1
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
2
|
Bisi N, Pinzi L, Rastelli G, Tonali N. Early Diagnosis of Neurodegenerative Diseases: What Has Been Undertaken to Promote the Transition from PET to Fluorescence Tracers. Molecules 2024; 29:722. [PMID: 38338465 PMCID: PMC10856728 DOI: 10.3390/molecules29030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble β-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble β-sheet-rich amyloid deposits (amyloid β1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.
Collapse
Affiliation(s)
- Nicolò Bisi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Nicolò Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| |
Collapse
|
3
|
Warerkar OD, Mudliar NH, Momin MM, Singh PK. Targeting Amyloids with Coated Nanoparticles: A Review on Potential Combinations of Nanoparticles and Bio-Compatible Coatings. Crit Rev Ther Drug Carrier Syst 2024; 41:85-119. [PMID: 37938191 DOI: 10.1615/critrevtherdrugcarriersyst.2023046209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Amyloidosis is the major cause of many neurodegenerative diseases, such as, Alzheimer's and Parkinson's where the misfolding and deposition of a previously functional protein make it inept for carrying out its function. The genesis of amyloid fibril formation and the strategies to inhibit it have been studied extensively, although some parts of this puzzle still remain unfathomable to date. Many classes of molecules have been explored as potential drugs in vitro, but their inability to work in vivo by crossing the blood-brain-barrier has made them an inadequate treatment option. In this regard, nanoparticles (NPs) have turned out to be an exciting alternative because they could overcome many drawbacks of previously studied molecules and provide advantages, such as, greater bioavailability of molecules and target-specific delivery of drugs. In this paper, we present an overview on several coated NPs which have shown promising efficiency in inhibiting fibril formation. A hundred and thirty papers published in the past two decades have been comprehensively reviewed, which majorly encompass NPs comprising different materials like gold, silver, iron-oxide, poly(lactic-co-glycolic acid), polymeric NP, etc., which are coated with various molecules of predominantly natural origin, such as different types of amino acids, peptides, curcumin, drugs, catechin, etc. We hope that this review will shed light on the advancement of symbiotic amalgamation of NPs with molecules from natural sources and will inspire further research on the tremendous therapeutic potential of these combinations for many amyloid-related diseases.
Collapse
Affiliation(s)
- Oshin D Warerkar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Niyati H Mudliar
- SVKM's Shri C.B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Munira M Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; SVKM's Shri C.B. Patel Research Centre for Chemistry and Biological Sciences, Vile Parle (West), Mumbai, Maharashtra, 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Hajda A, Grelich-Mucha M, Rybczyński P, Ośmiałowski B, Zaleśny R, Olesiak-Bańska J. BF 2-Functionalized Benzothiazole Amyloid Markers: Effect of Donor Substituents on One- and Two-Photon Properties. ACS APPLIED BIO MATERIALS 2023; 6:5676-5684. [PMID: 38060806 PMCID: PMC10731634 DOI: 10.1021/acsabm.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
Investigation of amyloids with the aid of fluorescence microscopy provides crucial insights into the development of numerous diseases associated with the formation of aggregates. Here, we present a series of BF2-functionalized benzothiazoles with electron-donating methoxy group(s), which are tested as amyloid fluorescent markers. We evaluate how the position of donor functional group(s) influences optical properties (fluorescence lifetime (τ) and fluorescence quantum yield (FQY)) in a solution and upon binding to amyloids. We elucidate the importance of surrounding environmental factors (hydrogen-bonding network, polarity, and viscosity) on the observed changes in FQY and evaluate how the localization of a donor influences radiative and nonradiative decay pathways. We conclude that a donor attached to the benzothiazole ring contributes to the increment of radiative decay pathways upon binding to amyloids (kr), while the donor attached to the flexible part of a molecule (with rotational freedom) contributes to a decrease in nonradiative decay pathways (knr). We find that the donor-acceptor-donor architecture allows us to obtain 58 times higher FQY of the dye upon binding to bovine insulin amyloids. Finally, we measure two-photon absorption (2PA) cross sections (σ2) of the dyes and their change upon binding by the two-photon excited fluorescence (2PEF) technique. Measurements reveal that dyes that exhibit the increase/decrease of σ2 values when transferred from highly polar solvents to CHCl3 present a similar behavior upon amyloid binding. Our 2PA experimental values are supported by quantum mechanics/molecular mechanics (QM/MM) simulations. Despite this trend, the values of σ2 are not the same, which points out the importance of two-photon absorption measurements of amyloid-dye complexes in order to understand the performance of 2P probes upon binding.
Collapse
Affiliation(s)
- Agata Hajda
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Manuela Grelich-Mucha
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Patryk Rybczyński
- Faculty
of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń PL-87-100, Poland
| | - Borys Ośmiałowski
- Faculty
of Chemistry, Nicolaus Copernicus University, Gagarina Street 7, Toruń PL-87-100, Poland
| | - Robert Zaleśny
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| | - Joanna Olesiak-Bańska
- Faculty
of Chemistry, Wroclaw University of Science
and Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wroclaw, Poland
| |
Collapse
|
5
|
Sousa JLC, Albuquerque HMT, Silva AMS. Drug Discovery Based on Oxygen and Nitrogen (Non-)Heterocyclic Compounds Developed @LAQV-REQUI MTE/Aveiro. Pharmaceuticals (Basel) 2023; 16:1668. [PMID: 38139794 PMCID: PMC10747949 DOI: 10.3390/ph16121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Artur Silva's research group has a long history in the field of medicinal chemistry. The development of new synthetic methods for oxygen (mostly polyphenols, e.g., 2- and 3-styrylchromones, xanthones, flavones) and nitrogen (e.g., pyrazoles, triazoles, acridones, 4-quinolones) heterocyclic compounds in order to be assessed as antioxidant, anti-inflammatory, antidiabetic, and anticancer agents has been the main core work of our research interests. Additionally, the synthesis of steroid-type compounds as anti-Alzheimer drugs as well as of several chromophores as important dyes for cellular imaging broadened our research scope. In this review article, we intend to provide an enlightened appraisal of all the bioactive compounds and their biological properties that were synthesized and studied by our research group in the last two decades.
