1
|
Liu X, Zhang Y, Zou Y, Yan C, Chen J. Recent Advances and Outlook of Benzopyran Derivatives in the Discovery of Agricultural Chemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12300-12318. [PMID: 38800848 DOI: 10.1021/acs.jafc.3c09244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Scaffold structures, new mechanisms of action, and targets present enormous challenges in the discovery of novel pesticides. The discovery of new scaffolds is the basis for the continuous development of modern agrochemicals. Identification of a good scaffold such as triazole, carbamate, methoxy acrylate, pyrazolamide, pyrido-pyrimidinone mesoionic, and bisamide often leads to the development of a new series of pesticides. In addition, pesticides with the same target, including the inhibitors of succinate dehydrogenase (SDH), oxysterol-binding-protein, and p-hydroxyphenyl pyruvate dioxygenase (HPPD), may have the same or similar scaffold structure. Recent years have witnessed significant progress in the discovery of new pesticides using natural products as scaffolds or bridges. In recent years, there have been increasing reports on the application of natural benzopyran compounds in the discovery of new pesticides, especially osthole and coumarin. A systematic and comprehensive review of benzopyran active compounds in the discovery of new agricultural chemicals is helpful to promote the discussion and development of benzopyran active compounds. Therefore, this work systematically reviewed the research and application of benzopyran derivatives in the discovery of agricultural chemicals, summarized the antiviral, herbicidal, antibacterial, fungicidal, insecticidal, nematicidal and acaricidal activities of benzopyran active compounds, and discussed the structural-activity relationship and mechanism of action. In addition, some active fragments were recommended to further optimize the chemical structure of benzopyran active compounds based on reference information.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yong Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Zou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chongchong Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jixiang Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Wang Z, Jiang M, Yin F, Wang M, Jiang J, Liao M, Cao H, Zhao N. Metabolism-Based Nontarget-Site Mechanism Is the Main Cause of a Four-Way Resistance in Shortawn Foxtail ( Alopecurus aequalis Sobol.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12014-12028. [PMID: 38748759 DOI: 10.1021/acs.jafc.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Alopecurus aequalis Sobol. is a predominant grass weed in Chinese winter wheat fields, posing a substantial threat to crop production owing to its escalating herbicide resistance. This study documented the initial instance of an A. aequalis population (AHFT-3) manifesting resistance to multiple herbicides targeting four distinct sites: acetyl-CoA carboxylase (ACCase), acetolactate synthase, photosystem II, and 1-deoxy-d-xylulose-5-phosphate synthase. AHFT-3 carried an Asp-to-Gly mutation at codon 2078 of ACCase, with no mutations in the remaining three herbicide target genes, and exhibited no overexpression of any target gene. Compared with the susceptible population AHFY-3, AHFT-3 metabolized mesosulfuron-methyl, isoproturon, and bixlozone faster. The inhibition and comparison of herbicide-detoxifying enzyme activities indicated the participation of cytochrome P450s in the resistance to all four herbicides, with glutathione S-transferases specifically linked to mesosulfuron-methyl. Three CYP72As and a Tau class glutathione S-transferase, markedly upregulated in resistant plants, potentially played pivotal roles in the multiple-herbicide-resistance phenotype.
Collapse
Affiliation(s)
- Zilu Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Minghao Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Fan Yin
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mali Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Jinfang Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Ning Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei 230036, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Das M, Ghosh A. Molecular insights into mutation-induced conformational changes in Acetyl CoA Carboxylase for improved activity. Int J Biol Macromol 2024; 256:128417. [PMID: 38016612 DOI: 10.1016/j.ijbiomac.2023.128417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Acetyl-CoA carboxylase (ACCase) is crucial for fatty acid biosynthesis and has potential applications in lipid accumulation and advanced biofuel production. Mutations like S659A and S1157A in Saccharomyces cerevisiae ACCase remove the Snf1-regulation sites, resulting in increased enzyme activity with positive effects on the fatty acid pathway. However, the molecular-level understanding of these mutations on ACCase activity remains unexplored. Here, molecular dynamics simulation was conducted to investigate the mutations-induced conformational changes in S. cerevisiae ACCase. The wild-type ACCase was observed to have significant deviation in structure compared to mutant. Additionally, fluctuation of residues associated with biotin binding and Snf1-recognition were reduced in mutant compared to wild-type. Furthermore, the wild-type demonstrated opening motions of the domains, whereas the mutant showed closing movement. The mutation-induced conformational changes were analysed using network parameters, i.e., cliques/communities. The mutant showed an increase in sizes of several communities in AC3-AC4-AC5 domains leading to rigidification. Also, a new community was added in AC1-BT in the mutant, which suggested a substantial shift in the protein conformation. Thus, this study provides a theoretical understanding of the increased activity of ACCase due to two mutations, which can pave the path for enzyme engineering towards improved fatty acid-based fuel and chemical production.
