1
|
Zhuang J, Yang W, Cheng GJ. Mechanistic Insights into the Reversible Inhibition of d-Cycloserine in Alanine Racemase from Mycobacterium tuberculosis. J Chem Inf Model 2025; 65:2610-2622. [PMID: 39996595 DOI: 10.1021/acs.jcim.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
d-Cycloserine (DCS), an antibiotic used in the treatment of drug-resistant tuberculosis, was traditionally believed to irreversibly inhibit the pyridoxal-5'-phosphate (PLP)-dependent alanine racemase from Mycobacterium tuberculosis (MtAlr). However, recent research suggests that the inhibition is reversible, as MtAlr can be reactivated by destructing DCS. This study employs the hybrid quantum mechanics/molecular mechanics (QM/MM) method to investigate the mechanisms of MtAlr inhibition and DCS destruction. Computational results indicate that the inhibition reaction via an "isoxazole-forming" pathway is kinetically favorable, while the DCS destruction reaction via an "oxime-forming" pathway is thermodynamically favorable, explaining the irreversible inhibition of DCS. For the inhibition reaction, the isoxazole product was found to prefer the keto form, contrary to the previously proposed enol form. Moreover, K44 and D322' were identified as key residues. K44 transfers the proton from Cα and Cβ of DCS, while D322' stabilizes the carbanion intermediate and isoxazole product via electrostatic interaction with the protonated K44. Such electrostatic interaction was eliminated in the DCS-resistance variant, D322'N, making the inhibition reaction unfavorable. For DCS destruction, an "up-to-down" conformational change is required to place the isoxazolidinone ring in an appropriate position for hydrolysis. The deprotonated Y273' facilitates the hydrolysis reaction by enhancing the nucleophilicity of the water molecule. Throughout the whole reaction of MtAlr, PLP plays multiple roles, including stabilizing the carbanion intermediate and acting as a proton shuttle. Overall, this study provides deeper insight into the catalytic mechanism of MtAlr and offers valuable insights for drug development.
Collapse
Affiliation(s)
- Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wei Yang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Gui-Juan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
2
|
Bedewy WA, Mulawka JW, Adler MJ. Classifying covalent protein binders by their targeted binding site. Bioorg Med Chem Lett 2025; 117:130067. [PMID: 39667507 DOI: 10.1016/j.bmcl.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Covalent protein targeting represents a powerful tool for protein characterization, identification, and activity modulation. The safety of covalent therapeutics was questioned for many years due to the possibility of off-target binding and subsequent potential toxicity. Researchers have recently, however, demonstrated many covalent binders as safe, potent, and long-acting therapeutics. Moreover, they have achieved selective targeting among proteins with high structural similarities, overcome mutation-induced resistance, and obtained higher potency compared to non-covalent binders. In this review, we highlight the different classes of binding sites on a target protein that could be addressed by a covalent binder. Upon folding, proteins generate various concavities available for covalent modifications. Selective targeting to a specific site is driven by differences in the geometry and physicochemical properties of the binding pocket residues as well as the geometry and reactivity of the covalent modifier "warhead". According to the warhead reactivity and the nature of the binding region, covalent binders can alter or lock a targeted protein conformation and inhibit or enhance its activity. We survey these various modification sites using case studies of recently discovered covalent binders, bringing to the fore the versatile application of covalent protein binders with respect to drug discovery approaches.
Collapse
Affiliation(s)
- Walaa A Bedewy
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt.
| | - John W Mulawka
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Marc J Adler
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
3
|
Edwards AN, Hsu KL. Emerging opportunities for intact and native protein analysis using chemical proteomics. Anal Chim Acta 2025; 1338:343551. [PMID: 39832869 DOI: 10.1016/j.aca.2024.343551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Chemical proteomics has advanced small molecule ligand discovery by providing insights into protein-ligand binding mechanism and enabling medicinal chemistry optimization of protein selectivity on a global scale. Mass spectrometry is the predominant analytical method for chemoproteomics, and various approaches have been deployed to investigate and target a rapidly growing number of protein classes and biological systems. Two methods, intact mass analysis (IMA) and top-down proteomics (TDMS), have gained interest in recent years due to advancements in high resolution mass spectrometry instrumentation. Both methods apply mass spectrometry analysis at the proteoform level, as opposed to the peptide level of bottom-up proteomics (BUMS), thus addressing some of the challenges of protein inference and incomplete information on modification stoichiometry. This Review covers recent research progress utilizing MS-based proteomics methods, discussing in detail the capabilities and opportunities for improvement of each method. Further, heightened attention is given to IMA and TDMS, highlighting these methods' strengths and considerations when utilized in chemoproteomic studies. Finally, we discuss the capabilities of native mass spectrometry (nMS) and ion mobility mass spectrometry (IM-MS) and how these methods can be used in chemoproteomics research to complement existing approaches to further advance the field of functional proteomics.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
4
|
Oprea I, Smith TK. Click Chemistry Methodology: The Novel Paintbrush of Drug Design. ACS Chem Biol 2025; 20:19-32. [PMID: 39730316 PMCID: PMC11744672 DOI: 10.1021/acschembio.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
Click chemistry is an immensely powerful technique for the synthesis of reliable and efficient covalent linkages. When undertaken in living cells, the concept is thereby coined bioorthogonal chemistry. Used in conjunction with the photo-cross-linking methodology, it serves as a sound strategy in the exploration of biological processes and beyond. Its broad scope has led to widespread use in many disciplines; however, this Review focuses on the use of click and bioorthogonal chemistry within medicinal chemistry, specifically with regards to drug development applications, namely, the use of DNA-encoded libraries as a novel technique for lead compound discovery, as well as the synthesis of antisense oligonucleotides and protein-drug conjugates. This Review aims to provide a critical perspective and a future outlook of this methodology, such as potential widespread use in cancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Ioana Oprea
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| | - Terry K. Smith
- Biomedical Science Research Complex,
Schools of Biology and Chemistry, University
of Saint Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom of Great Britain
and Northern Ireland
| |
Collapse
|
5
|
Alboreggia G, Udompholkul P, Atienza EL, Muzzarelli K, Assar Z, Pellecchia M. Covalent Targeting of Histidine Residues with Aryl Fluorosulfates: Application to Mcl-1 BH3 Mimetics. J Med Chem 2024; 67:20214-20223. [PMID: 39532346 PMCID: PMC11613628 DOI: 10.1021/acs.jmedchem.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Covalent drugs provide pharmacodynamic and pharmacokinetic advantages over reversible agents. However, covalent strategies have been developed mostly to target cysteine (Cys) residues, which are rarely found in binding sites. Among other nucleophilic residues that could be in principle used for the design of covalent drugs, histidine (His) has not been given proper attention despite being in principle an attractive residue to pursue but underexplored. Aryl fluorosulfates, a mild electrophile that is very stable in biological media, have been recently identified as possible electrophiles to react with the side chains of Lys; however, limited studies are available on aryl fluorosulfates' ability to target His residues. We demonstrate that proper incorporation of an aryl fluorosulfate juxtaposing the electrophile with a His residue can be used to afford rapid optimizations of His-covalent agents. As an application, we report on His-covalent BH3 mimetics targeting His224 of Mcl-1.