Collapse
Affiliation(s)
| | | | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.L.C.S.); (H.M.T.A.)
| |
Collapse
|
6
|
Ma L, Geng Y, Zhang G, Hu Z, James TD, Wang X, Wang Z. Near-Infrared Bodipy-Based Molecular Rotors for β-Amyloid Imaging In Vivo. Adv Healthc Mater 2023; 12:e2300733. [PMID: 37523149 PMCID: PMC11468675 DOI: 10.1002/adhm.202300733] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/12/2023] [Indexed: 08/01/2023]
Abstract
β-amyloid (Aβ) is one of the important biomarkers for diagnosing Alzheimer's disease (AD). Many near-infrared probes based on the donor-π-acceptor structure have been developed to detect Aβ. Most reported Aβ probes are based on the N,N-dimethylamino group as the ideal donor, which is a widely accepted binding unit. As such, the development of fluorescent probes with improved binding units to detect Aβ is urgently required. Therefore, with this research three anchoring molecular rotor electron donors consisting of cyclic amines of different ring sizes are developed, namely five-membered ring (TPyr), six-membered ring (TPip), and seven-membered ring (THAI). These new anchored molecular rotors are connected to a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) and named TPyrBDP, TPipBDP, and THAIBDP. These probes exhibit high affinities (from 28 to 54 nm) for Aβ1-42 aggregates. The six-membered ring dye TPipBDP exhibits the highest signal-to-noise (75.5-fold) and higher affinity (28.30 ± 5.94 nm). TPipBDP can cross the blood-brain barrier and exhibits higher fluorescence enhancement with APP/PS1 (AD) double transgenic (Tg) mice than with wild-type (WT) mice.
Collapse
Affiliation(s)
- Lijun Ma
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Yujie Geng
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Ziwei Hu
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Tony D. James
- Department of ChemistryUniversity of BathBathBA2 7AYUK
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007China
| | - Xuefei Wang
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
- Department of ChemistryUniversity of BathBathBA2 7AYUK
| |
Collapse
|
7
|
Cao Y, Liu X, Zhang J, Liu Z, Fu Y, Zhang D, Zheng M, Zhang H, Xu MH. Design of a Coumarin-Based Fluorescent Probe for Efficient In Vivo Imaging of Amyloid-β Plaques. ACS Chem Neurosci 2023; 14:829-838. [PMID: 36749171 DOI: 10.1021/acschemneuro.2c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyloid-β (Aβ) is the core constituent protein of senile plaques, which is one of the key pathological hallmarks of Alzheimer's disease (AD). Here we describe the design, synthesis, and evaluation of coumarin-derived small molecule fluorophores for Aβ imaging. By embedding the aromatic coumarin framework into π bridge of a push-pull chromophore, a novel fluorescence probe XCYC-3 applicable to efficient Aβ recognition was discovered. XCYC-3 displays higher fluorescent enhancement for aggregated Aβ than monomeric Aβ, and possesses good blood-brain barrier permeability. In vitro staining and in vivo imaging studies demonstrated that XCYC-3 could efficiently recognize Aβ plaques in the brain of AD transgenic mice. These results suggest that XCYC-3 is a promising fluorescence imaging agent for Aβ, which might provide important clues for the future development of potent NIR fluorescent probes for Aβ diagnosis.
Collapse
Affiliation(s)
- Yangyang Cao
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaohui Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhongmin Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Fu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Zhang T, Chen X, Yuan C, Pang X, Shangguan P, Liu Y, Han L, Sun J, Lam JWY, Liu Y, Wang J, Shi B, Zhong Tang B. Near-Infrared Aggregation-Induced Emission Luminogens for In Vivo Theranostics of Alzheimer's Disease. Angew Chem Int Ed Engl 2023; 62:e202211550. [PMID: 36336656 DOI: 10.1002/anie.202211550] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Optimized theranostic strategies for Alzheimer's disease (AD) remain almost absent from bench to clinic. Current probes and drugs attempting to prevent β-amyloid (Aβ) fibrosis encounter failures due to the blood-brain barrier (BBB) penetration challenge and blind intervention time window. Herein, we design a near-infrared (NIR) aggregation-induced emission (AIE) probe, DNTPH, via balanced hydrophobicity-hydrophilicity strategy. DNTPH binds selectively to Aβ fibrils with a high signal-to-noise ratio. In vivo imaging revealed its excellent BBB permeability and long-term tracking ability with high-performance AD diagnosis. Remarkably, DNTPH exhibits a strong inhibitory effect on Aβ fibrosis and promotes fibril disassembly, thereby attenuating Aβ-induced neurotoxicity. DNTPH treatment significantly reduced Aβ plaques and rescued learning deficits in AD mice. Thus, DNTPH serves as the first AIE in vivo theranostic agent for real-time NIR imaging of Aβ plaques and AD therapy simultaneously.
