1
|
Schulze C, Danielsson A, Liwo A, Huster D, Samsonov SA, Penk A. Ligand binding of interleukin-8: a comparison of glycosaminoglycans and acidic peptides. Phys Chem Chem Phys 2023; 25:24930-24947. [PMID: 37694394 DOI: 10.1039/d3cp02457a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recognition and binding of regulatory proteins to glycosaminoglycans (GAGs) from the extracellular matrix is a process of high biological importance. The interaction between negatively charged sulfate or carboxyl groups of the GAGs and clusters of basic amino acids on the protein is crucial in this binding process and it is believed that electrostatics represent the key factor for this interaction. However, given the rather undirected nature of electrostatics, it is important to achieve a clear understanding of its role in protein-GAG interactions and how specificity and selectivity in these systems can be achieved, when the classical key-lock binding motif is not applicable. Here, we compare protein binding of a highly charged heparin (HP) hexasaccharide with four de novo designed decapeptides of varying negative net charge. The charge density of these peptides was comparable to typical GAGs of the extracellular matrix. We used the regulatory protein interleukin-8 (IL-8) because its interactions with GAGs are well described. All four peptide ligands bind to the same epitope of IL-8 but show much weaker binding affinity as revealed in 1H-15N HSQC NMR titration experiments. Complementary molecular docking and molecular dynamics simulations revealed further atomistic details of the interaction mode of GAG versus peptide ligands. Overall, similar contributions to the binding energy and hydrogen bond formation are determined for HP and the highly charged peptides, suggesting that the entropic loss of the peptides upon binding likely account for the remarkably different affinity of GAG versus peptide ligands to IL-8.
Collapse
Affiliation(s)
- Christian Schulze
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| | - Annemarie Danielsson
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Adam Liwo
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Fahrenheit Union of Universities, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Anja Penk
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany.
| |
Collapse
|
2
|
Dhurua S, Jana M. Understanding Conformational Properties and Role of Hydrogen Bonds in Glycosaminoglycans-Interleukin8 Complexes in Aqueous Medium by Molecular Dynamics Simulation. Chemphyschem 2023; 24:e202200440. [PMID: 36239153 DOI: 10.1002/cphc.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Indexed: 11/11/2022]
Abstract
Atomistic molecular dynamics simulations were performed under ambient conditions to explore the conformational features and binding affinities of hexameric glycosaminoglycans (GAGs) with chemokine Interleukin8 (IL8) in an aqueous medium. We tried to understand the role of hydrogen bonds (HBs) involving conserved water in mediating the interactions. The Luzar-Chandler model was adopted to study the kinetics of HB breaking and formation concerning different water-mediated HBs. The conformational flexibilities of bound GAGs are due to the flexible glycosidic linkages than the occasional/rare ring pucker conformation. The free energy landscape constructed with ϕ, and ψ, depicted that different conformational minima associated with the glycosidic linkage flexibility of the GAGs in bound states are separated by energy barriers. The binding affinities of IL8 towards GAGs are favored through the electrostatic and non-polar solvation interactions. 4-different types of conserved water were explored in the solvent-mediated binding of GAGs with IL8. The average lifetime of the IL8-GAG direct HB pairs was ∼ten times less than the IL8-GAG-shared water HBs. This is due to the rapid establishment of HB breaking and reformation kinetics involving water of a shared layer. We find that despite the highly negatively charged surface of GAGs, the IL8 surface populated by non-cationic amino acids could serve as a promising binding site in addition to the cationic surface of the protein.
Collapse
Affiliation(s)
- Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, 769008, Rourkela, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, 769008, Rourkela, India
| |
Collapse
|
3
|
Molecular dynamics simulations to understand glycosaminoglycan interactions in the free- and protein-bound states. Curr Opin Struct Biol 2022; 74:102356. [DOI: 10.1016/j.sbi.2022.102356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
|
4
|
Nagarajan B, Desai U. Aqueous Molecular Dynamics for Understanding Glycosaminoglycan Recognition by Proteins. Methods Mol Biol 2022; 2303:49-62. [PMID: 34626369 DOI: 10.1007/978-1-0716-1398-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are biopolymers that exist in most organisms. GAGs are known to bind to hundreds of proteins and partake in multiple biological processes such as growth, morphogenesis, inflammation, infection, and others. Their intrinsic structural heterogeneity and conformational variability introduce major challenges in experimental studies. On the other hand, recent advances in force field development and computational technology have yielded phenomenal opportunity to study thousands of GAG sequences simultaneously to understand recognition of target protein(s). Here, we describe experimental setup for conventional molecular dynamics simulations of GAGs to position an experimental biologist favorably in performance, analysis and interpretation of stability, specificity, and conformational properties of GAGs, while also elucidating their interactions with amino acid residues of a protein at an atomistic level in presence of water.