Collapse
Affiliation(s)
- Manali Das
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal-721302, India
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
First Asp-2078-Gly Mutation Conferring Resistance to Different ACCase Inhibitors in a Polypogon fugax Population from China. Int J Mol Sci 2022; 24:ijms24010528. [PMID: 36613971 PMCID: PMC9820770 DOI: 10.3390/ijms24010528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Asia minor bluegrass (Polypogon fugax) is a common and problematic weed throughout China. P. fugax that is often controlled by acetyl-CoA carboxylase (ACCase) inhibitors in canola fields. Herein, we confirmed a P. fugax population (R) showing resistance to all ACCase inhibitors tested with resistance indexes ranging from 5.4-18.4. We further investigated the resistance mechanisms of this R population. Molecular analyses revealed that an amino acid mutation (Asp-2078-Gly) was present in the R population by comparing ACCase gene sequences of the sensitive population (S). In addition, differences in susceptibility between the R and S population were unlikely to be related to herbicide metabolism. Furthermore, a new derived cleaved amplified polymorphic sequence (dCAPS) method was developed for detecting the Asp-2078-Gly mutation in P. fugax efficiently. We found that 93.75% of plants in the R population carried the Asp-2078-Gly mutation, and all the herbicide-resistant phenotype of this R population is inseparable from this mutation. This is the first report of cross resistance to ACCase inhibitors conferred by the Asp-2078-Gly target-site mutation in P. fugax. The research suggested the urgent need to improve the diversity of weed management practices to prevent the widespread evolution of herbicide resistance in P. fugax in China.
Collapse
|
5
|
Zhang Y, Chen L, Song W, Cang T, Xu M, Wu C. Diverse mechanisms associated with cyhalofop-butyl resistance in Chinese sprangletop ( Leptochloa chinensis (L.) Nees): Characterization of target-site mutations and metabolic resistance-related genes in two resistant populations. FRONTIERS IN PLANT SCIENCE 2022; 13:990085. [PMID: 36518516 PMCID: PMC9742530 DOI: 10.3389/fpls.2022.990085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/14/2022] [Indexed: 05/25/2023]
Abstract
Resistance of Chinese sprangletop (Leptochloa chinensis (L.) Nees) to the herbicide cyhalofop-butyl has recently become a severe problem in rice cultivation. However, the molecular mechanisms of target-site resistance (TSR) in cyhalofop-butyl-resistant L. chinensis as well as the underlying non-target-site resistance (NTSR) have not yet been well-characterized. This study aimed to investigate cyhalofop-butyl resistance mechanisms using one susceptible population (LC-S) and two resistant populations (LC-1701 and LC-1704) of L. chinensis. We analyzed two gene copies encoding the entire carboxyltransferase (CT) domain of chloroplastic acetyl-CoA carboxylase (ACCase) from each population. Two non-synonymous substitutions were detected in the resistant L. chinensis populations (Trp2027-Cys in the ACCase1 of LC-1701 and Leu1818-Phe in the ACCase2 of LC-1704), which were absent in LC-S. As Trp2027-Cys confers resistance to ACCase-inhibiting herbicides, the potential relationship between the novel Leu1818-Phe mutation and cyhalofop-butyl resistance in LC-1704 was further explored by single-nucleotide polymorphism (SNP) detection. Metabolic inhibition assays indicated that cytochrome P450 monooxygenases (P450s) and glutathione S-transferases (GSTs) contributed to cyhalofop-butyl resistance in specific resistant populations. RNA sequencing showed that the P450 genes CYP71Z18, CYP71C4, CYP71C1, CYP81Q32, and CYP76B6 and the GST genes GSTF11, GSTF1, and GSTU6 were upregulated in at least one resistant population, which indicated their putative roles in cyhalofop-butyl resistance of L. chinensis. Correlation analyses revealed that the constitutive or inducible expression patterns of CYP71C4, CYP71C1, GSTF1, and GSTU6 in L. chinensis were strongly associated with the resistant phenotype. For this reason, attention should be directed towards these genes to elucidate metabolic resistance to cyhalofop-butyl in L. chinensis. The findings of this study improve the understanding of mechanisms responsible for resistance to ACCase-inhibiting herbicides in grass-weed species at the molecular level, thus aiding in the development of weed management strategies that delay the emergence of resistance to this class of pest control products.
Collapse
|
6
|
Chen J, Wang Y, Luo X, Chen Y. Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105122. [PMID: 35715060 DOI: 10.1016/j.pestbp.2022.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The discovery of new scaffolds and targets for pesticides is still a huge challenge facing the sustainable development of modern agriculture. In recent years, quinazoline derivatives have achieved great progress in drug discovery and have attracted great attention. Quinazoline is a unique bicyclic scaffold with a variety of biological activities, which increases the possibilities and flexibility of structural modification, showing enormous appeal in the discovery of new pesticides. Therefore, the agricultural biological activities, structure-activity relationships (SAR), and mechanism of action of quinazoline derivatives in the past decade were reviewed systematically, with emphasis on SAR and mechanism. Then, we prospected the application of the quinazoline scaffold as a special structure in agricultural chemical discovery, hoping to provide new ideas for the rational design and mechanism of novel quinazoline agricultural chemicals in the future.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
7
|
Deng W, Yang Q, Chen Y, Yang M, Xia Z, Zhu J, Chen Y, Cai J, Yuan S. Cyhalofop-butyl and Glyphosate Multiple-Herbicide Resistance Evolved in an Eleusine indica Population Collected in Chinese Direct-Seeding Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2623-2630. [PMID: 32058714 DOI: 10.1021/acs.jafc.9b07342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eleusine indica is a typical xerophytic weed species with a cosmopolitan distribution. It is invasive and highly adaptable to diverse habitats and crops. Due to rice cropping-pattern changes, E indica has become one of the main dominant grass weeds infecting direct-seeding paddy fields. A Chinese E. indica population has evolved multiple-herbicide resistance to cyhalofop-butyl and glyphosate. In this study, the multiple-resistance profile of E. indica to these two different types of herbicides and their resistance mechanisms were investigated. Whole-plant dose-response assays indicated that the multiple-herbicide-resistant (MHR) population exhibited 10.8-fold resistance to cyhalofop-butyl and 3.1-fold resistance to glyphosate compared with the susceptible (S) population. ACCase sequencing revealed that the Asp-2078-Gly mutation was strongly associated with E. indica resistance to cyhalofop-butyl. The MHR plants accumulated less shikimic acid than S plants at 4, 6, and 8 days after glyphosate treatment. In addition, no amino acid substitution in the EPSPS gene was found in MHR plants. Further analysis revealed that the relative expression level of EPSPS in MHR plants was 6-10-fold higher than that in S plants following glyphosate treatment, indicating that EPSPS overexpression may contribute to the glyphosate resistance. Furthermore, the effectiveness of nine post-emergence herbicides against E. indica were evaluated, and one PPO inhibitor pyraclonil was identified as highly effective in controlling the S and MHR E. indica populations.