Collapse
Affiliation(s)
- Tianfu Zhang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyu Chen
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Congmin Yuan
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaobin Pang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Ping Shangguan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Yisheng Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Lulu Han
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, 475004, Kaifeng, China
| | - Jiefei Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, 475004, Kaifeng, China.,Centre for motor neuron disease, Macquarie Medical School, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Inhibition of lysozyme amyloid fibrillation by curcumin-conjugated silver nanoparticles: A multispectroscopic molecular level study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Rai H, Gupta S, Kumar S, Yang J, Singh SK, Ran C, Modi G. Near-Infrared Fluorescent Probes as Imaging and Theranostic Modalities for Amyloid-Beta and Tau Aggregates in Alzheimer's Disease. J Med Chem 2022; 65:8550-8595. [PMID: 35759679 DOI: 10.1021/acs.jmedchem.1c01619] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A person suspected of having Alzheimer's disease (AD) is clinically diagnosed for the presence of principal biomarkers, especially misfolded amyloid-beta (Aβ) and tau proteins in the brain regions. Existing radiotracer diagnostic tools, such as PET imaging, are expensive and have limited availability for primary patient screening and pre-clinical animal studies. To change the status quo, small-molecular near-infrared (NIR) probes have been rapidly developed, which may serve as an inexpensive, handy imaging tool to comprehend the dynamics of pathogenic progression in AD and assess therapeutic efficacy in vivo. This Perspective summarizes the biochemistry of Aβ and tau proteins and then focuses on structurally diverse NIR probes with coverages of their spectroscopic properties, binding affinity toward Aβ and tau species, and theranostic effectiveness. With the summarized information and perspective discussions, we hope that this paper may serve as a guiding tool for designing novel in vivo imaging fluoroprobes with theranostic capabilities in the future.
Collapse
Affiliation(s)
- Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Sarika Gupta
- Molecular Science Laboratory, National Institute of Immunology, New Delhi-110067, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jian Yang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sushil K Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, U.P.-221005, India
| |
Collapse
|
11
|
Yang H, Zeng F, Luo Y, Zheng C, Ran C, Yang J. Curcumin Scaffold as a Multifunctional Tool for Alzheimer's Disease Research. Molecules 2022; 27:3879. [PMID: 35745002 PMCID: PMC9227459 DOI: 10.3390/molecules27123879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, which is caused by multi-factors and characterized by two histopathological hallmarks: amyloid-β (Aβ) plaques and neurofibrillary tangles of Tau proteins. Thus, researchers have been devoting tremendous efforts to developing and designing new molecules for the early diagnosis of AD and curative purposes. Curcumin and its scaffold have fluorescent and photochemical properties. Mounting evidence showed that curcumin scaffold had neuroprotective effects on AD such as anti-amyloidogenic, anti-inflammatory, anti-oxidative and metal chelating. In this review, we summarized different curcumin derivatives and analyzed the in vitro and in vivo results in order to exhibit the applications in AD diagnosis, therapeutic monitoring and therapy. The analysis results showed that, although curcumin and its analogues have some disadvantages such as short wavelength and low bioavailability, these shortcomings can be conquered by modifying the structures. Curcumin scaffold still has the potential to be a multifunctional tool for AD research, including AD diagnosis and therapy.
Collapse
Affiliation(s)
- Haijun Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Fantian Zeng
- School of Public Health, Xiamen University, Xiamen 361000, China;
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| | - Chao Zheng
- PET Center, School of Medicine, Yale University, New Haven, CT 06520, USA;
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jian Yang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China; (H.Y.); (Y.L.)
| |
Collapse
|
12
|
Ma L, Yang S, Ma Y, Chen Y, Wang Z, James TD, Wang X, Wang Z. Benzothiazolium Derivative-Capped Silica Nanocomposites for β-Amyloid Imaging In Vivo. Anal Chem 2021; 93:12617-12627. [PMID: 34494815 PMCID: PMC8746709 DOI: 10.1021/acs.analchem.1c02289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Alzheimer’s
disease (AD) is a neurodegenerative disease,
and β-amyloid (Aβ) is believed to be a causative factor
in AD pathology. The abnormal deposition of Aβ is believed to
be responsible for progression of AD. In order to facilitate the imaging
of Aβ in vivo, suitable probe molecules with
a near-infrared emission wavelength that can penetrate the blood–brain
barrier (BBB) were utilized. The commercial fluorescent probe thioflavin-T
(ThT) is used to image Aβ; however, because of its short emission
wavelength and poor BBB penetration, ThT can only be used in vitro. With this research, based on ThT, we design three
fluorescent probes (SZIs) having a longer emission wavelength in order
to image Aβ aggregates. SZIs with different numbers of double
bonds respond to Aβ aggregates. The SZIs have a structure similar
to ThT, and as such, the SZIs are also unable to penetrate the BBB.
To deal with the problem, we develop nanocomposites (MSN-Lf@SZIs)
to deliver SZIs into the brain of AD mouse and image Aβ successfully.
These new nanocomposites are able to deliver the dyes into the brain
and facilitate Aβ imaging in vivo.
Collapse
Affiliation(s)
- Lijun Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shu Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhenguo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
13
|
Wang JF, Zhou Y, Xu GY, Li K, Zhou SS. A Triphenylamine Derivative-based Fluorescent Probe with Good Water Solubility for Targeting Aβ Plaques in Alzheimer’s Disease. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221090218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Cai L, Du H, Wang D, Lyu H, Wang D. Synthesis and photophysical properties of ditrifluoroacetoxyboron complexes with curcumin analogues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 249:119297. [PMID: 33341749 DOI: 10.1016/j.saa.2020.119297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A new class of ditrifluoroacetoxyboron complexes were designed and synthesized by chelation reaction of curcumins with boron trifluoroacetate. Their photophysical behaviors were studied in different solvents, powder state and PMMA polymer films. The results indicated that these complexes revealed a green to yellow emission at 486-595 nm in solution or PMMA films and an orange to red emission at 598-710 nm in powder state. Especially, complex 2c displayed the strongest emission intensity, the highest quantum yield in solution and the longest fluorescence lifetime in powder state in these complexes. In addtion, the emission bathochromic shifts of these complexes as a function of the solvent polarity parameter ET(30) were investigated by Lippert-Mataga approximation. It was observed that these complexes exhibited the higher values of the dipole moment difference (Δμ) between the ground and excited states, which implied an intense intramolecular charge transfer characteristics and a noticeable emission solvatochromic effect.