Collapse
Affiliation(s)
- Balaji Nagarajan
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA.
| | - Umesh Desai
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Marcisz M, Zacharias M, Samsonov SA. Modeling Protein-Glycosaminoglycan Complexes: Does the Size Matter? J Chem Inf Model 2021; 61:4475-4485. [PMID: 34494837 PMCID: PMC8479808 DOI: 10.1021/acs.jcim.1c00664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Docking glycosaminoglycans (GAGs) has been challenging because
of the complex nature of these long periodic linear and negatively
charged polysaccharides. Although standard docking tools like Autodock3
are successful when docking GAGs up to hexameric length, they experience
challenges to properly dock longer GAGs. Similar limitations concern
other docking approaches typically developed for docking ligands of
limited size to proteins. At the same time, most of more advanced
docking approaches are challenging for a user who is inexperienced
with complex in silico methodologies. In this work,
we evaluate the binding energies of complexes with different lengths
of GAGs using all-atom molecular dynamics simulations. Based on this
analysis, we propose a new docking protocol for long GAGs that consists
of conventional docking of short GAGs and further elongation with
the use of a coarse-grained representation of the GAG parts not being
in direct contact with its protein receptor. This method automated
by a simple script is straightforward to use within the Autodock3
framework but also useful in combination with other standard docking
tools. We believe that this method with some minor case-specific modifications
could also be used for docking other linear charged polymers.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Martin Zacharias
- Center of Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
6
|
Marcisz M, Maszota-Zieleniak M, Huard B, Samsonov SA. Advanced Molecular Dynamics Approaches to Model a Tertiary Complex APRIL/TACI with Long Glycosaminoglycans. Biomolecules 2021; 11:biom11091349. [PMID: 34572563 PMCID: PMC8465899 DOI: 10.3390/biom11091349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/05/2023] Open
Abstract
Glycosaminoglycans (GAGs) are linear anionic periodic polysaccharides participating in a number of biologically relevant processes in the extracellular matrix via interactions with their protein targets. Due to their periodicity, conformational flexibility, pseudo-symmetry of the sulfation pattern, and the key role of electrostatics, these molecules are challenging for both experimental and theoretical approaches. In particular, conventional molecular docking applied for GAGs longer than 10-mer experiences severe difficulties. In this work, for the first time, 24- and 48-meric GAGs were docked using all-atomic repulsive-scaling Hamiltonian replica exchange molecular dynamics (RS-REMD), a novel methodology based on replicas with van der Waals radii of interacting molecules being scaled. This approach performed well for proteins complexed with oligomeric GAGs and is independent of their length, which distinguishes it from other molecular docking approaches. We built a model of long GAGs in complex with a proliferation-inducing ligand (APRIL) prebound to its receptors, the B cell maturation antigen and the transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI). Furthermore, the prediction power of the RS-REMD for this tertiary complex was evaluated. We conclude that the TACI–GAG interaction could be potentially amplified by TACI’s binding to APRIL. RS-REMD outperformed Autodock3, the docking program previously proven the best for short GAGs.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.M.); (M.M.-Z.)
- Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Martyna Maszota-Zieleniak
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.M.); (M.M.-Z.)
| | - Bertrand Huard
- Laboratory TIMC-IMAG, University Grenoble-Alpes, CNRS UMR 5525, 38700 La Tronche, France;
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; (M.M.); (M.M.-Z.)
- Correspondence: ; Tel.: +48-58-523-51-66
| |
Collapse
|
7
|
Künze G, Huster D, Samsonov SA. Investigation of the structure of regulatory proteins interacting with glycosaminoglycans by combining NMR spectroscopy and molecular modeling - the beginning of a wonderful friendship. Biol Chem 2021; 402:1337-1355. [PMID: 33882203 DOI: 10.1515/hsz-2021-0119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022]
Abstract
The interaction of regulatory proteins with extracellular matrix or cell surface-anchored glycosaminoglycans (GAGs) plays important roles in molecular recognition, wound healing, growth, inflammation and many other processes. In spite of their high biological relevance, protein-GAG complexes are significantly underrepresented in structural databases because standard tools for structure determination experience difficulties in studying these complexes. Co-crystallization with subsequent X-ray analysis is hampered by the high flexibility of GAGs. NMR spectroscopy experiences difficulties related to the periodic nature of the GAGs and the sparse proton network between protein and GAG with distances that typically exceed the detection limit of nuclear Overhauser enhancement spectroscopy. In contrast, computer modeling tools have advanced over the last years delivering specific protein-GAG docking approaches successfully complemented with molecular dynamics (MD)-based analysis. Especially the combination of NMR spectroscopy in solution providing sparse structural constraints with molecular docking and MD simulations represents a useful synergy of forces to describe the structure of protein-GAG complexes. Here we review recent methodological progress in this field and bring up examples where the combination of new NMR methods along with cutting-edge modeling has yielded detailed structural information on complexes of highly relevant cytokines with GAGs.