Collapse
Affiliation(s)
- Wei Deng
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| | - Qian Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongrui Chen
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| | - Mengting Yang
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| | - Zhiming Xia
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| | - Jin Zhu
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| | - Yueyang Chen
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| | - Jingxuan Cai
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| | - Shuzhong Yuan
- College of Horticulture and Plant Protection, Yangzhou University, No. 88 of Da Xue Nan Road, Hanjiang District, Yangzhou 225009, China
| |
Collapse
|
8
|
Ding F, Li LX, Peng W, Peng YK, Liu BQ. Molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides and its environmental relevance: A combined experimental and computational study. CHEMOSPHERE 2019; 235:1030-1040. [PMID: 31561292 DOI: 10.1016/j.chemosphere.2019.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
Organic pesticides are one of the main environmental pollutants, and how to reduce their environmental risks is an important issue. In this contribution, we disclose the molecular basis for the resistance of American sloughgrass to aryloxyphenoxypropionic acid pesticides using site-directed mutagenesis and molecular modeling and then construct an effective screening model. The results indicated that the target-site mutation (Trp-1999-Leu) in acetyl-coenzyme A carboxylase (ACCase) can affect the effectiveness of the pesticides (clodinafop, fenoxaprop, cyhalofop, and metamifop), and the plant resistance to fenoxaprop, clodinafop, cyhalofop, and metamifop was found to be 564, 19.5, 10, and 0.19 times, respectively. The established computational models (i.e. wild-type/mutant ACCase models) could be used for rational screening and evaluation of the resistance to pesticides. The resistance induced by target gene mutation can markedly reduce the bioreactivity of the ACCase-clodinafop/fenoxaprop adducts, and the magnitudes are 10 and 102, respectively. Such event will seriously aggravate environmental pollution. However, the biological issue has no distinct effect on cyhalofop (RI=10), and meanwhile it may markedly increase the bioefficacy of metamifop (RI=0.19). We could selectively adopt the two chemicals so as to decrease the residual pesticides in the environment. Significantly, research findings from the computational screening models were found to be negatively correlated with the resistance level derived from the bioassay testing, suggesting that the screening models can be used to guide the usage of pesticides. Obviously, this story may shed novel insight on the reduction of environmental risks of pesticides and other organic pollutants.
Collapse
Affiliation(s)
- Fei Ding
- School of Environmental Science and Engineering, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710064, China
| | - Ling-Xu Li
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Department of Chemistry, China Agricultural University, Beijing, 100193, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
9
|
Xia X, Tang W, He S, Kang J, Ma H, Li J. Mechanism of metamifop inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in Echinochloa crus-galli. Sci Rep 2016; 6:34066. [PMID: 27666674 PMCID: PMC5036181 DOI: 10.1038/srep34066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/06/2016] [Indexed: 11/09/2022] Open
Abstract
Acetyl-coenzyme A carboxylase (ACCase) plays crucial roles in fatty acid metabolism and is an attractive target for herbicide discovery. Metamifop is a novel ACCase-inhibiting herbicide that can be applied to control sensitive weeds in paddy fields. In this study, the effects of metamifop on the chloroplasts, ACCase activity and carboxyltransferase (CT) domain gene expression in Echinochloa crus-galli were investigated. The results showed that metamifop interacted with the CT domain of ACCase in E. crus-galli. The three-dimensional structure of the CT domain of E. crus-galli ACCase in complex with metamifop was examined by homology modelling, molecular docking and molecular dynamics (MD) simulations. Metamifop has a different mechanism of inhibiting the CT domain compared with other ACCase inhibitors as it interacted with a different region in the active site of the CT domain. The protonation of nitrogen in the oxazole ring of metamifop plays a crucial role in the interaction between metamifop and the CT domain. The binding mode of metamifop provides a foundation for elucidating the molecular mechanism of target resistance and cross-resistance among ACCase herbicides, and for designing and optimizing ACCase inhibitors.