Collapse
Affiliation(s)
- Lian Cai
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Hengyi Du
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Dan Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Heng Lyu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China
| | - Dunjia Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
15
|
Si GF, Zhou Y, Wang JF, Xu GY, Zhou SS. Preparation, Two-Photon Absorption, and Bioimaging Application of a Curcumin-Based Copper(II) Complex. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328420110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Ausili A, Gómez-Murcia V, Candel AM, Beltrán A, Torrecillas A, He L, Jiang Y, Zhang S, Teruel JA, Gómez-Fernández JC. A comparison of the location in membranes of curcumin and curcumin-derived bivalent compounds with potential neuroprotective capacity for Alzheimer's disease. Colloids Surf B Biointerfaces 2020; 199:111525. [PMID: 33373844 DOI: 10.1016/j.colsurfb.2020.111525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
Curcumin and two bivalent compounds, namely 17MD and 21MO, both obtained by conjugation of curcumin with a steroid molecule that acts as a membrane anchor, were comparatively studied. When incorporated into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine the compounds showed a very limited solubility in the model membranes. Curcumin and the two bivalent compounds were also incorporated in membranes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and quenching the fluorescence of pure curcumin or of the curcumin moiety in the bivalent compounds by acrylamide it was seen that curcumin was accessible to this water soluble quencher but the molecule was somehow located in a hydrophobic environment. This was confirmed by quenching with doxyl-phosphatidylcholines, indicating that the curcumin moieties of 17MD and 21MO were in a more polar environment than pure curcumin itself. 1H NOESY MAS-NMR analysis supports this notion by showing that the orientation of curcumin was parallel to the plane of the membrane surface close to C2 and C3 of the fatty acyl chains, while the curcumin moiety of 17MD and 21MO positioned close to the polar part of the membrane with the steroid moiety in the centre of the membrane. Molecular dynamics studies were in close agreement with the experimental results with respect to the likely proximity of the protons studied by NMR and show that 17MD and 21MO have a clear tendency to aggregate in a fluid membrane. The anchorage of the bivalent compounds to the membrane leaving the curcumin moiety near the polar part may be very important to facilitate the bioactivity of the curcumin moiety when used as anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Alessio Ausili
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Victoria Gómez-Murcia
- Departamento de Farmacología, Facultad de Medicina, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Adela M Candel
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Andrea Beltrán
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Alejandro Torrecillas
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Liu He
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
| | - Yuqi Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, 23298, United States
| | - José A Teruel
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain
| | - Juan C Gómez-Fernández
- Departamento De Bioquímica y Biología Molecular "A", Facultad de Veterinaria, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Apartado de Correos 4021, Murcia, E-30080, Spain.
| |
Collapse
|
17
|
Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular Tools to Detect Alloforms of Aβ and Tau: Implications for Multiplexing and Multimodal Diagnosis of Alzheimer’s Disease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190356] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshit Arora
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
- VNIR Biotechnologies Pvt. Ltd., Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
18
|
Singh YP, Tej GNVC, Pandey A, Priya K, Pandey P, Shankar G, Nayak PK, Rai G, Chittiboyina AG, Doerksen RJ, Vishwakarma S, Modi G. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer's disease. Eur J Med Chem 2020; 198:112257. [PMID: 32375073 DOI: 10.1016/j.ejmech.2020.112257] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
In our overall goal to overcome the limitations associated with natural products for the management of Alzheimer's disease and to develop in-vivo active multifunctional cholinergic inhibitors, we embarked on the development of ferulic acid analogs. A systematic SAR study to improve upon the cholinesterase inhibition of ferulic acid with analogs that also had lower logP was carried out. Enzyme inhibition and kinetic studies identified compound 7a as a lead molecule with preferential acetylcholinesterase inhibition (AChE IC50 = 5.74 ± 0.13 μM; BChE IC50 = 14.05 ± 0.10 μM) compared to the parent molecule ferulic acid (% inhibition of AChE and BChE at 20 μM, 15.19 ± 0.59 and 19.73 ± 0.91, respectively). Molecular docking and dynamics studies revealed that 7a fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Asp74, Trp286, and Tyr337 in AChE and with Tyr128, Trp231, Leu286, Ala328, Phe329, and Tyr341 in BChE. Compound 7a was found to be an efficacious antioxidant in a DPPH assay (IC50 = 57.35 ± 0.27 μM), and it also was able to chelate iron. Data from atomic force microscopy images demonstrated that 7a was able to modulate aggregation of amyloid β1-42. Upon oral administration, 7a exhibited promising in-vivo activity in the scopolamine-induced AD animal model and was able to improve spatial memory in cognitive deficit mice in the Y-maze model. Analog 7a could effectively reverse the increased levels of AChE and BChE in scopolamine-treated animals and exhibited potent ex-vivo antioxidant properties. These findings suggest that 7a can act as a lead molecule for the development of naturally-inspired multifunctional molecules for the management of Alzheimer's and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gullanki Naga Venkata Charan Tej
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Amruta Pandey
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, United States
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, United States
| | - Swati Vishwakarma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
19
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. Int J Mol Sci 2020; 21:ijms21061975. [PMID: 32183162 PMCID: PMC7139886 DOI: 10.3390/ijms21061975] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Worldwide, Alzheimer’s disease (AD) is the most common neurodegenerative multifactorial disease influencing the elderly population. Nowadays, several medications, among them curcumin, are used in the treatment of AD. Curcumin, which is the principal component of Curcuma longa, has shown favorable effects forsignificantly preventing or treating AD. During the last decade, the scientific community has focused their research on the optimization of therapeutic properties and on the improvement of pharmacokinetic properties of curcumin. This review summarizes bibliographical data from 2009 to 2019 on curcumin analogues, derivatives, and hybrids, as well as their therapeutic, preventic, and diagnostic applications in AD. Recent advances in the field have revealed that the phenolic hydroxyl group could contribute to the anti-amyloidogenic activity. Phenyl methoxy groups seem to contribute to the suppression of amyloid-β peptide (Aβ42) and to the suppression of amyloid precursor protein (APP) andhydrophobic interactions have also revealed a growing role. Furthermore, flexible moieties, at the linker, are crucial for the inhibition of Aβ aggregation. The inhibitory activity of derivatives is increased with the expansion of the aromatic rings. The promising role of curcumin-based compounds in diagnostic imaging is highlighted. The keto-enol tautomerism seems to be a novel modification for the design of amyloid-binding agents. Molecular docking results, (Q)SAR, as well as in vitro and in vivo tests highlight the structures and chemical moieties that are correlated with specific activity. As a result, the knowledge gained from the existing research should lead to the design and synthesis ofinnovative and multitargetedcurcumin analogues, derivatives, or curcumin hybrids, which would be very useful drug and tools in medicine for both diagnosis and treatment of AD.