Collapse
Affiliation(s)
- Giulia Alboreggia
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Emma L. Atienza
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Kendall Muzzarelli
- Cayman Chemical
Co., 1180 E. Ellsworth Road, Ann Arbor, Michigan 48108, United States
| | - Zahra Assar
- Cayman Chemical
Co., 1180 E. Ellsworth Road, Ann Arbor, Michigan 48108, United States
| | - Maurizio Pellecchia
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
6
|
Ding M, Bell C, Willis MC. The Modular Synthesis of Sulfondiimidoyl Fluorides and their Application to Sulfondiimidamide and Sulfondiimine Synthesis. Angew Chem Int Ed Engl 2024; 63:e202409240. [PMID: 38923337 DOI: 10.1002/anie.202409240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
A modular synthesis of sulfondiimidoyl fluorides-the double aza-analogues of sulfonyl fluorides-allowing variation of the carbon and both nitrogen-substituents is reported. The chemistry uses readily available organometallic reagents, commercial sulfinylamines, simple electrophiles, and N-fluorobenzenesulfonimide (NFSI), as the starting materials. The reactions are broad in scope, efficient, and scalable. We show that the sulfondiimidoyl fluoride products can be combined with amines to provide sulfondiimidamides, and with organolithium reagents to provide sulfondiimines, and that reactivity in these transformations can be modulated by variation of the N-substituents.
Collapse
Affiliation(s)
- Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Charles Bell
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Michael C Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
7
|
Huang W, Fayad E, Abu Ali OA, Qin HL. A portal to highly valuable indole-functionalized vinyl sulfonyl fluorides and allylic sulfonyl fluorides. Org Biomol Chem 2024; 22:7117-7120. [PMID: 39150283 DOI: 10.1039/d4ob01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A practical and efficient method for the C-3 site selective alkenylation of indoles was developed for constructing novel indole-functionalized vinyl sulfonyl fluorides and indolyl allylic sulfonyl fluorides. The reaction is accomplished with exclusive regio- and stereoselectivity without using transition metal catalysts, providing novel products of great potential value in medicinal chemistry, chemical biology, and drug discovery.
Collapse
Affiliation(s)
- Wenzhuo Huang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia.
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
8
|
Jones LH. Synthetic modification of protein surfaces to mediate induced-proximity pharmacology. RSC Med Chem 2024:d4md00388h. [PMID: 39185450 PMCID: PMC11342125 DOI: 10.1039/d4md00388h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Molecular glues and bifunctional small molecules, such as targeted protein degraders, induce protein proximity to mediate gain-of-function pharmacology. Emerging technologies that synthetically manipulate protein surfaces to create neoproteins, and the development of covalent chemical probes for intra- and inter-protein surface labeling are described. Ligand-directed protein surface modification strategies have the potential to enhance the induced-proximity pharmacology toolkit and expand the druggable proteome, and this Opinion considers the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute 360 Longwood Avenue Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| |
Collapse
|
9
|
Koperniku A, Meanwell NA. Tying the knot with lysine. Nat Rev Chem 2024; 8:235-237. [PMID: 38499680 DOI: 10.1038/s41570-024-00592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Ana Koperniku
- The Center for the Study of Language and Information, Stanford University, Stanford, CA, USA.
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Insitute, Doylestown, PA, USA
- The School of Pharmacy, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
McFadden WM, Casey-Moore MC, Bare GAL, Kirby KA, Wen X, Li G, Wang H, Slack RL, Snyder AA, Lorson ZC, Kaufman IL, Cilento ME, Tedbury PR, Gembicky M, Olson AJ, Torbett BE, Sharpless KB, Sarafianos SG. Identification of clickable HIV-1 capsid-targeting probes for viral replication inhibition. Cell Chem Biol 2024; 31:477-486.e7. [PMID: 38518746 PMCID: PMC11257216 DOI: 10.1016/j.chembiol.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.
Collapse
Affiliation(s)
- William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mary C Casey-Moore
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Grant A L Bare
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Xin Wen
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Gencheng Li
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hua Wang
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan L Slack
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Alexa A Snyder
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Zachary C Lorson
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Isabella L Kaufman
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Maria E Cilento
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Philip R Tedbury
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92521, United States
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - K Barry Sharpless
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
11
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
12
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
13
|
Jiang L, Liu S, Jia X, Gong Q, Wen X, Lu W, Yang J, Wu X, Wang X, Suo Y, Li Y, Uesugi M, Qu ZB, Tan M, Lu X, Zhou L. ABPP-CoDEL: Activity-Based Proteome Profiling-Guided Discovery of Tyrosine-Targeting Covalent Inhibitors from DNA-Encoded Libraries. J Am Chem Soc 2023; 145:25283-25292. [PMID: 37857329 DOI: 10.1021/jacs.3c08852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
DNA-encoded chemical library (DEL) has been extensively used for lead compound discovery for decades in academia and industry. Incorporating an electrophile warhead into DNA-encoded compounds recently permitted the discovery of covalent ligands that selectively react with a particular cysteine residue. However, noncysteine residues remain underexplored as modification sites of covalent DELs. Herein, we report the design and utility of tyrosine-targeting DELs of 67 million compounds. Proteome-wide reactivity analysis of tyrosine-reactive sulfonyl fluoride (SF) covalent probes suggested three enzymes (phosphoglycerate mutase 1, glutathione s-transferase 1, and dipeptidyl peptidase 3) as models of tyrosine-targetable proteins. Enrichment with SF-functionalized DELs led to the identification of a series of tyrosine-targeting covalent inhibitors of the model enzymes. In-depth mechanistic investigation revealed their novel modes of action and reactive ligand-accessible hotspots of the enzymes. Our strategy of combining activity-based proteome profiling and covalent DEL enrichment (ABPP-CoDEL), which generated selective covalent binders against a variety of target proteins, illustrates the potential use of this methodology in further covalent drug discovery.