Collapse
Affiliation(s)
- Georg Künze
- Center for Structural Biology, Vanderbilt University, 465 21st Ave S, 5140 MRB3, Nashville, TN37240, USA.,Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN37235, USA.,Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, D-04103Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, University of Leipzig, Härtelstr. 16-18, D-04107Leipzig, Germany
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, Ul. Wita Stwosza 63, 80-308Gdańsk, Poland
| |
Collapse
|
8
|
Marcisz M, Huard B, Lipska AG, Samsonov SA. Further analyses of APRIL/APRIL-Receptor/Glycosaminoglycan interactions by biochemical assays linked to computational studies. Glycobiology 2021; 31:772-786. [PMID: 33682874 DOI: 10.1093/glycob/cwab016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor superfamily. APRIL is quite unique in this superfamily for at least for two reasons: i) it binds to glycosaminoglycans (GAGs) via its positively charged N-terminus; ii) one of its signaling receptor, the transmembrane activator CAML interactor (TACI) was also reported to bind GAGs. Here, as provided by biochemical evidences with the use of an APRIL deletion mutant linked to computational studies, APRIL-GAG interaction involved other regions than the APRIL N-terminus. Preferential interaction of APRIL with heparin followed by chondroitin sulfate E were confirmed by in silico analysis. Both computational and experimental approaches did not reveal heparan sulfate binding to TACI. Together, computational results corroborated experiments contributing with atomistic details to the knowledge on this biologically relevant trimolecular system. Additionally, a high-throughput rigorous analysis of the free energy calculations data was performed to critically evaluate the applied computational methodologies.
Collapse
Affiliation(s)
- Mateusz Marcisz
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.,Intercollegiate Faculty of Biotechnology of UG and MUG, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Bertrand Huard
- TIMC-IMAG, university Grenoble-Alpes, CNRS UMR 5525, La Tronche, France
| | - Agnieszka G Lipska
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
9
|
Uciechowska-Kaczmarzyk U, Chauvot de Beauchene I, Samsonov SA. Docking software performance in protein-glycosaminoglycan systems. J Mol Graph Model 2019; 90:42-50. [PMID: 30959268 DOI: 10.1016/j.jmgm.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/09/2023]
Abstract
We present a benchmarking study for protein-glycosaminoglycan systems with eight docking programs: Dock, rDock, ClusPro, PLANTS, HADDOCK, Hex, SwissDock and ATTRACT. We used a non-redundant representative dataset of 28 protein-glycosaminoglycan complexes with experimentally available structures, where a glycosaminoglycan ligand was longer than a trimer. Overall, the ligand binding poses could be correctly predicted in many cases by the tested docking programs, however the ranks of the docking poses are often poorly assigned. Our results suggest that Dock program performs best in terms of the pose placement, has the most suitable scoring function, and its performance did not depend on the ligand size. This suggests that the implementation of the electrostatics as well as the shape complementarity procedure in Dock are the most suitable for docking glycosaminoglycan ligands. We also analyzed how free energy patterns of the benchmarking complexes affect the performance of the evaluated docking software.
Collapse
Affiliation(s)
- Urszula Uciechowska-Kaczmarzyk
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | | | - Sergey A Samsonov
- Laboratory of Molecular Modeling, Department of Theoretical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| |
Collapse
|
10
|
Semenyuk P, Muronetz V. Protein Interaction with Charged Macromolecules: From Model Polymers to Unfolded Proteins and Post-Translational Modifications. Int J Mol Sci 2019; 20:E1252. [PMID: 30871103 PMCID: PMC6429204 DOI: 10.3390/ijms20051252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Interaction of proteins with charged macromolecules is involved in many processes in cells. Firstly, there are many naturally occurred charged polymers such as DNA and RNA, polyphosphates, sulfated glycosaminoglycans, etc., as well as pronouncedly charged proteins such as histones or actin. Electrostatic interactions are also important for "generic" proteins, which are not generally considered as polyanions or polycations. Finally, protein behavior can be altered due to post-translational modifications such as phosphorylation, sulfation, and glycation, which change a local charge of the protein region. Herein we review molecular modeling for the investigation of such interactions, from model polyanions and polycations to unfolded proteins. We will show that electrostatic interactions are ubiquitous, and molecular dynamics simulations provide an outstanding opportunity to look inside binding and reveal the contribution of electrostatic interactions. Since a molecular dynamics simulation is only a model, we will comprehensively consider its relationship with the experimental data.