Collapse
|
20
|
Zhang Y, Ren B, Zhang D, Liu Y, Zhang M, Zhao C, Zheng J. Design principles and fundamental understanding of biosensors for amyloid-β detection. J Mater Chem B 2020; 8:6179-6196. [DOI: 10.1039/d0tb00344a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aβ as biomarker in Alzheimer’s disease (AD) drives the significant research efforts for developing different biosensors with different sensing strategies, materials, and mechanisms for Aβ detection.
Collapse
Affiliation(s)
- Yanxian Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Baiping Ren
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Dong Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Yonglan Liu
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Mingzhen Zhang
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| | - Chao Zhao
- Department of Chemical and Biomolecular Engineering
- The University of Alabama
- USA
| | - Jie Zheng
- Department of Chemical
- Biomolecular, and Corrosion Engineering
- The University of Akron
- Ohio
- USA
| |
Collapse
|
21
|
Wang L, Lu N, Zhao L, Qi C, Zhang W, Dong J, Hou X. Characterization of stress degradation products of curcumin and its two derivatives by UPLC–DAD–MS/MS. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Aliyan A, Cook NP, Martí AA. Interrogating Amyloid Aggregates using Fluorescent Probes. Chem Rev 2019; 119:11819-11856. [DOI: 10.1021/acs.chemrev.9b00404] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amir Aliyan
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran 1991633361
- Khatam University, Tehran, Iran 1991633356
| | - Nathan P. Cook
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | | |
Collapse
|
23
|
Lee D, Kim SM, Kim HY, Kim Y. Fluorescence Chemicals To Detect Insoluble and Soluble Amyloid-β Aggregates. ACS Chem Neurosci 2019; 10:2647-2657. [PMID: 31009195 DOI: 10.1021/acschemneuro.9b00199] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Misfolded amyloid-β (Aβ) is the key biomarker of Alzheimer's disease (AD), and discoveries of fluorescence chemicals visualizing such Aβ aggregates in the brain have made major contributions in postmortem and antemortem diagnosis of the disorder. Insoluble senile plaques of Aβ in brain tissues are commonly stained with thioflavin and congo red dyes and observed through microscopy, while those in living patient brains are detected via radioisotope-labeled fluorescence chemicals for positron emission tomography. Clinical evidence strongly supports the view that plaques are well-associated with the onset but not with the progression of AD. Plaques could accumulate while cognitive functions of at-risk individuals are still intact, and thus, another biomarker is needed to monitor neurodegeneration. Soluble Aβ oligomers are considered to have strong correlation with neuronal loss and brain atrophy as they are the most neurotoxic forms of misfolded Aβ. However, oligomer-targeting probes encounter several major difficulties in development. There is a significant structural distinction between two Aβ species-plaques are β-sheet-rich while oligomers are unordered-and it is still difficult to isolate and stabilize the oligomeric forms of Aβ. Due to these challenges, soluble oligomer-detecting imaging probes are relatively rare compared to the plaque-targeting chemical probes. This Review describes biochemical and optical characteristics of up-to-date fluorescence chemicals targeting insoluble plaques and soluble oligomers of Aβ. We also highlight the contributions of Aβ fluorescence chemicals to the clinical diagnosis of AD and technical challenges in searching for enhanced imaging probes.
Collapse
|
24
|
He L, Jiang Y, Green J, Blevins H, Zhang S. Development of bivalent compounds as potential neuroprotectants for Alzheimer's disease. Bioorg Med Chem Lett 2019; 29:1957-1961. [PMID: 31153803 DOI: 10.1016/j.bmcl.2019.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023]
Abstract
In our efforts to further investigate the impact of the spacer and membrane anchor to the neuroprotective activities, a series of bivalent compounds that contain cholesterol and extended spacers were designed, synthesized and biologically characterized. Our results support previous studies that incorporation of a piperazine ring into the spacer significantly improved the protective potency of bivalent compounds in MC65 cell model. Spacer length beyond 21 atoms does not add further benefits with 21MO being the most potent one with an EC50 of 81.86 ± 11.91 nM. Our results also demonstrated that bivalent compound 21MO suppressed the production of mitochondria reactive oxygen species. Furthermore, our results confirmed that both of the spacer and membrane anchor moiety are essential to metal binding. Collectively, the results provide further evidence and information to guide optimization of such bivalent compounds as potential neuroprotectants for Alzheimer's disease.