Collapse
Affiliation(s)
- Xiangdong Xia
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenjie Tang
- Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shun He
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Kang
- Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongju Ma
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianhong Li
- Department of Plant Protection, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
10
|
Raghav N, Singh R, Chhokar RS, Sharma D, Kumar R. Mutations in the plastidic ACCase gene endowing resistance to ACCase-inhibiting herbicide in Phalaris minor populations from India. 3 Biotech 2016; 6:12. [PMID: 28330082 PMCID: PMC4701707 DOI: 10.1007/s13205-015-0331-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022] Open
Abstract
Littleseed canarygrass (Phalaris minor Retz.) is one of the most common and troublesome weeds infesting wheat crop in India. Repeated use during the last two decades of the ACCase-inhibiting herbicide (clodinafop) to control this weed has resulted in the occurrence of resistance. Fifty-three P. minor populations were collected from wheat fields in Haryana and Punjab states of India. The dose-response assays indicated that 29 populations were resistant, 23 populations were susceptible and one population was moderately resistant to clodinafop. Sequence analysis of the CT domain of ACCase gene among resistant and susceptible populations revealed two non-synonymous mutations, Trp2027 to Cys and Ile2041 to Asn in the resistant populations. Allele-specific PCR markers were developed to differentiate between wild-type and resistant codons at positions 2027 and 2041 of ACCase in P. minor which enables molecular assays for rapid detection and resistance diagnosis for efficient weed management in wheat. This is the first report from India of a target site mutation corresponding to resistance to clodinafop in P. minor.
Collapse
Affiliation(s)
- Nishu Raghav
- ICAR-Indian Institute of Wheat and Barley Research, Post Box 158, Karnal, 132001, India
- Maharishi Markandeshwar University, Mullana, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Post Box 158, Karnal, 132001, India.
| | | | - Davinder Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Post Box 158, Karnal, 132001, India
| | - Raman Kumar
- Maharishi Markandeshwar University, Mullana, India
| |
Collapse
|
11
|
Mohamed SK, Mague JT, Akkurt M, Ahmed EA, Albayati MR. Crystal structure of ethyl 2-{2-[(1Z)-1-hy-droxy-3-(4-nitro-phen-yl)-3-oxoprop-1-en-1-yl]phen-oxy}acetate. Acta Crystallogr E Crystallogr Commun 2015; 71:o917-8. [PMID: 26870526 PMCID: PMC4719879 DOI: 10.1107/s2056989015020794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/11/2022]
Abstract
The title compound, C19H17NO7, crystallized in a ratio of about 6:4 of the two possible keto-enol forms. This was observed as disorder over the central C3H2O2 unit. The dihedral angle between the rings is 8.2 (2)°.The mol-ecules pack by C-H⋯O interactions in a layered fashion parallel to (-104).
Collapse
Affiliation(s)
- Shaaban K. Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| | - Eman A. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Mustafa R. Albayati
- Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
| |
Collapse
|
12
|
Guo W, Yuan G, Liu W, Bi Y, Du L, Zhang C, Li Q, Wang J. Multiple resistance to ACCase and AHAS-inhibiting herbicides in shortawn foxtail (Alopecurus aequalis Sobol.) from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 124:66-72. [PMID: 26453232 DOI: 10.1016/j.pestbp.2015.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 05/04/2023]
Abstract
Shortawn foxtail (Alopecurus aequalis) is a troublesome grass weed infesting winter wheat and oilseed rape productions in China. Fenoxaprop-p-ethyl and mesosulfuron-methyl failed to control shortawn foxtail of AHSX-1 population collected from a wheat field in Shou County, Anhui province. Molecular analyses revealed that Asp2078Gly mutation of ACCase and Trp574Leu mutation of AHAS were present in plants of the AHSX-1 population. The homozygous plants were isolated and cultured until seed maturity. Whole-plant herbicide bioassays were conducted in the greenhouse using the purified seeds of F1 generation. Dose-response experiments showed that the AHSX-1 population has evolved a very high level resistance to fenoxaprop-p-ethyl (RI = 275) and mesosulfuron-methyl (RI = 788). To determine the sensitivity to other herbicides, assays were conducted at the single recommended rate of each herbicide. Based on the results, the AHSX-1 population was considered to be highly resistant to clodinafop-propargyl, pyroxsulam and flucarbazone-sodium, moderately or highly resistant to quizalofop-p-ethyl, clethodim, sethoxydim and pinoxaden, and susceptible to isoproturon and chlorotoluron. This is the first report of Asp2078Gly mutation in shortawn foxtail and the two robust dCAPS markers designed could quickly detect Asp2078 and Trp574 mutations in ACCase and AHAS gene of shortawn foxtail, respectively.
Collapse
Affiliation(s)
- Wenlei Guo
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guohui Yuan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yaling Bi
- College of Agronomy, Anhui Science and Technology University, Fengyang, Anhui 233100, China
| | - Long Du
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chao Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qi Li
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
13
|
Zhu X, Zhang M, Liu J, Ge J, Yang G. Ametoctradin is a potent Qo site inhibitor of the mitochondrial respiration complex III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3377-3386. [PMID: 25784492 DOI: 10.1021/acs.jafc.5b00228] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ametoctradin is a new Oomycete-specific fungicide under development by BASF. It is a potent inhibitor of the bc1 complex in mitochondrial respiration. However, its detailed action mechanism remains unknown. In the present work, the binding mode of ametoctradin was first uncovered by integrating molecular docking, MD simulations, and MM/PBSA calculations, which showed that ametoctradin should be a Q(o) site inhibitor of bc1 complex. Subsequently, a series of new 1,2,4-triazolo[1,5-a]pyrimidine derivatives were designed and synthesized to further understand the substituent effects on the 5- and 6-position of 1,2,4-triazolo[1,5-a]pyrimidine. The calculated binding free energies (ΔG(cal)) of newly synthesized analogues as Qo site inhibitors correlated very well (R(2) = 0.96) with their experimental binding free energies (ΔG(exp)). Two compounds (4a and 4c) with higher inhibitory activity against porcine SQR than ametoctradin were successfully identified. The structural and mechanistic insights obtained from the present study will provide a valuable clue for future designing of a new promising bc1 inhibitor.