Collapse
Affiliation(s)
- Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
11
|
Zhu J, Xia K, Yu W, Wang Y, Hua J, Liu B, Gong Z, Wang J, Xu A, You Z, Chen Q, Li F, Tao H, Liang C. Sustained release of GDF5 from a designed coacervate attenuates disc degeneration in a rat model. Acta Biomater 2019; 86:300-311. [PMID: 30660009 DOI: 10.1016/j.actbio.2019.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/23/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factors is regarded as a promising treatment, the efficacy of this approach in attenuating the disc degeneration process is limited by the short lifespan of growth factors. In our study, a unique growth factor delivery vehicle composed of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain GDF5 release. The results showed that sustained release of GDF5 by the PEAD:heparin delivery system promoted hADSC differentiation to an NP-like phenotype in vitro. After injection of the PEAD:heparin:GDF5 delivery platform and hADSCs into intervertebral spaces of coccygeal (Co) vertebrae Co7/Co8 and Co8/Co9 of the rat, the disc height, water content, and structure of the NPs decreased more slowly than other treatment groups. This new strategy may be used as an alternative treatment for attenuating intervertebral disc degeneration with hADSCs without the need for gene therapy. STATEMENT OF SIGNIFICANCE: Low back pain is often caused by intervertebral disc degeneration, which is characterized by nucleus pulposus (NP) and extracellular matrix (ECM) degeneration. Human adipose-derived stem cells (hADSCs) induced by growth and differentiation factor-5 (GDF-5) can differentiate into an NP-like phenotype. Although stem cell-based therapy with prolonged exposure to growth factor is regarded as a promising treatment, the efficacy of this approach in the disc regeneration process is limited by the short life of growth factors. In our study, a unique growth factor delivery vehicle comprised of heparin and the synthetic polycation poly(ethylene argininylaspartate diglyceride) (PEAD) was used to sustain the release of GDF-5. Numerous groups have explored IDD regeneration methods in vitro and in vivo. Our study differs in that GDF5 was incorporated into a vehicle through charge attraction and exhibited a sustained release profile. Moreover, GDF-5 seeded coacervate combined with hADSC injection could be a minimally invasive approach for tissue engineering that is suitable for clinical application. We investigated the stimulatory effects of our GDF-5 seeded coacervate on the differentiation of ADSCs in vitro and the reparative effect of the delivery system on degenerated NP in vivo.
Collapse
|
12
|
Samsonov SA, Zacharias M, Chauvot de Beauchene I. Modeling large protein-glycosaminoglycan complexes using a fragment-based approach. J Comput Chem 2019; 40:1429-1439. [PMID: 30768805 DOI: 10.1002/jcc.25797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/07/2022]
Abstract
Glycosaminoglycans (GAGs), a major constituent of the extracellular matrix, participate in cell-signaling by binding specific proteins. Structural data on protein-GAG interactions are crucial to understand and modulate these signaling processes, with potential applications in regenerative medicine. However, experimental and theoretical approaches used to study GAG-protein systems are challenged by GAGs high flexibility limiting the conformational sampling above a certain size, and by the scarcity of GAG-specific docking tools compared to protein-protein or protein-drug docking approaches. We present for the first time an automated fragment-based method for docking GAGs on a protein binding site. In this approach, trimeric GAG fragments are flexibly docked to the protein, assembled based on their spacial overlap, and refined by molecular dynamics. The method appeared more successful than the classical full-ligand approach for most of 13 tested complexes with known structure. The approach is particularly promising for docking of long GAG chains, which represents a bottleneck for classical docking approaches applied to these systems. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Martin Zacharias
- Physics Department, Technical University of Munich, James-Franck Strasse 1, 85748, Garching, Germany
| | - Isaure Chauvot de Beauchene
- CNRS, LORIA (CNRS, Inria NGE, Université de Lorraine), Campus Scientifique, 615 rue du Jardin Botanique, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
13
|
Bojarski KK, Sieradzan AK, Samsonov SA. Molecular dynamics insights into protein‐glycosaminoglycan systems from microsecond‐scale simulations. Biopolymers 2019; 110:e23252. [DOI: 10.1002/bip.23252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
14
|
Sankaranarayanan NV, Nagarajan B, Desai UR. So you think computational approaches to understanding glycosaminoglycan-protein interactions are too dry and too rigid? Think again! Curr Opin Struct Biol 2018; 50:91-100. [PMID: 29328962 PMCID: PMC6037615 DOI: 10.1016/j.sbi.2017.12.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/17/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) play key roles in virtually all biologic responses through their interaction with proteins. A major challenge in understanding these roles is their massive structural complexity. Computational approaches are extremely useful in navigating this bottleneck and, in some cases, the only avenue to gain comprehensive insight. We discuss the state-of-the-art on computational approaches and present a flowchart to help answer most basic, and some advanced, questions on GAG-protein interactions. For example, firstly, does my protein bind to GAGs?; secondly, where does the GAG bind?; thirdly, does my protein preferentially recognize a particular GAG type?; fourthly, what is the most optimal GAG chain length?; fifthly, what is the structure of the most favored GAG sequence?; and finally, is my GAG-protein system 'specific', 'non-specific', or a combination of both? Recent advances show the field is now poised to enable a non-computational researcher perform advanced experiments through the availability of various tools and online servers.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