Collapse
Affiliation(s)
- Liu He
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yuqi Jiang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Jakob Green
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Hallie Blevins
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
25
|
Antosova A, Bednarikova Z, Koneracka M, Antal I, Marek J, Kubovcikova M, Zavisova V, Jurikova A, Gazova Z. Amino Acid Functionalized Superparamagnetic Nanoparticles Inhibit Lysozyme Amyloid Fibrillization. Chemistry 2019; 25:7501-7514. [DOI: 10.1002/chem.201806262] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Andrea Antosova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Zuzana Bednarikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Martina Koneracka
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Iryna Antal
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Jozef Marek
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Martina Kubovcikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Vlasta Zavisova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Alena Jurikova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| | - Zuzana Gazova
- Institute of Experimental Physics Slovak Academy Science Watsonova 47 040 01 Kosice Slovakia
| |
Collapse
|
26
|
Bazylevich A, Tuchinsky H, Zigman-Hoffman E, Weissman R, Shpilberg O, Hershkovitz-Rokah O, Patsenker L, Gellerman G. Synthesis and Biological Studies of New Multifunctional Curcumin Platforms for Anticancer Drug Delivery. Med Chem 2018; 15:537-549. [PMID: 30501600 DOI: 10.2174/1573406415666181203112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Scientists have extensively investigated curcumin, yielding many publications on treatments of cancer. Numerous derivatives of curcumin were synthesized, evaluated for their anti-oxidant and free-radical scavenging, SAR, ADME properties and tested in anticancer applications. OBJECTIVE We decided to exploit curcumin as a bioactive core platform for carrying anticancer drugs, which likely possesses a carboxyl moiety for potential linkage to the carrier for drug delivery. METHODS The goal of this work is to develop biolabile multifunctional curcumin platforms towards anticancer drug delivery, including determination of drug release profiling in hydrolytic media, in vitro cytotoxicity, antioxidant properties and blockage of relevant cell survival pathways. RESULTS We report on a facile synthesis of the bioactive multifunctional curcumin-based platforms linked to a variety of anticancer drugs like amonafide and chlorambucil, and release of the drugs in a hydrolytic environment. The leading curcumin-based platform has presented antioxidant activity similar to curcumin, but with much more potent cytotoxicity in vitro in agreement with the augmented blockage of the NF-kB cell survival pathway. CONCLUSION The approach presented here may prove beneficial for bioactive curcumin-based delivery applications where multiple drug delivery is required in a consecutive and controlled mode.
Collapse
Affiliation(s)
- Andrii Bazylevich
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel
| | - Helena Tuchinsky
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | | | - Ran Weissman
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.,Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel
| | - Ofer Shpilberg
- Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel.,Pre-Medicine Department, School of Health Sciences, Ariel University, Ariel, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.,Institute of Hematology, Assuta Medical Centers, Tel Aviv, Israel.,Translational Research Lab, Assuta Medical Centers, Tel Aviv, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel, 40700, Israel
| |
Collapse
|
27
|
Kaur R, Khullar P, Mahal A, Gupta A, Singh N, Ahluwalia GK, Bakshi MS. Keto-Enol Tautomerism of Temperature and pH Sensitive Hydrated Curcumin Nanoparticles: Their Role as Nanoreactors and Compatibility with Blood Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11974-11980. [PMID: 30359007 DOI: 10.1021/acs.jafc.8b03893] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In order to provide a solution for the poor aqueous solubility and poor bioavailability of curcumin, we present the synthesis and characteristic features of water-soluble curcumin hydrated nanoparticles (CNPs). They are stable and nearly monodisperse in the aqueous phase where the keto form of curcumin self-assembles into spherical CNPs, which are highly sensitive to temperature and pH variations. The CNPs are quite stable up to 40 °C and at neutral pH. A higher temperature range reduces their hydration and makes them unstable, thereby disintegrating them into smaller aggregates. Similarly, a higher pH converts the keto form of CNPs into the enol form by promoting their interparticle fusions driven by hydrogen bonding with a remarkable color change from yellow to bright orange-red which demonstrates their excellent photophysical behavior. The stable keto form CNPs are highly efficient nonreactors for the in situ synthesis of Au, Ag, and Pd NPs which are simultaneously entrapped in curcumin aggregates, thus promoting the metal NP carrying ability of curcumin aggregates. The CNPs also demonstrate their excellent dose-dependent biocompatibility with blood cells. A concentration range up to 5 mM of CNPs is quite safe for their applications in biological systems.