Collapse
Affiliation(s)
- Xiaolei Zhu
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Mengmeng Zhang
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Jingjing Liu
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Jingming Ge
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
| | - Guangfu Yang
- †Key Laboratory of Pesticide and Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, P.R. China
- ‡Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 30071, P.R.China
| |
Collapse
|
14
|
Ostlie M, Haley SD, Anderson V, Shaner D, Manmathan H, Beil C, Westra P. Development and characterization of mutant winter wheat (Triticum aestivum L.) accessions resistant to the herbicide quizalofop. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:343-51. [PMID: 25432092 DOI: 10.1007/s00122-014-2434-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/18/2014] [Indexed: 05/04/2023]
Abstract
New herbicide resistance traits in wheat were produced through the use of induced mutagenesis. While herbicide-resistant crops have become common in many agricultural systems, wheat has seen few introductions of herbicide resistance traits. A population of Hatcher winter wheat treated with ethyl methanesulfonate was screened with quizalofop to identify herbicide-resistant plants. Initial testing identified plants that survived multiple quizalofop applications. A series of experiments were designed to characterize this trait. In greenhouse studies the mutants exhibited high levels of quizalofop resistance compared to non-mutant wheat. Sequencing ACC1 revealed a novel missense mutation causing an alanine to valine change at position 2004 (Alopecurus myosuroides reference sequence). Plants carrying single mutations in wheat's three genomes (A, B, D) were identified. Acetyl co-enzyme A carboxylase in resistant plants was 4- to 10-fold more tolerant to quizalofop. Populations of segregating backcross progenies were developed by crossing each of the three individual mutants with wild-type wheat. Experiments conducted with these populations confirmed largely normal segregation, with each mutant allele conferring an additive level of resistance. Further tests showed that the A genome mutation conferred the greatest resistance and the B genome mutation conferred the least resistance to quizalofop. The non-transgenic herbicide resistance trait identified will enhance weed control strategies in wheat.
Collapse
Affiliation(s)
- Michael Ostlie
- Carrington Research Extension Center, North Dakota State University, Carrington, ND, 58421, USA,
| | | | | | | | | | | | | |
Collapse
|
15
|
Kaundun SS. Resistance to acetyl-CoA carboxylase-inhibiting herbicides. PEST MANAGEMENT SCIENCE 2014; 70:1405-17. [PMID: 24700409 DOI: 10.1002/ps.3790] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/21/2014] [Accepted: 04/03/2014] [Indexed: 05/12/2023]
Abstract
Resistance to acetyl-CoA carboxylase herbicides is documented in at least 43 grass weeds and is particularly problematic in Lolium, Alopecurus and Avena species. Genetic studies have shown that resistance generally evolves independently and can be conferred by target-site mutations at ACCase codon positions 1781, 1999, 2027, 2041, 2078, 2088 and 2096. The level of resistance depends on the herbicides, recommended field rates, weed species, plant growth stages, specific amino acid changes and the number of gene copies and mutant ACCase alleles. Non-target-site resistance, or in essence metabolic resistance, is prevalent, multigenic and favoured under low-dose selection. Metabolic resistance can be specific but also broad, affecting other modes of action. Some target-site and metabolic-resistant biotypes are characterised by a fitness penalty. However, the significance for resistance regression in the absence of ACCase herbicides is yet to be determined over a practical timeframe. More recently, a fitness benefit has been reported in some populations containing the I1781L mutation in terms of vegetative and reproductive outputs and delayed germination. Several DNA-based methods have been developed to detect known ACCase resistance mutations, unlike metabolic resistance, as the genes remain elusive to date. Therefore, confirmation of resistance is still carried out via whole-plant herbicide bioassays. A growing number of monocotyledonous crops have been engineered to resist ACCase herbicides, thus increasing the options for grass weed control. While the science of ACCase herbicide resistance has progressed significantly over the past 10 years, several avenues provided in the present review remain to be explored for a better understanding of resistance to this important mode of action.