Collapse
Affiliation(s)
- Lulu Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xinglong Jia
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinting Gong
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xin Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jintong Yang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xinyuan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yilin Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Motonari Uesugi
- School of Pharmacy, Fudan University, Shanghai 201203, China
- Institute for Chemical Research and Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Zhi-Bei Qu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lu Zhou
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
14
|
Chen Y, Craven GB, Kamber RA, Cuesta A, Zhersh S, Moroz YS, Bassik MC, Taunton J. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes. Nat Chem 2023; 15:1616-1625. [PMID: 37460812 DOI: 10.1038/s41557-023-01281-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/23/2023] [Indexed: 11/05/2023]
Abstract
Advances in chemoproteomic technology have revealed covalent interactions between small molecules and protein nucleophiles, primarily cysteine, on a proteome-wide scale. Most chemoproteomic screening approaches are indirect, relying on competition between electrophilic fragments and a minimalist electrophilic probe with inherently limited proteome coverage. Here we develop a chemoproteomic platform for direct electrophile-site identification based on enantiomeric pairs of clickable arylsulfonyl fluoride probes. Using stereoselective site modification as a proxy for ligandability in intact cells, we identify 634 tyrosines and lysines within functionally diverse protein sites, liganded by structurally diverse probes. Among multiple validated sites, we discover a chiral probe that modifies Y228 in the MYC binding site of the epigenetic regulator WDR5, as revealed by a high-resolution crystal structure. A distinct chiral probe stimulates tumour cell phagocytosis by covalently modifying Y387 in the recently discovered immuno-oncology target APMAP. Our work provides a deep resource of ligandable tyrosines and lysines for the development of covalent chemical probes.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Adolfo Cuesta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yurii S Moroz
- National Taras Shevchenko University of Kyiv, Kyiv, Ukraine
- Chemspace LLC, Kyiv, Ukraine
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Nowak RP, Ragosta L, Huerta F, Liu H, Ficarro SB, Cruite JT, Metivier RJ, Donovan KA, Marto JA, Fischer ES, Zerfas BL, Jones LH. Development of a covalent cereblon-based PROTAC employing a fluorosulfate warhead. RSC Chem Biol 2023; 4:906-912. [PMID: 37920397 PMCID: PMC10619143 DOI: 10.1039/d3cb00103b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 11/04/2023] Open
Abstract
Many cereblon (CRBN) ligands have been used to develop proteolysis targeting chimeras (PROTACs), but all are reversible binders of the E3 ubiquitin ligase. We recently described the use of sulfonyl exchange chemistry to design binders that covalently engage histidine 353 in CRBN for the first time. Here we show that covalent CRBN ligands can be used to develop efficient PROTAC degraders. We demonstrate that the fluorosulfate PROTAC FS-ARV-825 covalently labels CRBN in vitro, and in cells the BRD4 degrader is insensitive to wash-out and competition by potent reversible CRBN ligands, reflecting enhanced pharmacodynamics. We anticipate that covalent CRBN-based PROTACs will enhance degradation efficiencies, thus expanding the scope of addressable targets using the heterobifunctional degrader modality.
Collapse
Affiliation(s)
- Radosław P Nowak
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Leah Ragosta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Fidel Huerta
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
| | - Hu Liu
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Scott B Ficarro
- Department of Cancer Biology, Department of Oncologic Pathology, and Blais Proteomics Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute Boston MA USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
| | - Justin T Cruite
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Rebecca J Metivier
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Katherine A Donovan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Jarrod A Marto
- Department of Cancer Biology, Department of Oncologic Pathology, and Blais Proteomics Center, and Center for Emergent Drug Targets, Dana-Farber Cancer Institute Boston MA USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
| | - Eric S Fischer
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA USA
| | - Breanna L Zerfas
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| |
Collapse
|
16
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
17
|
Aatkar A, Vuorinen A, Longfield OE, Gilbert K, Peltier-Heap R, Wagner CD, Zappacosta F, Rittinger K, Chung CW, House D, Tomkinson NCO, Bush JT. Efficient Ligand Discovery Using Sulfur(VI) Fluoride Reactive Fragments. ACS Chem Biol 2023; 18:1926-1937. [PMID: 37084287 PMCID: PMC10510102 DOI: 10.1021/acschembio.3c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
Sulfur(VI) fluorides (SFs) have emerged as valuable electrophiles for the design of "beyond-cysteine" covalent inhibitors and offer potential for expansion of the liganded proteome. Since SFs target a broad range of nucleophilic amino acids, they deliver an approach for the covalent modification of proteins without requirement for a proximal cysteine residue. Further to this, libraries of reactive fragments present an innovative approach for the discovery of ligands and tools for proteins of interest by leveraging a breadth of mass spectrometry analytical approaches. Herein, we report a screening approach that exploits the unique properties of SFs for this purpose. Libraries of SF-containing reactive fragments were synthesized, and a direct-to-biology workflow was taken to efficiently identify hit compounds for CAII and BCL6. The most promising hits were further characterized to establish the site(s) of covalent modification, modification kinetics, and target engagement in cells. Crystallography was used to gain a detailed molecular understanding of how these reactive fragments bind to their target. It is anticipated that this screening protocol can be used for the accelerated discovery of "beyond-cysteine" covalent inhibitors.
Collapse
Affiliation(s)
- Arron Aatkar
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Aini Vuorinen
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Oliver E. Longfield
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Katharine Gilbert
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Rachel Peltier-Heap
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Craig D. Wagner
- GSK, South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | | | | | - Chun-wa Chung
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - David House
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| | - Nicholas C. O. Tomkinson
- Department
of Pure and Applied Chemistry, University
of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Jacob T. Bush
- GSK, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
- The
Francis Crick Institute, London NW1 1AT, U.K.
| |
Collapse
|
18
|
Li XQ, Liao QQ, Lai J, Liao YY. Visible-light-mediated sulfonylation of anilines with sulfonyl fluorides. Front Chem 2023; 11:1267223. [PMID: 37693172 PMCID: PMC10485258 DOI: 10.3389/fchem.2023.1267223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Sulfonylaniline motif plays an important role in pharmaceutical sciences. Developed methods towards this structure are typically lack of good modifiability and stability. In this study, visible-light-mediated sulfonylation of aniline using sulfonyl fluoride as a modifiable and stable sulfonylation reagent is described. A variety of substituted sulfonylanilines were synthesized under mild reaction conditions with moderate to good efficiency. The example of late-stage sulfonylation highlighted the advantage of using sulfonyl fluoride as a sulfonylation reagent. In addition, the crucial influence of counterions on the photocatalyst observed in this system would inspire further research on the photochemistry of sulfonyl fluoride.
