18:361-374. [PMID: 28356571 PMCID: PMC5500228 DOI: 10.1038/nrm.2017.16] [Citation(s) in RCA: 1288] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
32
|
Tian M, Liu Y, Sun Y, Zhang R, Feng R, Zhang G, Guo L, Li X, Yu X, Sun JZ, He X. A single fluorescent probe enables clearly discriminating and simultaneously imaging liquid-ordered and liquid-disordered microdomains in plasma membrane of living cells. Biomaterials 2017; 120:46-56. [DOI: 10.1016/j.biomaterials.2016.12.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/06/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022]
|
33
|
Sahoo BR, Fujiwara T. Membrane Mediated Antimicrobial and Antitumor Activity of Cathelicidin 6: Structural Insights from Molecular Dynamics Simulation on Multi-Microsecond Scale. PLoS One 2016; 11:e0158702. [PMID: 27391304 PMCID: PMC4938549 DOI: 10.1371/journal.pone.0158702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 11/30/2022] Open
Abstract
The cathelicidin derived bovine antimicrobial peptide BMAP27 exhibits an effective microbicidal activity and moderate cytotoxicity towards erythrocytes. Irrespective of its therapeutic and multidimensional potentiality, the structural studies are still elusive. Moreover, the mechanism of BMAP27 mediated pore formation in heterogeneous lipid membrane systems is poorly explored. Here, we studied the effect of BMAP27 in model cell-membrane systems such as zwitterionic, anionic, thymocytes-like (TLM) and leukemia-like membranes (LLM) by performing molecular dynamics (MD) simulation longer than 100 μs. All-atom MD studies revealed a stable helical conformation in the presence of anionic lipids, however, significant loss of helicity was identified in TLM and zwitterionic systems. A peptide tilt (~45˚) and central kink (at residue F10) was found in anionic and LLM models, respectively, with an average membrane penetration of < 0.5 nm. Coarse-grained (CG) MD analysis on a multi-μs scale shed light on the membrane-dependent peptide and lipid organization. Stable micelle and end-to-end like oligomers were formed in zwitterionic and TLM models, respectively. In contrast, unstable oligomer formation and monomeric BMAP27 penetration were observed in anionic and LLM systems with selective anionic lipid aggregation (in LLM). Peptide penetration up to ~1.5 nm was observed in CG-MD systems with the BMAP27 C-terminal oriented towards the bilayer core. Structural inspection suggested membrane penetration by micelle/end-to-end like peptide oligomers (carpet-model like) in the zwitterionic/TLM systems, and transmembrane-mode (toroidal-pore like) in the anionic/LLM systems, respectively. Structural insights and energetic interpretation in BMAP27 mutant highlighted the role of F10 and hydrophobic residues in mediating a membrane-specific peptide interaction. Free energy profiling showed a favorable (-4.58 kcal mol-1 for LLM) and unfavorable (+0.17 kcal mol-1 for TLM) peptide insertion in anionic and neutral systems, respectively. This determination can be exploited to regulate cell-specific BMAP27 cytotoxicity for the development of potential drugs and antibiotics.
Collapse
Affiliation(s)
- Bikash Ranjan Sahoo
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
34
|
Niko Y, Didier P, Mely Y, Konishi GI, Klymchenko AS. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes. Sci Rep 2016; 6:18870. [PMID: 26750324 PMCID: PMC4707542 DOI: 10.1038/srep18870] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/30/2015] [Indexed: 12/23/2022] Open
Abstract
Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.
Collapse
Affiliation(s)
- Yosuke Niko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Pascal Didier
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| | - Gen-ichi Konishi
- Department of Organic and Polymeric Materials, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Andrey S. Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH Cedex, France
| |
Collapse
|
35
|
Houston JE, Kraft M, Scherf U, Evans RC. Sequential detection of multiple phase transitions in model biological membranes using a red-emitting conjugated polyelectrolyte. Phys Chem Chem Phys 2016; 18:12423-7. [DOI: 10.1039/c6cp01553k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Charge-mediated assembly of an anionic poly(thiophene) leads to a highly sensitive probe of membrane order.
Collapse
Affiliation(s)
- Judith E. Houston
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| | - Mario Kraft
- Macromolecular Chemistry Group (buwmacro) and Institute for Polymer Technology
- Bergische Universität Wuppertal
- Wuppertal
- Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group (buwmacro) and Institute for Polymer Technology
- Bergische Universität Wuppertal
- Wuppertal
- Germany
| | - Rachel C. Evans
- School of Chemistry
- University of Dublin
- Trinity College
- Dublin 2
- Ireland
| |
Collapse
|
36
|
Dekaliuk M, Pyrshev K, Demchenko A. Visualization and detection of live and apoptotic cells with fluorescent carbon nanoparticles. J Nanobiotechnology 2015; 13:86. [PMID: 26589358 PMCID: PMC4654871 DOI: 10.1186/s12951-015-0148-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/10/2015] [Indexed: 11/11/2022] Open
Abstract
Apoptosis is a genetically encoded cell death program that involves different processes occurring on molecular and sub-cellular levels. Here we report on its new features—the increased accumulation of fluorescent carbon nanoparticles (CDots) in cells and their changed distribution within cell interior, which can witness on altered mechanisms of their translocation through the membrane. The comparative studies of living (intact) and apoptotic cells were provided with two cell lines (HeLa, Vero) using two types of fluorescent nanoparticles (“violet” and “blue” CDots). In all studied cases the images of living and apoptotic cells were different; the apoptotic cells incorporated larger number of CDots resulting in their much brighter images. These nanoparticles are distributed in cell cytoplasm, however, when the cells are fixed and treated with detergent, their nucleus is also labeled. Flow cytometry allows distinguishing the sub-populations of living and apoptotic cells in their cultures and suggests a very cheap and easy way to characterize them.