Collapse
Affiliation(s)
- Shiv S Kaundun
- Syngenta, Jealott's Hill International Research Centre, Biological Sciences, Bracknell, Berkshire, UK
| |
Collapse
|
16
|
Yang XQ, Liu JY, Li XC, Chen MH, Zhang YL. Key Amino Acid Associated with Acephate Detoxification by Cydia pomonella Carboxylesterase Based on Molecular Dynamics with Alanine Scanning and Site-Directed Mutagenesis. J Chem Inf Model 2014; 54:1356-70. [DOI: 10.1021/ci500159q] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Xian Chun Li
- Department
of Entomology, The University of Arizona, Tucson, Arizona 85721, United States
| | | | | |
Collapse
|
17
|
Zhu XL, Xiong L, Li H, Song XY, Liu JJ, Yang GF. Computational and Experimental Insight into the Molecular Mechanism of Carboxamide Inhibitors of Succinate-Ubquinone Oxidoreductase. ChemMedChem 2014; 9:1512-21. [DOI: 10.1002/cmdc.201300456] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/15/2014] [Indexed: 11/07/2022]
|
18
|
Li H, Zhu XL, Yang WC, Yang GF. Comparative Kinetics ofQiSite Inhibitors of Cytochromebc1Complex: Picomolar Antimycin and Micromolar Cyazofamid. Chem Biol Drug Des 2013; 83:71-80. [DOI: 10.1111/cbdd.12199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Li
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology; College of Chemistry; Ministry of Education; Central China Normal University; Wuhan 430079 China
| |
Collapse
|
19
|
Xu H, Zhu X, Wang H, Li J, Dong L. Mechanism of resistance to fenoxaprop in Japanese foxtail (Alopecurus japonicus) from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2013; 107:25-31. [PMID: 25149231 DOI: 10.1016/j.pestbp.2013.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 06/03/2023]
Abstract
Japanese foxtail is one of the most common and troublesome weeds infesting cereal and oilseed rape fields in China. Repeated use during the last three decades of the ACCase-inhibiting herbicide fenoxaprop-P-ethyl to control this weed has resulted in the occurrence of resistance. Dose-response tests established that a population (AHFD-1) from eastern China had evolved high-level resistance to fenoxaprop-P-ethyl. Based on the resistance index, this resistant population of A. japonicus is 60.31-fold resistant to fenoxaprop-P-ethyl. Subsequently, only a tryptophan to cysteine substitution was identified to confer resistance to fenoxaprop-P-ethyl in this resistant population. ACCase activity tests further confirmed this substitution was linked to resistance. This is the first report of the occurrence of Trp-2027-Cys substitution of ACCase in A. japonicus. From whole-plant pot dose-response tests, we confirmed that this population conferred resistance to other APP herbicides, including clodinafop-propargyl, fluazifop-P-butyl, quizalofop-P-ethyl, haloxyfop-R-methyl, cyhalofop-butyl, metamifop, DEN herbicide pinoxaden, but not to CHD herbicides clethodim, sethoxydim. There was also no resistance observed to ALS-inhibiting herbicides sulfosulfuron, mesosulfuron-methyl, flucarbazone-sodium, pyroxsulam, Triazine herbicide prometryne and glyphosate. However, this resistant population was likely to confer slightly (or no) resistant to Urea herbicides chlortoluron and isoproturon.
Collapse
Affiliation(s)
- Hongle Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Xudong Zhu
- College of Science, Nanjing Agricultural University, Jiangsu Key Laboratory of Pesticide Science, Nanjing 210095, China
| | - Hongchun Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Jun Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Pest Management on Crops in East China (Nanjing Agricultural University), Ministry of Agriculture, China.
| |
Collapse
|
20
|
Insights into molecular assembly of ACCase heteromeric complex in Chlorella variabilis--a homology modelling, docking and molecular dynamic simulation study. Appl Biochem Biotechnol 2013; 170:1437-57. [PMID: 23677812 DOI: 10.1007/s12010-013-0277-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Acetyl-CoA carboxylase (ACCase), a biotin-dependent enzyme that catalyses the first committed step of fatty acid biosynthesis, is considered as a potential target for improving lipid accumulation in oleaginous feedstocks, including microalgae. ACCase is composed of three distinct conserved domains, and understanding the structural details of each catalytic domain assumes great significance to gain insights into the molecular basis of the complex formation and mechanism of biotin transport. In the absence of a crystal structure for any single heteromeric ACCase till date, here we report the first heteromeric association model of ACCase from an oleaginous green microalga, Chlorella variabilis, using a combination of homology modelling, docking and molecular dynamic simulations. The binding site of the docked biotin carboxylase (BC) and carboxyltransferase (CT) were predicted to be contiguous but distinct in biotin carboxyl carrier protein (BCCP) molecule. Simulation studies revealed considerable flexibility for the BC and CT domains in the BCCP-bound forms, thus indicating the adaptive behaviour of BCCP. Further, principal component analysis revealed that in the presence of BCCP, the BC and CT domains exhibited an open-state conformation via the outward clockwise rotation of the binding helices. These conformational changes might be responsible for binding of BCCP domain and its translocation to the respective active sites. Various rearrangements of inter-domain hydrogen bonds (H-bonds) contributed to conformational changes in the structures. H-bond interactions between the interacting residue pairs involving Glu201BCCP/Arg255BC and Asp224BCCP/Gln228CT were found to be essential for the intermolecular assembly. The present findings are consistent with previous biochemical studies.
Collapse
|
21
|
Zhu XL, Yu NX, Hao GF, Yang WC, Yang GF. Structural basis of femtomolar inhibitors for acetylcholinesterase subtype selectivity: insights from computational simulations. J Mol Graph Model 2013; 41:55-60. [PMID: 23500627 DOI: 10.1016/j.jmgm.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/09/2013] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase (AChE) is a key enzyme of the cholinergic nervous system. More than one gene encodes the synaptic AChE target. As the most potent known AChE inhibitor, the syn1-TZ2PA6 isomer was recently shown to have higher affinity as a reversible organic inhibitor of acetylcholinesterase1 (AChE1) than the anti1-TZ2PA6 isomer. Opposite selectivity has been shown for acetylcholinesterase2 (AChE2). In an attempt to understand the selectivity of the syn1-TZ2PA6 and anti1-TZ2PA6 isomers for AChE1 and AChE2, six molecular dynamics (MD) simulations were carried out with mouse AChE (mAChE, type of AChE1), Torpedo californica AChE (TcAChE, type of AChE1), and Drosophila melanogaster AChE (DmAChE, type of AChE2) bound with syn1-TZ2PA6 and anti1-TZ2PA6 isomers. Within the structure of the inhibitor, the 3,8-diamino-6-phenylphenanthridinium subunit and 9-amino-1,2,3,4-tetrahydroacridine subunit, via π-π interactions, made more favorable contributions to syn1-TZ2PA6 or anti1-TZ2PA6 isomer binding in the mAChE/TcAChE enzyme than the 1,2,3-triazole subunit. Compared to AChE1, the triazole subunit had increased binding energy with AChE2 due to a greater negative charge in the active site. The binding free energy calculated using the MM/PBSA method suggests that selectivity between AChE1 and AChE2 is mainly attributed to decreased binding affinity for the inhibitor.