Collapse
Affiliation(s)
- Xin-Qing Li
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Qian-Qian Liao
- Department of Pharmacy, People’s Hospital of Guilin, Guilin, China
| | - Jun Lai
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Yuan-Yue Liao
- Department of Pharmacy, Ganzhou People’s Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| |
Collapse
|
19
|
Landgraf A, Yeh IJ, Ghozayel MK, Bum-Erdene K, Gonzalez-Gutierrez G, Meroueh SO. Exploring Covalent Bond Formation at Tyr-82 for Inhibition of Ral GTPase Activation. ChemMedChem 2023; 18:e202300272. [PMID: 37269475 PMCID: PMC10529880 DOI: 10.1002/cmdc.202300272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Ral RAS GTPases are directly activated by KRAS through a trimeric complex with a guanine exchange factor. Ral is considered undruggable and lacks an accessible cysteine for covalent drug development. Previously we had reported an aryl sulfonyl fluoride fragment that formed a covalent bond at Tyr-82 on Ral and created a deep and well-defined pocket. Here, we explore this pocket further through design and synthesis of several fragment derivatives. The fragment core is modified by introducing tetrahydronaphthalene or benzodioxane rings to enhance affinity and stability of the sulfonyl fluoride reactive group. The deep pocket in the Switch II region is also explored by modifying the aromatic ring of the fragment that is ensconced into the pocket. Compounds 19 (SOF-658) and 26 (SOF-648) formed a single robust adduct specifically at Tyr-82, inhibited Ral GTPase exchange in buffer and in mammalian cells, and blocked invasion of pancreatic ductal adenocarcinoma cancer cells. Compound 19 (SOF-658) was stable in buffer, mouse, and human microsomes suggesting that further optimization could lead to small molecules to probe Ral activity in tumor models.
Collapse
Affiliation(s)
- Alexander Landgraf
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - I-Ju Yeh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mona K. Ghozayel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Khuchtumur Bum-Erdene
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Samy O. Meroueh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
20
|
Huang H, Jones LH. Covalent drug discovery using sulfur(VI) fluoride exchange warheads. Expert Opin Drug Discov 2023:1-11. [PMID: 37243622 DOI: 10.1080/17460441.2023.2218642] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Covalent drug discovery has traditionally focused on targeting cysteine, but the amino acid is often absent in protein binding sites. This review makes the case to move beyond cysteine labeling using sulfur (VI) fluoride exchange (SuFEx) chemistry to expand the druggable proteome. AREAS COVERED Recent advances in SuFEx medicinal chemistry and chemical biology are described, which have enabled the development of covalent chemical probes that site-selectively engage amino acid residues (including tyrosine, lysine, histidine, serine, and threonine) in binding pockets. Areas covered include chemoproteomic mapping of the targetable proteome, structure-based design of covalent inhibitors and molecular glues, metabolic stability profiling, and synthetic methodologies that have expedited the delivery of SuFEx modulators. EXPERT OPINION Despite recent innovations in SuFEx medicinal chemistry, focused preclinical research is required to ensure the field moves from early chemical probe discovery to the delivery of transformational covalent drug candidates. The authors believe that covalent drug candidates designed to engage residues beyond cysteine using sulfonyl exchange warheads will likely enter clinical trials in the coming years.
Collapse
Affiliation(s)
- Huang Huang
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Wu WQ, Qin HL. Synthesis of Pyrazolo[1,5- a]pyridinyl, Pyrazolo[1,5- a]quinolinyl, and Pyrazolo[5,1- a]isoquinolinyl Sulfonyl Fluorides via a [3 + 2] Annulation. J Org Chem 2023. [PMID: 36797220 DOI: 10.1021/acs.joc.2c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A [3 + 2] cycloaddition reaction of N-aminopyridines, N-aminoquinolines, and N-aminoisoquinolines with 1-bromoethene-1-sulfonyl fluoride (BESF) was performed to obtain optimum yields of various useful pyrazolo[1,5-a]pyridinyl, pyrazolo[1,5-a]quinolinyl, and pyrazolo[5,1-a]isoquinolinyl sulfonyl fluorides (43-90% yield). The transformation process showed broad substrate specificity, mild reaction conditions, and operational simplicity. Therefore, the reaction has great applicable value in the field of medicinal chemistry and other disciplines.
Collapse
Affiliation(s)
- Wen-Qian Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
22
|
Gilbert K, Vuorinen A, Aatkar A, Pogány P, Pettinger J, Grant EK, Kirkpatrick JM, Rittinger K, House D, Burley GA, Bush JT. Profiling Sulfur(VI) Fluorides as Reactive Functionalities for Chemical Biology Tools and Expansion of the Ligandable Proteome. ACS Chem Biol 2023; 18:285-295. [PMID: 36649130 PMCID: PMC9942091 DOI: 10.1021/acschembio.2c00633] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Here, we report a comprehensive profiling of sulfur(VI) fluorides (SVI-Fs) as reactive groups for chemical biology applications. SVI-Fs are reactive functionalities that modify lysine, tyrosine, histidine, and serine sidechains. A panel of SVI-Fs were studied with respect to hydrolytic stability and reactivity with nucleophilic amino acid sidechains. The use of SVI-Fs to covalently modify carbonic anhydrase II (CAII) and a range of kinases was then investigated. Finally, the SVI-F panel was used in live cell chemoproteomic workflows, identifying novel protein targets based on the type of SVI-F used. This work highlights how SVI-F reactivity can be used as a tool to expand the liganded proteome.
Collapse
Affiliation(s)
- Katharine
E. Gilbert
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Aini Vuorinen
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Arron Aatkar
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Peter Pogány
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | - Jonathan Pettinger
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Emma K. Grant
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
| | | | - Katrin Rittinger
- The
Francis Crick Institute, 1 Midland Road, LondonNW1 1AT, United Kingdom
| | - David House
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| | - Glenn A. Burley
- University
of Strathclyde, 295 Cathedral Street, GlasgowG11XL, United Kingdom
| | - Jacob T. Bush
- GlaxoSmithKline, Gunnels Wood Road, Stevenage, HertfordshireSG1 2NY, United Kingdom
- Crick-GSK
Biomedical LinkLabs, GlaxoSmithKline, Gunnels Wood Road, StevenageSG1 2NY, United Kingdom
| |
Collapse
|
23
|
Carneiro SN, Khasnavis SR, Lee J, Butler TW, Majmudar JD, Am Ende CW, Ball ND. Sulfur(VI) fluorides as tools in biomolecular and medicinal chemistry. Org Biomol Chem 2023; 21:1356-1372. [PMID: 36662157 PMCID: PMC9929716 DOI: 10.1039/d2ob01891h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Recent advances in the synthesis of sulfur(VI)-fluorides has enabled incredible growth in their application in biomolecular chemistry. This review aims to serve as a primer highlighting synthetic strategies toward a diversity of S(VI) fluorides and their application in chemical biology, bioconjugation, and medicinal chemistry.