15
|
Rajarathnam K, Sepuru KM, Joseph PRB, Sawant KV, Brown AJ. Glycosaminoglycan Interactions Fine-Tune Chemokine-Mediated Neutrophil Trafficking: Structural Insights and Molecular Mechanisms. J Histochem Cytochem 2018; 66:229-239. [PMID: 29290145 PMCID: PMC5958375 DOI: 10.1369/0022155417739864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Circulating neutrophils, rapidly recruited in response to microbial infection, form the first line in host defense. Humans express ~50 chemokines, of which a subset of seven chemokines, characterized by the conserved "Glu-Leu-Arg" motif, mediate neutrophil recruitment. Neutrophil-activating chemokines (NACs) share similar structures, exist as monomers and dimers, activate the CXCR2 receptor on neutrophils, and interact with tissue glycosaminoglycans (GAGs). Considering cellular assays have shown that NACs have similar CXCR2 activity, the question has been and remains, why do humans express so many NACs? In this review, we make the case that NACs are not redundant and that distinct GAG interactions determine chemokine-specific in vivo functions. Structural studies have shown that the GAG-binding interactions of NACs are distinctly different, and that conserved and specific residues in the context of structure determine geometries that could not have been predicted from sequences alone. Animal studies indicate recruitment profiles of monomers and dimers are distinctly different, monomer-dimer equilibrium regulates recruitment, and that recruitment profiles vary between chemokines and between tissues, providing evidence that GAG interactions orchestrate neutrophil recruitment. We propose in vivo GAG interactions impact several chemokine properties including gradients and lifetime, and that these interactions fine-tune and define the functional response of each chemokine that can vary between different cell and tissue types for successful resolution of inflammation.
Collapse
Affiliation(s)
- Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Krishna Mohan Sepuru
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Prem Raj B Joseph
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Kirti V Sawant
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| | - Aaron J Brown
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
16
|
Almond A. Multiscale modeling of glycosaminoglycan structure and dynamics: current methods and challenges. Curr Opin Struct Biol 2017; 50:58-64. [PMID: 29253714 DOI: 10.1016/j.sbi.2017.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/24/2017] [Accepted: 11/26/2017] [Indexed: 01/24/2023]
Abstract
Glycosaminoglycans are long unbranched and complex polysaccharides that are an essential component of mammalian extracellular matrices. Characterization of their molecular structure, dynamics and interactions are essential to understand important biological phenomena in health and disease, and will lead to novel therapeutics and medical devices. However, this has proven to be a challenge experimentally and theoretical techniques are needed to develop new hypotheses, and interpret experiments. This review aims to examine the current theoretical (rather than experimental) methods used by researchers to investigate glycosaminoglycan structure, dynamics and interactions, from the monosaccharide to the macromolecular scale. It will consider techniques such as quantum mechanics, molecular mechanics, molecular dynamics, coarse graining and docking.
Collapse
Affiliation(s)
- Andrew Almond
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
17
|
Dominguez H. Interaction of the interleukin 8 protein with a sodium dodecyl sulfate micelle: A computer simulation study. J Mol Model 2017. [DOI: 10.1007/s00894-017-3386-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Babik S, Samsonov SA, Pisabarro MT. Computational drill down on FGF1-heparin interactions through methodological evaluation. Glycoconj J 2017; 34:427-440. [PMID: 27858202 PMCID: PMC5487771 DOI: 10.1007/s10719-016-9745-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/22/2023]
Abstract
Glycosaminoglycans (GAGs) exhibit a key role in cellular communication processes through interactions with target proteins of the extracellular matrix (ECM). The sandwich-like interaction established between Fibroblast growth factor (FGF) and heparin (HE) represents quite a peculiar protein-GAG-protein system, which has been both structurally and functionally intensively studied. The molecular recognition characteristics of this system have been exploited in various computational studies in order to deepen understanding of GAG-protein interactions. Here, we drill down on the interactions established in this peculiar macromolecular complex by analyzing the applicability of docking techniques and molecular dynamics (MD)-based approaches, and we dissect the molecular recognition properties exhibited by FGF towards a series of HE derivatives. We examine the sensitivity of MM-GBSA free energy calculations in terms of receptor conformational space sampling and changes in the ligand structures. Furthermore, we investigate its predictive power in combination with other computational methods, namely the well-established Autodock3 (AD3) and dynamic molecular docking (DMD), a targeted MD-based docking method specifically developed to account for flexibility and solvent in computer simulations of protein-GAG systems. Our results show that a site-mapping approach can be effectively combined with AD3 and DMD calculations to accurately reproduce available experimental data and, furthermore, to determine specific GAG recognition patterns. This study deepens our understanding of the applicability of available theoretical approaches to the investigation of molecular recognition in protein-GAG systems.