Collapse
Affiliation(s)
- Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology, College of Chemistry, Ministry of Education, Central China Normal University, Wuhan 430079, PR China
| | | | | | | | | |
Collapse
|
22
|
Wang G, Li C, Wang Y, Chen G. Cooperative assembly of Co-Smad4 MH1 with R-Smad1/3 MH1 on DNA: a molecular dynamics simulation study. PLoS One 2013; 8:e53841. [PMID: 23326519 PMCID: PMC3542330 DOI: 10.1371/journal.pone.0053841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background Smads, the homologs of Sma and MAD proteins, play a key role in gene expression regulation in the transforming growth factor-β (TGF-β) signaling pathway. Recent experimental studies have revealed that Smad4/R-Smad heterodimers bound on DNA are energetically more favorable than homodimeric R-Smad/R-Smad complexes bound on DNA, which indicates that Smad4 might act as binding vehicle to cooperatively assemble with activated R-Smads on DNA in the nucleus. However, the details of interaction mechanism for cooperative recruitment of Smad4 protein to R-Smad proteins on DNA, and allosteric communication between the Smad4-DNA and R-Smad-DNA interfaces via DNA mediating are not yet clear so far. Methodology In the present work, we have constructed a series of Smadn+DNA+Smadn (n = 1, 3, 4) models and carried out molecular dynamics simulations, free energy calculations and DNA dynamics analysis for them to study the interaction properties of Smadn (n = 1, 3, 4) with DNA molecule. Results The results revealed that the binding of Smad4 protein to DNA molecule facilitates energetically the formation of the heteromeric Smad4+DNA+Smad1/3 complex by increasing the affinity of Smad1/3 with DNA molecule. Further investigations through the residue/base motion correlation and DNA dynamics analyses predicted that the binding of Smad4 protein to DNA molecule in the heteromeric Smad4+DNA+Smad1/3 model induces an allosteric communication from the Smad4-DNA interface to Smad1/Smad3-DNA interface via DNA base-pair helical motions, surface conformation changes and new hydrogen bond formations. The present work theoretically explains the mechanism of cooperative recruitment of Smad4 protein to Smad1/3 protein via DNA-mediated indirect readout mode in the nucleus.
Collapse
Affiliation(s)
- Guihong Wang
- College of Chemistry, Beijing Normal University, Beijing, People’s Republic China
| | - Chaoqun Li
- College of Chemistry, Beijing Normal University, Beijing, People’s Republic China
| | - Yan Wang
- College of Chemistry, Beijing Normal University, Beijing, People’s Republic China
- * E-mail: (YW); (GC)
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing, People’s Republic China
- * E-mail: (YW); (GC)
| |
Collapse
|
23
|
Zhu Y, Liu P, Wang D, Zhang J, Cheng J, Ma Y, Zou X, Yang H. Synthesis and Bioactivities of NovelN-(4-(2-Aryloxythiazol-5-yl)but-3-yn-2-yl)benzamides. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201200824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Hao GF, Yang GF, Zhan CG. Structure-based methods for predicting target mutation-induced drug resistance and rational drug design to overcome the problem. Drug Discov Today 2012; 17:1121-6. [PMID: 22789991 DOI: 10.1016/j.drudis.2012.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 06/01/2012] [Accepted: 06/29/2012] [Indexed: 11/15/2022]
Abstract
Drug resistance has become one of the biggest challenges in drug discovery and/or development and has attracted great research interests worldwide. During the past decade, computational strategies have been developed to predict target mutation-induced drug resistance. Meanwhile, various molecular design strategies, including targeting protein backbone, targeting highly conserved residues and dual/multiple targeting, have been used to design novel inhibitors for combating the drug resistance. In this article we review recent advances in development of computational methods for target mutation-induced drug resistance prediction and strategies for rational design of novel inhibitors that could be effective against the possible drug-resistant mutants of the target.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | | | | |
Collapse
|
25
|
Safi M, Lilien RH. Efficient a Priori Identification of Drug Resistant Mutations Using Dead-End Elimination and MM-PBSA. J Chem Inf Model 2012; 52:1529-41. [DOI: 10.1021/ci200626m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Maria Safi
- Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada
| | - Ryan H. Lilien
- Department of Computer Science, University of Toronto,
Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
26
|
Tao J, Zhang G, Zhang A, Zheng L, Cao S. Study on the enantioselectivity inhibition mechanism of acetyl-coenzyme A carboxylase toward haloxyfop by homology modeling and MM-PBSA analysis. J Mol Model 2012; 18:3783-92. [DOI: 10.1007/s00894-012-1387-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/16/2012] [Indexed: 11/30/2022]
|
27
|