Collapse
Affiliation(s)
- Sabrina N Carneiro
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Samuel R Khasnavis
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| | - Jisun Lee
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Todd W Butler
- Pfizer Worldwide Research, Development, Groton, Connecticut 06340, USA.
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | | | - Nicholas D Ball
- Department of Chemistry, Pomona College, Claremont, California 91711, USA.
| |
Collapse
|
24
|
Chen P, Tang G, Zhu C, Sun J, Wang X, Xiang M, Huang H, Wang W, Li L, Zhang ZM, Gao L, Yao SQ. 2-Ethynylbenzaldehyde-Based, Lysine-Targeting Irreversible Covalent Inhibitors for Protein Kinases and Nonkinases. J Am Chem Soc 2023; 145:3844-3849. [PMID: 36774655 DOI: 10.1021/jacs.2c11595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Lysine-targeting irreversible covalent inhibitors have attracted growing interests in recent years, especially in the fields of kinase research. Despite encouraging progress, few chemistries are available to develop inhibitors that are exclusively lysine-targeting, selective, and cell-active. We report herein a 2-ethynylbenzaldehyde (EBA)-based, lysine-targeting strategy to generate potent and selective small-molecule inhibitors of ABL kinase by selectively targeting the conserved catalytic lysine in the enzyme. We showed the resulting compounds were cell-active, capable of covalently engaging endogenous ABL kinase in K562 cells with long-residence time and few off-targets. We further validated the generality of this strategy by developing EBA-based irreversible inhibitors against EGFR (a kinase) and Mcl-1 (a nonkinase) that covalently reacted with the catalytic and noncatalytic lysine within each target.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
25
|
Brulet JW, Ciancone AM, Yuan K, Hsu K. Advances in Activity‐Based Protein Profiling of Functional Tyrosines in Proteomes. Isr J Chem 2023. [DOI: 10.1002/ijch.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Jeffrey W. Brulet
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Anthony M. Ciancone
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Kun Yuan
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
| | - Ku‐Lung Hsu
- Department of Chemistry University of Virginia Charlottesville Virginia 22904 United States (K.-L.H
- Department of Pharmacology University of Virginia School of Medicine Charlottesville Virginia 22908 United States
- Department of Molecular Physiology and Biological Physics University of Virginia Charlottesville Virginia 22908 United States
- University of Virginia Cancer Center University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
26
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Shinde A, Ugale SR, Nandurkar Y, Modak M, Chavan AP, Mhaske PC. Synthesis, Characterization, and Antimicrobial Activity Screening of Some Novel 3-(2-(3-(Substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline Derivatives as Potential Antimycobacterial Agents. ACS OMEGA 2022; 7:47096-47107. [PMID: 36570236 PMCID: PMC9773968 DOI: 10.1021/acsomega.2c06245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Microbial infections remain a grave threat to global health security due to increasing antibiotic resistance. The coronavirus pandemic has increased the risk of microbial infection. To combat these infections, the search for new therapeutic agents is in high demand. A series of new 3-(2-(3-(substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline (9a-i) derivatives have been synthesized. The structure of synthesized compounds was analyzed by spectroscopic methods. The newly synthesized oxetanyl-quinoline derivatives were evaluated for in vitro antibacterial activity against Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), Bacillus subtilis (NCIM 2063), Staphylococcus albus (NCIM 2178), and in vitro antifungal activity against Aspergillus niger (ATCC 504) and Candida albicans (NCIM 3100). Six oxetanyl-quinoline derivatives 9a, 9b, 9c, 9d, 9e, and 9h have shown good antibacterial activity against P. mirabilis with MIC 31.25-62.5 μM, 3-(((3-(2-fluoro-6-((8-fluoro-2-methylquinolin-3-yl)oxy)phenyl)oxetan-3-yl)oxy)methyl)benzonitrile (9f) reporting comparable activity against P. mirabilis with respect to the standard drug streptomycin. Compound 9a also showed good activity against B. subtilis with MIC 31.25 μM. The eight compounds 9a, 9b, 9d, 9e, 9f, 9g, 9h, and 9i have shown good antifungal activity against A. niger. The synthesized compounds were also screened for antimycobacterial activity against Mycobacterium tuberculosis H37Rv by MTT assay. Among the nine derivatives, compounds 9b, 9c, 9d, 9f, 9g, 9h, and 9i showed excellent antimycobacterial activity with MIC 3.41-12.23 μM, and two derivatives showed good activity with MIC 27.29-57.73 μM. All the derivatives were further evaluated for cytotoxicity against the Vero cell line and were found to be nontoxic. The in silico study of compounds 9a-i was performed against ATP synthase (PDB ID: 4V1F) and most of the compounds showed the stable and significant binding to ATP synthase, confirming their plausible mode of action as ATP synthase inhibitors. Thus, the significant antimycobacterial activity of 3-(2-(3-(substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline derivatives has suggested that the oxatenyl-quinoline compounds could assist in the development of lead compounds to treat mycobacterial infections.
Collapse
Affiliation(s)
- Abhijit Shinde
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| | - Sandip R. Ugale
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| | - Yogesh Nandurkar
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
- Department
of Chemistry, Nowrosjee Wadia College (Affiliated to Savitribai Phule Pune University), Pune 411 001, India
| | - Manisha Modak
- Department
of Zoology, S. P. Mandali’s Sir Parashurambhau
College (Affiliated to Savitribai Phule Pune University), Tilak Road, Pune 411 030, India
| | - Abhijit P. Chavan
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| | - Pravin C. Mhaske
- Post-Graduate
Department of Chemistry, S. P. Mandali’s
Sir Parashurambhau College (Affiliated to Savitribai
Phule Pune University), Tilak Road, Pune 411 030, India
| |
Collapse
|
28
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
29
|
Declas N, Maynard JRJ, Menin L, Gasilova N, Götze S, Sprague JL, Stallforth P, Matile S, Waser J. Tyrosine bioconjugation with hypervalent iodine. Chem Sci 2022; 13:12808-12817. [PMID: 36519034 PMCID: PMC9645396 DOI: 10.1039/d2sc04558c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Hypervalent iodine reagents have recently emerged as powerful tools for late-stage peptide and protein functionalization. Herein we report a tyrosine bioconjugation methodology for the introduction of hypervalent iodine onto biomolecules under physiological conditions. Tyrosine residues were engaged in a selective addition onto the alkynyl bond of ethynylbenziodoxolones (EBX), resulting in stable vinylbenziodoxolones (VBX) bioconjugates. The methodology was successfully applied to peptides and proteins and tolerated all other nucleophilic residues, with the exception of cysteine. The generated VBX were further functionalized by palladium-catalyzed cross-coupling and azide-alkyne cycloaddition reactions. The method could be successfully used to modify bioactive natural products and native streptavidin to enable thiol-mediated cellular uptake.