Collapse
Affiliation(s)
- Sándor Babik
- Structural Bioinformatics, BIOTEC TU Dresden, Dresden, 01307, Germany
| | - Sergey A Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Dresden, 01307, Germany
| | | |
Collapse
|
19
|
Samsonov SA, Pisabarro MT. Computational analysis of interactions in structurally available protein-glycosaminoglycan complexes. Glycobiology 2016; 26:850-861. [PMID: 27496767 DOI: 10.1093/glycob/cww055] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Glycosaminoglycans represent a class of linear anionic periodic polysaccharides, which play a key role in a variety of biological processes in the extracellular matrix via interactions with their protein targets. Computationally, glycosaminoglycans are very challenging due to their high flexibility, periodicity and electrostatics-driven nature of the interactions with their protein counterparts. In this work, we carry out a detailed computational characterization of the interactions in protein-glycosaminoglycan complexes from the Protein Data Bank (PDB), which are split into two subsets accounting for their intrinsic nature: non-enzymatic-protein-glycosaminoglycan and enzyme-glycosaminoglycan complexes. We apply molecular dynamics to analyze the differences in these two subsets in terms of flexibility, retainment of the native interactions in the simulations, free energy components of binding and contributions of protein residue types to glycosaminoglycan binding. Furthermore, we systematically demonstrate that protein electrostatic potential calculations, previously found to be successful for glycosaminoglycan binding sites prediction for individual systems, are in general very useful for proposing protein surface regions as putative glycosaminoglycan binding sites, which can be further used for local docking calculations with these particular polysaccharides. Finally, the performance of six different docking programs (Autodock 3, Autodock Vina, MOE, eHiTS, FlexX and Glide), some of which proved to perform well for particular protein-glycosaminoglycan complexes in previous work, is evaluated on the complete protein-glycosaminoglycan data set from the PDB. This work contributes to widen our knowledge of protein-glycosaminoglycan molecular recognition and could be useful to steer a choice of the strategies to be applied in theoretical studies of these systems.
Collapse
Affiliation(s)
- Sergey A Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Dresden 01307, Germany
| | | |
Collapse
|
20
|
Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. Biochem J 2015; 472:121-33. [PMID: 26371375 PMCID: PMC4692082 DOI: 10.1042/bj20150059] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
Structural plasticity plays a major role in determining differential binding of CXCL8 monomer and dimer to glycosaminoglycans (GAGs) and that dimer is the high-affinity GAG ligand. We propose that these properties play important roles in orchestrating in vivo chemokine-mediated neutrophil function. Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function.
Collapse
|
21
|
Pomin VH. Sulfated glycans in inflammation. Eur J Med Chem 2015; 92:353-69. [PMID: 25576741 DOI: 10.1016/j.ejmech.2015.01.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 12/18/2022]
Abstract
Sulfated glycans such as glycosaminoglycans on proteoglycans are key players in both molecular and cellular events of inflammation. They participate in leukocyte rolling along the endothelial surface of inflamed sites; chemokine regulation and its consequential functions in leukocyte guidance, migration and activation; leukocyte transendothelial migration; and structural assembly of the subendothelial basement membrane responsible to control tissue entry of cells. Due to these and other functions, exogenous sulfated glycans of various structures and origins can be used to interventionally down-regulate inflammation processes. In this review article, discussion is given primarily on the anti-inflammatory functions of mammalian heparins, heparan sulfate, chondroitin sulfate, dermatan sulfate and related compounds as well as the holothurian fucosylated chondroitin sulfate and the brown algal fucoidans. Understanding the underlying mechanisms of action of these sulfated glycans in inflammation, helps research programs involved in developing new carbohydrate-based drugs aimed to combat acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, and University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.