A facile synthesis of novel optically active R,R-2-(4-(2-(4-(5-chloro-3-halo-pyridin-2-yloxy)-phenoxy)-propionyloxy)-phenoxy)-propionic acid esters using cyanuric chloride as potential herbicide. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2010.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Yan C, Kaoud T, Lee S, Dalby KN, Ren P. Understanding the specificity of a docking interaction between JNK1 and the scaffolding protein JIP1. J Phys Chem B 2011; 115:1491-502. [PMID: 21261310 DOI: 10.1021/jp1073522] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The up-regulation of JNK activity is associated with a number of disease states. The JNK-JIP1 interaction represents an attractive target for the inhibition of JNK-mediated signaling. In this study, molecular dynamics simulations have been performed on the apo-JNK1 and the JNK1•L-pepJIP1 and JNK1•D-pepJIP1 complexes to investigate the interaction between the JIP1 peptides and JNK1. Dynamic domain studies based on essential dynamics (ED) analysis of apo-JNK1 and the JNK1•L-pepJIP1 complex have been performed to analyze and compare details of conformational changes, hinge axes, and hinge bending regions in both structures. The activation loop, the αC helix, and the G loop are found to be highly flexible and to exhibit significant changes in dynamics upon L-pepJIP1 binding. The conformation of the activation loop for the apo state is similar to that of inactive apo-ERK2, while the activation loop in JNK1•L-pepJIP1 complex resembles that of the inactive ERK2 bound with pepHePTP. ED analysis shows that, after the binding of l-pepJIP1, the N- and C-terminal domains of JNK1 display both a closure and a twisting motion centered around the activation loop, which functions as a hinge. In contrast, no domain motion is detected for the apo state for which an open conformation is favored. The present study suggests that L-pepJIP1 regulates the interdomain motions of JNK1 and potentially the active site via an allosteric mechanism. The binding free energies of L-pepJIP1 and D-pepJIP1 to JNK1 are estimated using the molecular mechanics Poisson-Boltzmann and generalized-Born surface area (MM-PB/GBSA) methods. The contribution of each residue at the interaction interface to the binding affinity of L-pepJIP1 with JNK1 has been analyzed by means of computational alanine-scanning mutagenesis and free energy decomposition. Several critical interactions for binding (e.g., Arg156/L-pepJIP1 and Glu329/JNK1) have been identified. The binding free energy calculation indicates that the electrostatic interaction contributes critically to specificity, rather than to binding affinity between the peptide and JNK1. Notably, the binding free energy calculations predict that D-pepJIP1 binding to JNK1 is significantly weaker than the L form, contradicting the previous suggestion that D-pepJIP1 acts as an inhibitor toward JNK1. We have performed experiments using purified JNK1 to confirm that, indeed, D-pepJIP1 does not inhibit the ability of JNK1 to phosphorylate c-Jun in vitro.
Collapse
Affiliation(s)
- Chunli Yan
- Department of Biomedical Engineering, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
29
|
Mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by pinoxaden. Proc Natl Acad Sci U S A 2010; 107:22072-7. [PMID: 21135213 DOI: 10.1073/pnas.1012039107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetyl-CoA carboxylases (ACCs) are crucial metabolic enzymes and have been targeted for drug development against obesity, diabetes, and other diseases. The carboxyltransferase (CT) domain of this enzyme is the site of action for three different classes of herbicides, as represented by haloxyfop, tepraloxydim, and pinoxaden. Our earlier studies have demonstrated that haloxyfop and tepraloxydim bind in the CT active site at the interface of its dimer. However, the two compounds probe distinct regions of the dimer interface, sharing primarily only two common anchoring points of interaction with the enzyme. We report here the crystal structure of the CT domain of yeast ACC in complex with pinoxaden at 2.8-Å resolution. Despite their chemical diversity, pinoxaden has a similar binding mode as tepraloxydim and requires a small conformational change in the dimer interface for binding. Crystal structures of the CT domain in complex with all three classes of herbicides confirm the importance of the two anchoring points for herbicide binding. The structures also provide a foundation for understanding the molecular basis of the herbicide resistance mutations and cross resistance among the herbicides, as well as for the design and development of new inhibitors against plant and human ACCs.
Collapse
|
30
|
Computational simulations of structural role of the active-site W374C mutation of acetyl-coenzyme-A carboxylase: Multi-drug resistance mechanism. J Mol Model 2010; 17:495-503. [DOI: 10.1007/s00894-010-0742-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
31
|
Jiang L, Wang H, Wang M, Teng X. Synthesis and biological activity of 4-(4,6-disubstituted-pyrimidin-2-yloxy)phenoxy acetates. Molecules 2010; 15:1074-81. [PMID: 20335962 PMCID: PMC6263202 DOI: 10.3390/molecules15021074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/01/2010] [Accepted: 02/20/2010] [Indexed: 11/26/2022] Open
Abstract
Ten novel 4-(4,6-dimethoxypyrimidin-2-yloxy)phenoxy acetates and 4-(4,6-dimethylpyrimidin-2-yloxy)phenoxy acetates were synthesized with hydroquinone, 2-methylsulfonyl-4,6-disubstituted-pyrimidine and chloroacetic ester as starting materials. The products were characterized by IR, 1H-NMR, MS spectra and elemental analyses. Preliminary bioassay indicates that the target compounds possess high herbicidal activity against monocotyledonous plants such as Digitaria sanguinalis L. at concentrations of 100 mg/L and 50 mg/L.
Collapse
Affiliation(s)
- Lin Jiang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China; E-Mails: (H.W.), (M.R.W.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Hao Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China; E-Mails: (H.W.), (M.R.W.)
| | - Maorong Wang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, China; E-Mails: (H.W.), (M.R.W.)
| | - Xinhuan Teng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China; E-Mail: (X.H.T.)
| |
Collapse
|