Collapse
Affiliation(s)
- Rajpreet Kaur
- Department of Chemistry , B.B.K. D.A.V. College for Women , Amritsar 143005 , Punjab India
| | - Poonam Khullar
- Department of Chemistry , B.B.K. D.A.V. College for Women , Amritsar 143005 , Punjab India
| | - Aabroo Mahal
- Department of Chemistry , B.B.K. D.A.V. College for Women , Amritsar 143005 , Punjab India
| | - Anita Gupta
- Amity Institute of Applied Sciences, AUUP , Noida 201304 , India
| | - Narpinder Singh
- Department of Food Science and Technology , Guru Nanak Dev University , Amritsar 143005 , Punjab India
| | - Gurinder Kaur Ahluwalia
- Nanotechnology Research Laboratory , College of North Atlantic , Labrador City , NL A2 V 2K7 Canada
| | - Mandeep Singh Bakshi
- Department of Natural and Applied Sciences , University of Wisconsin - Green Bay , 2420 Nicolet Drive , Green Bay , Wisconsin 54311-7001 , United States
| |
Collapse
|
28
|
Kim S, Lee HJ, Nam E, Jeong D, Cho J, Lim MH, You Y. Tailoring Hydrophobic Interactions between Probes and Amyloid-β Peptides for Fluorescent Monitoring of Amyloid-β Aggregation. ACS OMEGA 2018; 3:5141-5154. [PMID: 31458729 PMCID: PMC6641720 DOI: 10.1021/acsomega.8b00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/23/2018] [Indexed: 05/30/2023]
Abstract
Despite their unique advantages, the full potential of molecular probes for fluorescent monitoring of amyloid-β (Aβ) aggregates has not been fully exploited. This limited utility stems from the lack of knowledge about the hydrophobic interactions between the molecules of Aβ probes, as well as those between the probe and the Aβ aggregate. Herein, we report the first mechanistic study, which firmly establishes a structure-signaling relationship of fluorescent Aβ probes. We synthesized a series of five fluorescent Aβ probes based on an archetypal donor-acceptor-donor scaffold (denoted as SN1-SN5). The arylamino donor moieties were systematically varied to identify molecular factors that could influence the interactions between molecules of each probe and that could influence their fluorescence outcomes in conditions mimicking the biological milieu. Our probes displayed different responses to aggregates of Aβ, Aβ40 and Aβ42, two major isoforms found in Alzheimer's disease: SN2, having pyrrolidine donors, showed noticeable ratiometric fluorescence responses (Δν = 797 cm-1) to the Aβ40 and Aβ42 samples that contained oligomeric species, whereas SN4, having N-methylpiperazine donors, produced significant fluorescence turn-on signaling in response to Aβ aggregates, including oligomers, protofibrils, and fibrils (with turn-on ratios of 14 and 10 for Aβ42 and Aβ40, respectively). Mechanistic investigations were carried out by performing field-emission scanning electron microscopy, X-ray crystallography, UV-vis absorption spectroscopy, and steady-state and transient photoluminescence spectroscopy experiments. The studies revealed that the SN probes underwent preassembly prior to interacting with the Aβ species and that the preassembled structures depended profoundly on the subtle differences between the amino moieties of the different probes. Importantly, the studies demonstrated that the mode of fluorescence signaling (i.e., ratiometric response versus turn-on response) was primarily governed by stacking geometries within the probe preassemblies. Specifically, ratiometric fluorescence responses were observed for probes capable of forming J-assembly, whereas fluorescence turn-on responses were obtained for probes incapable of forming J-aggregates. This finding provides an important guideline to follow in future efforts at developing fluorescent probes for Aβ aggregation. We also conclude, on the basis of our study, that the rational design of such fluorescent probes should consider interactions between the probe molecules, as well as those between Aβ peptides and the probe molecule.
Collapse
Affiliation(s)
- Sonam Kim
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Donghyun Jeong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
29
|
Li Y, Ji YX, Song LJ, Zhang Y, Li ZC, Yang L, Huang WC. A novel BF2–curcumin-based fluorescent chemosensor for detection of Cu2+ in aqueous solution and living cells. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3416-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
He L, Boice A, Liu K, Yan X, Jiang Y, Zhang S. Design and characterization of bivalent compounds as potential neuroprotectants for Alzheimer's disease: Impact of the spacer on biological activity. Bioorg Med Chem Lett 2018; 28:1030-1036. [PMID: 29475586 DOI: 10.1016/j.bmcl.2018.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 11/15/2022]
Abstract
In our continuing efforts to develop bivalent compounds as potential neuroprotectants for Alzheimer's disease, a series of bivalent compounds that contain cholesterylamine and an extended spacer were synthesized and biologically characterized. Our results demonstrated that incorporation of a piperazine ring into the spacer composition significantly improved the protective potency in MC65 cell models. Our results also suggested that the optimal spacer length for such bivalent compounds ranges from 17 to 21 atoms, and further spacer extension beyond 21 atoms results no further optimization. Notably, incorporation of a piperazine ring into the spacer diminished the biometal chelating capacity for these bivalent compounds, thus suggesting structural flexibility of these compounds in interactions with metals. Collectively, the results provided valuable guidance to develop new bivalent compounds as neuroprotectants for Alzheimer's disease.
Collapse
Affiliation(s)
- Liu He
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Ashley Boice
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Kai Liu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Xing Yan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Yuqi Jiang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
31
|
Chauhan K, Tiwari AK, Chadha N, Kaul A, Singh AK, Datta A. Chalcone Based Homodimeric PET Agent, 11C-(Chal) 2DEA-Me, for Beta Amyloid Imaging: Synthesis and Bioevaluation. Mol Pharm 2018. [PMID: 29522675 DOI: 10.1021/acs.molpharmaceut.7b01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Homodimeric chalcone based 11C-PET radiotracer, 11C-(Chal)2DEA-Me, was synthesized, and binding affinity toward beta amyloid (Aβ) was evaluated. The computational studies revealed multiple binding of the tracer at the recognition sites of Aβ fibrils. The bivalent ligand 11C-(Chal)2DEA-Me displayed higher binding affinity compared to the corresponding monomer, 11C-Chal-Me, and classical Aβ agents. The radiolabeling yield with carbon-11 was 40-55% (decay corrected) with specific activity of 65-90 GBq/μmol. A significant ( p < 0.0001) improvement in the binding affinity of 11C-(Chal)2DEA-Me with synthetic Aβ42 aggregates over the monomer, 11C-Chal-Me, demonstrates the utility of the bivalent approach. The PET imaging and biodistribution data displayed suitable brain pharmacokinetics of both ligands with higher brain uptake in the case of the bivalent ligand. Metabolite analysis of healthy ddY mouse brain homogenates exhibited high stability of the radiotracers in the brain with >93% intact tracer at 30 min post injection. Both chalcone derivatives were fluorescent in nature and demonstrated significant changes in the emission properties after binding with Aβ42. The preliminary analysis indicates high potential of 11C-(Chal)2DEA-Me as in vivo Aβ42 imaging tracer and highlights the significance of the bivalent approach to achieve a higher biological response for detection of early stages of amyloidosis.