Collapse
Affiliation(s)
- Mariia Dekaliuk
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kiev, Ukraine.
| | - Kyrylo Pyrshev
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kiev, Ukraine.
| | - Alexander Demchenko
- Laboratory of Nanobiotechnologies, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 9 Leontovicha Str., Kiev, Ukraine.
| |
Collapse
|
37
|
Wender PA, Jeffreys MS, Raub AG. Tetramethyleneethane Equivalents: Recursive Reagents for Serialized Cycloadditions. J Am Chem Soc 2015; 137:9088-93. [PMID: 25961416 PMCID: PMC4772776 DOI: 10.1021/jacs.5b04091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
New reactions and reagents that allow
for multiple bond-forming
events per synthetic operation are required to achieve structural
complexity and thus value with step-, time-, cost-, and waste-economy.
Here we report a new class of reagents that function like tetramethyleneethane
(TME), allowing for back-to-back [4 + 2] cycloadditions, thereby amplifying
the complexity-increasing benefits of Diels–Alder and metal-catalyzed
cycloadditions. The parent recursive reagent, 2,3-dimethylene-4-trimethylsilylbutan-1-ol
(DMTB), is readily available from the metathesis of ethylene and THP-protected
4-trimethylsilylbutyn-1-ol. DMTB and related reagents engage diverse
dienophiles in an initial Diels–Alder or metal-catalyzed [4
+ 2] cycloaddition, triggering a subsequent vinylogous Peterson elimination
that recursively generates a new diene for a second cycloaddition.
Overall, this multicomponent catalytic cascade produces in one operation
carbo- and heterobicyclic building blocks for the synthesis of a variety
of natural products, therapeutic leads, imaging agents, and materials.
Its application to the three step synthesis of a new solvatochromic
fluorophore, N-ethyl(6-N,N-dimethylaminoanthracene-2,3-dicarboximide) (6-DMA), and
the photophysical characterization of this fluorophore are described.
Collapse
Affiliation(s)
- Paul A Wender
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, United States
| | - Matthew S Jeffreys
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, United States
| | - Andrew G Raub
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
38
|
Kilin V, Glushonkov O, Herdly L, Klymchenko A, Richert L, Mely Y. Fluorescence lifetime imaging of membrane lipid order with a ratiometric fluorescent probe. Biophys J 2015; 108:2521-2531. [PMID: 25992730 PMCID: PMC4457243 DOI: 10.1016/j.bpj.2015.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/23/2015] [Accepted: 04/03/2015] [Indexed: 12/11/2022] Open
Abstract
To monitor the lateral segregation of lipids into liquid-ordered (Lo) and -disordered (Ld) phases in lipid membranes, environment-sensitive dyes that partition in both phases but stain them differently have been developed. Of particular interest is the dual-color F2N12S probe, which can discriminate the two phases through the ratio of its two emission bands. These bands are associated with the normal (N(∗)) and tautomer (T(∗)) excited-state species that result from an excited-state intramolecular proton transfer. In this work, we investigated the potency of the time-resolved fluorescence parameters of F2N12S to discriminate lipid phases in model and cell membranes. Both the long and mean lifetime values of the T(∗) form of F2N12S were found to differ by twofold between Ld and Lo phases as a result of the restriction in the relative motions of the two aromatic moieties of F2N12S imposed by the highly packed Lo phase. This differed from the changes in the ratio of the two emission bands between the two phases, which mainly resulted from the decreased hydration of the N(∗) form in the Lo phase. Importantly, the strong difference in lifetimes between the two phases was preserved when cholesterol was added to the Ld phase. The two phases could be imaged with high contrast by fluorescence lifetime imaging microscopy (FLIM) on giant unilamellar vesicles. FLIM images of F2N12S-labeled live HeLa cells confirmed that the plasma membrane was mainly in the Lo-like phase. Furthermore, the two phases were found to be homogeneously distributed all over the plasma membrane, indicating that they are highly mixed at the spatiotemporal resolution of the FLIM setup. Finally, FLIM could also be used to sensitively monitor the change in lipid phase upon cholesterol depletion and apoptosis.
Collapse
Affiliation(s)
- Vasyl Kilin
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France
| | - Oleksandr Glushonkov
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France
| | - Lucas Herdly
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France
| | - Andrey Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France
| | - Yves Mely
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch Cedex, France.
| |
Collapse
|