| |
Collapse
|
22
|
Samsonov SA, Bichmann L, Pisabarro MT. Coarse-Grained Model of Glycosaminoglycans. J Chem Inf Model 2014; 55:114-24. [DOI: 10.1021/ci500669w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sergey A. Samsonov
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg
47-51, D-01307 Dresden, Germany
| | - Leon Bichmann
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg
47-51, D-01307 Dresden, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC TU Dresden, Tatzberg
47-51, D-01307 Dresden, Germany
| |
Collapse
|
23
|
Yang J, Furuta T, Sakurai M, Tsutsumi H, Mihara H. A Computational Study of the Interaction of Amphiphilic α-Helical Cell-Penetrating Peptides with Heparan Sulfate. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20140136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ji Yang
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology
| | - Hiroshi Tsutsumi
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Hisakazu Mihara
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| |
Collapse
|
24
|
Agostino M, Gandhi NS, Mancera RL. Development and application of site mapping methods for the design of glycosaminoglycans. Glycobiology 2014; 24:840-51. [DOI: 10.1093/glycob/cwu045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
25
|
Importance of IdoA and IdoA(2S) ring conformations in computational studies of glycosaminoglycan–protein interactions. Carbohydr Res 2013; 381:133-7. [DOI: 10.1016/j.carres.2013.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/06/2013] [Accepted: 09/07/2013] [Indexed: 11/23/2022]
|
26
|
Mishra SK, Kara M, Zacharias M, Koca J. Enhanced conformational sampling of carbohydrates by Hamiltonian replica-exchange simulation. Glycobiology 2013; 24:70-84. [PMID: 24134878 DOI: 10.1093/glycob/cwt093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the structure and conformational flexibility of carbohydrates in an aqueous solvent is important to improving our understanding of how carbohydrates function in biological systems. In this study, we extend a variant of the Hamiltonian replica-exchange molecular dynamics (MD) simulation to improve the conformational sampling of saccharides in an explicit solvent. During the simulations, a biasing potential along the glycosidic-dihedral linkage between the saccharide monomer units in an oligomer is applied at various levels along the replica runs to enable effective transitions between various conformations. One reference replica runs under the control of the original force field. The method was tested on disaccharide structures and further validated on biologically relevant blood group B, Lewis X and Lewis A trisaccharides. The biasing potential-based replica-exchange molecular dynamics (BP-REMD) method provided a significantly improved sampling of relevant conformational states compared with standard continuous MD simulations, with modest computational costs. Thus, the proposed BP-REMD approach adds a new dimension to existing carbohydrate conformational sampling approaches by enhancing conformational sampling in the presence of solvent molecules explicitly at relatively low computational cost.
Collapse
Affiliation(s)
- Sushil Kumar Mishra
- Central European Institute of Technology, Masaryk University, Kamenice 5, 61137 Brno, Czech Republic
| | | | | | | |
Collapse
|
27
|
Poluri KM, Joseph PRB, Sawant KV, Rajarathnam K. Molecular basis of glycosaminoglycan heparin binding to the chemokine CXCL1 dimer. J Biol Chem 2013; 288:25143-25153. [PMID: 23864653 DOI: 10.1074/jbc.m113.492579] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosaminoglycan (GAG)-bound and soluble chemokine gradients in the vasculature and extracellular matrix mediate neutrophil recruitment to the site of microbial infection and sterile injury in the host tissue. However, the molecular principles by which chemokine-GAG interactions orchestrate these gradients are poorly understood. This, in part, can be directly attributed to the complex interrelationship between the chemokine monomer-dimer equilibrium and binding geometry and affinities that are also intimately linked to GAG length. To address some of this missing knowledge, we have characterized the structural basis of heparin binding to the murine CXCL1 dimer. CXCL1 is a neutrophil-activating chemokine and exists as both monomers and dimers (Kd = 36 μm). To avoid interference from monomer-GAG interactions, we designed a trapped dimer (dCXCL1) by introducing a disulfide bridge across the dimer interface. We characterized the binding of GAG heparin octasaccharide to dCXCL1 using solution NMR spectroscopy. Our studies show that octasaccharide binds orthogonally to the interhelical axis and spans the dimer interface and that heparin binding enhances the structural integrity of the C-terminal helical residues and stability of the dimer. We generated a quadruple mutant (H20A/K22A/K62A/K66A) on the basis of the binding data and observed that this mutant failed to bind heparin octasaccharide, validating our structural model. We propose that the stability enhancement of dimers upon GAG binding regulates in vivo neutrophil trafficking by increasing the lifetime of "active" chemokines, and that this structural knowledge could be exploited for designing inhibitors that disrupt chemokine-GAG interactions and neutrophil homing to the target tissue.
Collapse
Affiliation(s)
- Krishna Mohan Poluri
- From the Department of Biochemistry and Molecular Biology,; Sealy Center for Structural Biology and Molecular Biophysics, and
| | - Prem Raj B Joseph
- From the Department of Biochemistry and Molecular Biology,; Sealy Center for Structural Biology and Molecular Biophysics, and
| | - Kirti V Sawant
- From the Department of Biochemistry and Molecular Biology
| | - Krishna Rajarathnam
- From the Department of Biochemistry and Molecular Biology,; Sealy Center for Structural Biology and Molecular Biophysics, and; Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas 77555.