Collapse
Affiliation(s)
- Nina Declas
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - John R J Maynard
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Laure Menin
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Natalia Gasilova
- Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, EPFL 1015 Lausanne Switzerland
| | - Sebastian Götze
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Jakob L Sprague
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI) 07745 Jena Germany
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva 1211 Geneva Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
30
|
Che J, Jones LH. Covalent drugs targeting histidine - an unexploited opportunity? RSC Med Chem 2022; 13:1121-1126. [PMID: 36325394 PMCID: PMC9579939 DOI: 10.1039/d2md00258b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 09/30/2023] Open
Abstract
Covalent drugs and chemical probes often possess pharmacological advantages over reversible binding ligands, such as enhanced potency and pharmacodynamic duration. The highly nucleophilic cysteine thiol is commonly targeted using acrylamide electrophiles, but the amino acid is rarely present in protein binding sites. Sulfonyl exchange chemistry has expanded the covalent drug discovery toolkit by enabling the rational design of irreversible inhibitors targeting tyrosine, lysine, serine and threonine. Probes containing the sulfonyl fluoride warhead have also been shown to serendipitously label histidine residues in proteins. Histidine targeting is an attractive prospect because the residue is frequently proximal to protein small molecule ligands and the imidazole side chain possesses desirable nucleophilicity. We recently reported the design of cereblon molecular glues to site-selectively modify a histidine in the thalidomide binding site using sulfonyl exchange chemistry. We believe that histidine targeting holds great promise for future covalent drug development and this Opinion highlights these opportunities.
Collapse
Affiliation(s)
- Jianwei Che
- Center for Protein Degradation, Dana-Farber Cancer Institute 360 Longwood Avenue Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute 360 Longwood Avenue Boston MA USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA USA
| |
Collapse
|
31
|
Chemical and biology of Sulfur (VI) Fluoride Exchange (SuFEx) Click Chemistry for Drug Discovery. Bioorg Chem 2022; 130:106227. [DOI: 10.1016/j.bioorg.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022]
|
32
|
Zeng YZ, Wang JB, Qin HL. A reductive dehalogenative process for chemo- and stereoselective synthesis of 1,3-dienylsulfonyl fluorides. Org Biomol Chem 2022; 20:7776-7780. [PMID: 36168842 DOI: 10.1039/d2ob01434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the mild and efficient synthesis of 1,3-dienylsulfonyl fluorides was developed via dehalogenation of α-halo-1,3-dienylsulfonyl fluorides in the presence of zinc powder and acetic acid, achieving exclusive chemo- and stereoselectivities. This protocol was successfully applied to the synthesis of heterocyclic dienylsulfonyl fluorides and polyene sulfonyl fluoride.
Collapse
Affiliation(s)
- Yu-Zhen Zeng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Jian-Bai Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China. .,Changyi Tianyu Pharm. Co., Ltd., Weifang 261399, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
33
|
Cheng Y, Li G, Smedley CJ, Giel MC, Kitamura S, Woehl JL, Bianco G, Forli S, Homer JA, Cappiello JR, Wolan DW, Moses JE, Sharpless KB. Diversity oriented clicking delivers β-substituted alkenyl sulfonyl fluorides as covalent human neutrophil elastase inhibitors. Proc Natl Acad Sci U S A 2022; 119:e2208540119. [PMID: 36070343 PMCID: PMC9478681 DOI: 10.1073/pnas.2208540119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented β-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.
Collapse
Affiliation(s)
- Yunfei Cheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Gencheng Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Marie-Claire Giel
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia
| | - Seiya Kitamura
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jordan L. Woehl
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - John R. Cappiello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
34
|
Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev 2022; 42:1704-1734. [PMID: 35638460 DOI: 10.1002/med.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Many drugs can bind directly to proteins or be bioactivated by metabolizing enzymes to form reactive metabolites (RMs) that rapidly bind to proteins to form drug-protein conjugates or metabolite-protein conjugates (DMPCs). The close relationship between DMPCs and idiosyncratic adverse drug reactions (IADRs) has been recognized; drug discovery teams tend to avoid covalent interactions in drug discovery projects. Covalent interactions in DMPCs can provide high potency and long action duration and conquer the intractable targets, inspiring drug design, and development. This forms the dual role feature of DMPCs. Understanding the functional implications of DMPCs in IADR control and therapeutic applications requires precise identification of these conjugates from complex biological samples. While classical biochemical methods have contributed significantly to DMPC detection in the past decades, the low abundance and low coverage of DMPCs have become a bottleneck in this field. An emerging transformation toward shotgun proteomics is on the rise. The evolving shotgun proteomics techniques offer improved reproducibility, throughput, specificity, operability, and standardization. Here, we review recent progress in the systematic discovery of DMPCs using shotgun proteomics. Furthermore, the applications of shotgun proteomics supporting drug development, toxicity mechanism investigation, and drug repurposing processes are also reviewed and prospected.
Collapse
Affiliation(s)
- Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
35
|
Zhang W, Li H, Li X, Zou Z, Huang M, Liu J, Wang X, Ni S, Pan Y, Wang Y. A practical fluorosulfonylating platform via photocatalytic imidazolium-based SO 2F radical reagent. Nat Commun 2022; 13:3515. [PMID: 35717500 PMCID: PMC9206656 DOI: 10.1038/s41467-022-31296-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023] Open
Abstract
Sulfonyl fluorides are key components in the fields of chemical biology, materials science and drug discovery. In this line, the highly active SO2F radical has been employed for the construction of sulfonyl fluorides, but the utilization of gaseous ClSO2F as radical precursor is limited due to the tedious and hazardous preparation. Meanwhile, the synthesis of sulfonyl fluorides from inert SO2F2 gas through a fluorosulfonyl radical (·SO2F) process has met with inevitable difficulties due to the high homolytic bond dissociation energy of the S(VI)-F bond. Here we report a radical fluorosulfonylation strategy for the stereoselective synthesis of alkenyl sulfonyl fluorides and functional alkyl sulfonyl fluorides with an air-stable crystalline benzimidazolium fluorosulfonate cationic salt reagent. This bench-stable redox-active reagent offers a useful and operational protocol for the radical fluorosulfonylation of unsaturated hydrocarbons with good yield and high stereoselectivity, which can be further transformed into valuable functional SO2F moieties. Sulfonyl fluorides have potential application in chemical biology, materials science, and drug discovery, but their preparation remains challenging. Here, the authors report an air-stable fluorosulfonylating reagent that enables the radical fluorosulfonylation, hydrofluorosulfonylation and migratory SO2F-difunctionalization of unsaturated hydrocarbons to construct a variety of sulfonyl fluoride compounds.
Collapse
Affiliation(s)
- Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaojuan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
36
|
Yang WF, Shu T, Chen HR, Qin HL, Tang H. A cascade reaction for regioselective construction of pyrazole-containing aliphatic sulfonyl fluorides. Org Biomol Chem 2022; 20:3506-3510. [PMID: 35420611 DOI: 10.1039/d2ob00515h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed cascade reaction of α-diazocarbonyl compounds with ethenesulfonyl fluoride (ESF) is developed, affording a variety of highly functionalized pyrazolyl aliphatic sulfonyl fluorides in good to excellent yields (66-98%). This transformation features broad substrates, exclusive regioselectivity, high atom economy and operational simplicity, thus providing a straightforward method for the direct construction of pyrazole-containing aliphatic sulfonyl fluorides, which will provide great applicable value in medicinal chemistry and other related disciplines.
Collapse
Affiliation(s)
- Wen-Fei Yang
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Tao Shu
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Hong-Ru Chen
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haolin Tang
- School of Chemistry, Chemical Engineering and Life Sciences; and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
37
|
Zhang L, Cheng X, Zhou Q. Electrochemical Synthesis of Sulfonyl Fluorides with Triethylamine Hydrofluoride. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| | - Xu Cheng
- Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, National Demon‐stration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento‐Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
38
|
Kline GM, Nugroho K, Kelly JW. Inverse Drug Discovery identifies weak electrophiles affording protein conjugates. Curr Opin Chem Biol 2022; 67:102113. [PMID: 35065430 PMCID: PMC8940698 DOI: 10.1016/j.cbpa.2021.102113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Traditional biochemical target-based and phenotypic cell-based screening approaches to drug discovery have produced the current covalent and non-covalent pharmacopoeia. Strategies to expand the druggable proteome include Inverse Drug Discovery, which involves incubating one weak organic electrophile at a time with the proteins of a living cell to identify the conjugates formed. An alkyne substructure in each organic electrophile enables affinity chromatography-mass spectrometry, which produces a list of proteins that each distinct compound reacts with. Herein, we review Inverse Drug Discovery in the context of organic compounds of intermediate complexity harboring Sulfur(VI)-fluoride exchange (SuFEx) electrophiles used to expand the cellular proteins that can be targeted covalently.
Collapse
Affiliation(s)
- Gabriel M Kline
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Karina Nugroho
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
39
|
Grams RJ, Hsu KL. Reactive chemistry for covalent probe and therapeutic development. Trends Pharmacol Sci 2022; 43:249-262. [PMID: 34998611 PMCID: PMC8840975 DOI: 10.1016/j.tips.2021.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023]
Abstract
Bioactive small molecules that form covalent bonds with a target protein are important tools for basic research and can be highly effective drugs. This review highlights reactive groups found in a collection of thiophilic and oxophilic drugs that mediate pharmacological activity through a covalent mechanism of action (MOA). We describe the application of advanced proteomic and bioanalytical methodologies for assessing selectivity of these covalent agents to guide and inspire the search for additional electrophiles suitable for covalent probe and therapeutic development. While the emphasis is on chemistry for modifying catalytic serine, threonine or cysteine residues, we devote a substantial fraction of the review to a collection of exploratory reactive groups of understudied residues on proteins.
Collapse
Affiliation(s)
- R. Justin Grams
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA22908, USA; Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
40
|
Ma Z, Shan L, Ma X, Hu X, Guo Y, Chen QY, Liu C. Arenesulfonyl fluoride synthesis via one-pot copper-free Sandmeyer-type three-component reaction of aryl amine, K2S2O5, and NFSI. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Lou TSB, Willis MC. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 2022; 6:146-162. [PMID: 37117299 DOI: 10.1038/s41570-021-00352-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
The advent of sulfur(VI)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur-fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.
Collapse
|
42
|
Zhang G, Guan C, Zhao Y, Miao H, Ding C. ‘Awaken’ aryl sulfonyl fluoride: a new partner in the Suzuki–Miyaura coupling reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05469d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An example of the activation of the –SO2F group, which is traditionally considered a stable group even in the presence of a transition metal, is described using a novel partner in the Suzuki–Miyaura coupling reaction catalyzed by Pd(OAc)2 and Ruphos as ligands.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chenfei Guan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yiyong Zhao
- Zhejiang Ecological Environment Low Carbon Development Center, Hangzhou, 310012, P. R. China
| | - Huihui Miao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
43
|
Seyed Hashtroudi, M, Fathi V, Balalaie S. Applications of DABSO as an SO2 Gas Surrogate in Organic Synthesis. Org Biomol Chem 2022; 20:2149-2163. [DOI: 10.1039/d1ob02199k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,4-Diazabicyclo[2.2.2]octane bis(sulfur dioxide), DABCO.SO2, or DABSO, a bench-stable colorless solid, is industrially produced by the reaction of DABCO with the condensed and bubbled sulfur dioxide gas at low temperatures. However,...