| |
Collapse
|
28
|
Nguyen LT, Vogel HJ. Structural perspectives on antimicrobial chemokines. Front Immunol 2012; 3:384. [PMID: 23293636 PMCID: PMC3531597 DOI: 10.3389/fimmu.2012.00384] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/30/2012] [Indexed: 12/14/2022] Open
Abstract
Chemokines are best known as signaling proteins in the immune system. Recently however, a large number of human chemokines have been shown to exert direct antimicrobial activity. This moonlighting activity appears to be related to the net high positive charge of these immune signaling proteins. Chemokines can be divided into distinct structural elements and some of these have been studied as isolated peptide fragments that can have their own antimicrobial activity. Such peptides often encompass the α-helical region found at the C-terminal end of the parent chemokines, which, similar to other antimicrobial peptides, adopt a well-defined membrane-bound amphipathic structure. Because of their relatively small size, intact chemokines can be studied effectively by NMR spectroscopy to examine their structures in solution. In addition, NMR relaxation experiments of intact chemokines can provide detailed information about the intrinsic dynamic behavior; such analyses have helped for example to understand the activity of TC-1, an antimicrobial variant of CXCL7/NAP-2. With chemokine dimerization and oligomerization influencing their functional properties, the use of NMR diffusion experiments can provide information about monomer-dimer equilibria in solution. Furthermore, NMR chemical shift perturbation experiments can be used to map out the interface between self-associating subunits. Moreover, the unusual case of XCL1/lymphotactin presents a chemokine that can interconvert between two distinct folds in solution, both of which have been elucidated. Finally, recent advances have allowed for the determination of the structures of chemokines in complex with glycosaminoglycans, a process that could interfere with their antimicrobial activity. Taken together, these studies highlight several different structural facets that contribute to the way in which chemokines exert their direct microbicidal actions.
Collapse
Affiliation(s)
- Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | | |
Collapse
|
29
|
Mosier PD, Krishnasamy C, Kellogg GE, Desai UR. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. PLoS One 2012; 7:e48632. [PMID: 23152789 PMCID: PMC3495972 DOI: 10.1371/journal.pone.0048632] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/03/2012] [Indexed: 11/25/2022] Open
Abstract
Background The antithrombin–heparin/heparan sulfate (H/HS) and thrombin–H/HS interactions are recognized as prototypic specific and non-specific glycosaminoglycan (GAG)–protein interactions, respectively. The fundamental structural basis for the origin of specificity, or lack thereof, in these interactions remains unclear. The availability of multiple co-crystal structures facilitates a structural analysis that challenges the long-held belief that the GAG binding sites in antithrombin and thrombin are essentially similar with high solvent exposure and shallow surface characteristics. Methodology Analyses of solvent accessibility and exposed surface areas, gyrational mobility, symmetry, cavity shape/size, conserved water molecules and crystallographic parameters were performed for 12 X-ray structures, which include 12 thrombin and 16 antithrombin chains. Novel calculations are described for gyrational mobility and prediction of water loci and conservation. Results The solvent accessibilities and gyrational mobilities of arginines and lysines in the binding sites of the two proteins reveal sharp contrasts. The distribution of positive charges shows considerable asymmetry in antithrombin, but substantial symmetry for thrombin. Cavity analyses suggest the presence of a reasonably sized bifurcated cavity in antithrombin that facilitates a firm ‘hand-shake’ with H/HS, but with thrombin, a weaker ‘high-five’. Tightly bound water molecules were predicted to be localized in the pentasaccharide binding pocket of antithrombin, but absent in thrombin. Together, these differences in the binding sites explain the major H/HS recognition characteristics of the two prototypic proteins, thus affording an explanation of the specificity of binding. This provides a foundation for understanding specificity of interaction at an atomic level, which will greatly aid the design of natural or synthetic H/HS sequences that target proteins in a specific manner.
Collapse
Affiliation(s)
| | | | | | - Umesh R. Desai
- Department of Medicinal Chemistry and Institute of Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Gandhi NS, Mancera RL. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1374-81. [PMID: 22824487 DOI: 10.1016/j.bbapap.2012.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/04/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
Abstract
Heparin is a glycosaminoglycan known to bind bone morphogenetic proteins (BMPs) and the growth and differentiation factors (GDFs) and has strong and variable effects on BMP osteogenic activity. In this paper we report our predictions of the likely heparin binding sites for BMP-2 and 14. The N-terminal sequences upstream of TGF-β-type cysteine-knot domains in BMP-2, 7 and 14 contain the basic residues arginine and lysine, which are key components of the heparin/HS-binding sites, with these residues being highly non-conserved. Importantly, evolutionary conserved surfaces on the beta sheets are required for interactions with receptors and antagonists. Furthermore, BMP-2 has electropositive surfaces on two sides compared to BMP-7 and BMP-14. Molecular docking simulations suggest the presence of high and low affinity binding sites in dimeric BMP-2. Histidines were found to play a role in the interactions of BMP-2 with heparin; however, a pK(a) analysis suggests that histidines are likely not protonated. This is indicative that interactions of BMP-2 with heparin do not require acidic pH. Taken together, non-conserved amino acid residues in the N-terminus and residues protruding from the beta sheet (not overlapping with the receptor binding sites and the dimeric interface) and not C-terminal are found to be important for heparin-BMP interactions.
Collapse
Affiliation(s)
- Neha S Gandhi
- Curtin Health Innovation Research Institute, Western Australian Biomedical Research Institute, School of Biomedical Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | | |
Collapse
|
31
|
Gandhi NS, Freeman C, Parish CR, Mancera RL. Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-d-glucuronidase (heparanase). Glycobiology 2011; 22:35-55. [DOI: 10.1093/glycob/cwr095] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|