Collapse
|
44
|
Zhang D, Lu M, Chen C, Xu Y, Peng T. Fatty Acyl Sulfonyl Fluoride as an Activity-Based Probe for Profiling Fatty Acid-Associated Proteins in Living Cells. Chembiochem 2021; 23:e202100628. [PMID: 34918441 DOI: 10.1002/cbic.202100628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Fatty acids play fundamental structural, metabolic, functional, and signaling roles in all biological systems. Altered fatty acid levels and metabolism have been associated with many pathological conditions. Chemical probes have greatly facilitated biological studies on fatty acids. Herein, we report the development and characterization of an alkynyl-functionalized long-chain fatty acid-based sulfonyl fluoride probe for covalent labelling, enrichment, and identification of fatty acid-associated proteins in living cells. Our quantitative chemical proteomics show that this sulfonyl fluoride probe targets diverse classes of fatty acid-associated proteins including many metabolic serine hydrolases that are known to be involved in fatty acid metabolism and modification. We further validate that the probe covalently modifies the catalytically or functionally essential serine or tyrosine residues of its target proteins and enables evaluation of their inhibitors. The sulfonyl fluoride-based chemical probe thus represents a new tool for profiling the expression and activity of fatty acid-associated proteins in living cells.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Chengjie Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| |
Collapse
|
45
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Depienne S, Alvarez-Dorta D, Croyal M, Temgoua RCT, Charlier C, Deniaud D, Mével M, Boujtita M, Gouin SG. Luminol anchors improve the electrochemical-tyrosine-click labelling of proteins. Chem Sci 2021; 12:15374-15381. [PMID: 34976358 PMCID: PMC8635215 DOI: 10.1039/d1sc04809k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
New methods for chemo-selective modifications of peptides and native proteins are important in chemical biology and for the development of therapeutic conjugates. Less abundant and uncharged amino-acid residues are interesting targets to form less heterogeneous conjugates and preserve biological functions. Phenylurazole (PhUr), N-methylphenylurazole (NMePhUr) and N-methylluminol (NMeLum) derivatives were described as tyrosine (Y) anchors after chemical or enzymatic oxidations. Recently, we developed the first electrochemical Y-bioconjugation method coined eY-click to activate PhUr in biocompatible media. In this work, we assessed the limitations, benefits and relative efficiencies of eY-click conjugations performed with a set of PhUr, NMePhUr and NMeLum derivatives. Results evidenced a high efficiency of NMeLum that showed a complete Y-chemoselectivity on polypeptides and biologically relevant proteins after soft electrochemical activation. Side reactions on nucleophilic or heteroaromatic amino-acids such as lysine or tryptophan were never observed during mass spectrometry analysis. Myoglobine, bovine serum albumin, a plant mannosidase, glucose oxidase and the therapeutically relevant antibody trastuzumab were efficiently labelled with a fluorescent probe in a two-step approach combining eY-click and strain-promoted azide–alkyne cyclization (SPAAC). The proteins conserved their structural integrity as observed by circular dichroism and the trastuzumab conjugate showed a similar binding affinity for the natural HER2 ligand as shown by bio-layer interferometry. Compared to our previously described protocol with PhUr, eY-click with NMeLum species showed faster reaction kinetics, higher (complete) Y-chemoselectivity and reactivity, and offers the interesting possibility of the double tagging of solvent-exposed Y. We assessed the relative efficiencies of tyrosine anchors in the electrochemical conjugation of peptides and proteins. Luminol derivatives showed faster reaction kinetics, complete tyrosine-chemoselectivity, and possible double modification.![]()
Collapse
Affiliation(s)
| | | | - Mikael Croyal
- Université de Nantes, CNRS, INSERM, L'institut du Thorax F-44000 Nantes France.,Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556 F-44000 Nantes France.,CRNH-Ouest Mass Spectrometry Core Facility F-44000 Nantes France
| | | | - Cathy Charlier
- IMPACT Platform, Interactions Moléculaires Puces ACTivités, UMR CNRS 6286 UFIP, Université de Nantes F-44000 Nantes France
| | - David Deniaud
- Université de Nantes, CNRS, CEISAM UMR 6230 F-44000 Nantes France
| | - Mathieu Mével
- Université de Nantes, CNRS, CEISAM UMR 6230 F-44000 Nantes France .,INSERM UMR 1089, Université de Nantes, CHU de Nantes 44200 Nantes France
| | | | | |
Collapse
|
47
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
48
|
Zhang X, Huang YM, Qin HL, Baoguo Z, Rakesh KP, Tang H. Copper-Promoted Conjugate Addition of Carboxylic Acids to Ethenesulfonyl Fluoride (ESF) for Constructing Aliphatic Sulfonyl Fluorides. ACS OMEGA 2021; 6:25972-25981. [PMID: 34660959 PMCID: PMC8515394 DOI: 10.1021/acsomega.1c02804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 05/06/2023]
Abstract
A CuO-promoted direct hydrocarboxylation of ethenesulfonyl fluoride (ESF) was developed using carboxylic acid as a nucleophile under mild conditions. A variety of molecules containing both ester group and aliphatic sulfonyl fluoride moiety exhibit great potential in medicinal chemistry and chemical biology. Furthermore, the modification of the known drugs Ibuprofen and Aspirin was also demonstrated.
Collapse
Affiliation(s)
- Xu Zhang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu-Mei Huang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hua-Li Qin
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhang Baoguo
- Lab
of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, China
| | - K. P. Rakesh
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- School
of Chemistry, Chemical Engineering and Life Science and State Key
Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
49
|
Labenski MT, Bateman LA, Voortman LT, Giammo G, Cantin S, Qiao L, Corin AF. SMaSh: A Streptavidin Mass Shift Assay for Rapidly Quantifying Target Occupancy by Irreversible Inhibitors. Biochemistry 2021; 60:2915-2924. [PMID: 34554726 DOI: 10.1021/acs.biochem.1c00422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The streptavidin mass shift (SMaSh) assay is a robust and fast approach for quantifying target protein occupancy by a covalent inhibitor or ligand. It exploits the biotin-streptavidin bond using the Simple Western platform. One measurement on a single sample determines both total and occupied target protein simultaneously and is, therefore, self-normalizing. The approach works in diverse and complex biological matrices and, with no need for matched vehicle-treated controls, readily applies to tissues from animal pharmacology models. Assessing occupancy is critical in the development of targeted covalent drugs. We demonstrate its use by characterizing and validating a variety of chemical probes for Bruton's tyrosine kinase (BTK, UniprotKB Q10607) and mitogen-activated protein kinase (ERK1/2/MAPK1/2, UniprotKB P28482 and P27361) and determining target engagement of covalent inhibitors for both targets and off-target engagement for ERK. We demonstrated that it works in cell lysates, tissues, and human peripheral blood mononuclear cells. The SMaSh assay is superior to traditional methods and broadly useful as a tool in assessing covalent biological probes or targeted covalent inhibitors.
Collapse
Affiliation(s)
- Matthew T Labenski
- Bristol Myers Squibb, 3401 Princeton Pike, Princeton, New Jersey 08648, United States
| | - Leslie A Bateman
- Bristol Myers Squibb, 3401 Princeton Pike, Princeton, New Jersey 08648, United States
| | - Lukas T Voortman
- Bristol Myers Squibb, 3401 Princeton Pike, Princeton, New Jersey 08648, United States
| | - Giulia Giammo
- Bristol Myers Squibb, 3401 Princeton Pike, Princeton, New Jersey 08648, United States
| | - Susan Cantin
- Bristol Myers Squibb, 3401 Princeton Pike, Princeton, New Jersey 08648, United States
| | - Lixin Qiao
- Bristol Myers Squibb, 3401 Princeton Pike, Princeton, New Jersey 08648, United States
| | - Alan F Corin
- Bristol Myers Squibb, 3401 Princeton Pike, Princeton, New Jersey 08648, United States
| |
Collapse
|
50
|
Zhong T, Chen Z, Yi J, Lu G, Weng J. Recent progress in the synthesis of sulfonyl fluorides for SuFEx click chemistry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|