Collapse
Affiliation(s)
- Kanchan Chauhan
- Division of Cyclotron and Radiopharmaceutical Sciences , Institute of Nuclear Medicine & Allied Sciences, DRDO , Brig. SK Mazumdar Marg , Delhi 110054 , India.,Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología , Universidad Nacional Autónoma de México , Km. 107 Carratera Tijuana-Ensenada , 22860 Ensenada , Baja California , Mexico
| | - Anjani K Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences , Institute of Nuclear Medicine & Allied Sciences, DRDO , Brig. SK Mazumdar Marg , Delhi 110054 , India.,Department of Applied Chemistry , Babasaheb Bhimrao Ambedkar University , Lucknow , India
| | - Nidhi Chadha
- Division of Cyclotron and Radiopharmaceutical Sciences , Institute of Nuclear Medicine & Allied Sciences, DRDO , Brig. SK Mazumdar Marg , Delhi 110054 , India
| | - Ankur Kaul
- Division of Cyclotron and Radiopharmaceutical Sciences , Institute of Nuclear Medicine & Allied Sciences, DRDO , Brig. SK Mazumdar Marg , Delhi 110054 , India
| | - Ajai Kumar Singh
- Department of Chemistry , Indian Institute of Technology , Delhi 110016 , India
| | - Anupama Datta
- Division of Cyclotron and Radiopharmaceutical Sciences , Institute of Nuclear Medicine & Allied Sciences, DRDO , Brig. SK Mazumdar Marg , Delhi 110054 , India
| |
Collapse
|
32
|
He L, Jiang Y, Liu K, Gomez-Murcia V, Ma X, Torrecillas A, Chen Q, Zhu X, Lesnefsky E, Gomez-Fernandez JC, Xu B, Zhang S. Insights into the Impact of a Membrane-Anchoring Moiety on the Biological Activities of Bivalent Compounds As Potential Neuroprotectants for Alzheimer's Disease. J Med Chem 2018; 61:777-790. [PMID: 29271648 DOI: 10.1021/acs.jmedchem.7b01284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bivalent compounds anchoring in different manners to the membrane were designed and biologically characterized to understand the contribution of the anchor moiety to their biological activity as neuroprotectants for Alzheimer's disease. Our results established that the anchor moiety is essential, and we identified a preference for diosgenin, as evidenced by 17MD. Studies in primary neurons and mouse brain mitochondria also identified 17MD as exhibiting activity on neuritic outgrowth and the state 3 oxidative rate of glutamate while preserving the coupling capacity of the mitochondria. Significantly, our studies demonstrated that the integrated bivalent structure is essential to the observed biological activities. Further studies employing bivalent compounds as probes in a model membrane also revealed the influence of the anchor moiety on how they interact with the membrane. Collectively, our results suggest diosgenin to be an optimal anchor moiety, providing bivalent compounds with promising pharmacology that have potential applications for Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Victoria Gomez-Murcia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University of Murcia , Murcia, 30080, Spain
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Alejandro Torrecillas
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University of Murcia , Murcia, 30080, Spain
| | | | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | - Juan C Gomez-Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary, University of Murcia , Murcia, 30080, Spain
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University , Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
33
|
Liu Z, Fang L, Zhang H, Gou S, Chen L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg Med Chem 2017; 25:2387-2398. [PMID: 28302511 DOI: 10.1016/j.bmc.2017.02.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/27/2022]
Abstract
Total sixteen tacrine-curcumin hybrid compounds were designed and synthesized for the purpose of searching for multifunctional anti-Alzheimer agents. In vitro studies showed that these hybrid compounds showed good cholinesterase inhibitory activity. Particularly, the potency of K3-2 is even beyond tacrine. Some of the compounds exhibited different selectivity on acetylcholinesterase or butyrylcholinesterase due to the structural difference. Thus, the structure and activity relationship is summarized and further discussed based on molecular modeling studies. The ORAC and MTT assays indicated that the hybrid compounds possessed pronounced antioxidant activity and could effectively protect PC12 cells from the H2O2/Aβ42-induced toxicity. Moreover, the hybrid compounds also showed positive metal ions-chelating ability in vitro, suggesting a potential to halt ion-induced Aβ aggregation. All the obtained results demonstrated that the tacrine-curcumin hybrid compounds, in particular compound K3-2, can be considered as potential therapeutic agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Zhikun Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Huan Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China; Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Li Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
34
|
Dou WT, Chen W, He XP, Su J, Tian H. Vibration-Induced-Emission (VIE) for imaging amyloid β fibrils. Faraday Discuss 2017; 196:395-402. [DOI: 10.1039/c6fd00156d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This paper discusses the use of N,N′-disubstituted-dihydrodibenzo[a,c]phenazines with typical Vibration-Induced-Emission (VIE) properties for imaging amyloid β (Aβ) fibrils, which are a signature of neurological disorders such as Alzheimer's disease. A water-soluble VIEgen with a red fluorescence emission shows a pronounced, blue-shifted emission with Aβ peptide monomers and fibrils. The enhancement in blue fluorescence can be ascribed to the restriction of the molecular vibration by selectively binding to Aβ. We determine an increasing blue-to-red emission ratio of the VIEgen with both the concentration and fibrogenesis time of Aβ, thereby enabling a ratiometric detection of Aβ in its different morphological forms. Importantly, the VIEgen was proven to be suitable for the fluorescence imaging of small Aβ plaques in the hippocampus of a transgenic mouse brain (five months old), with the blue and red emissions well overlapped on the Aβ. This research offers a new rationale to design molecular VIE probes for biological applications.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Wei Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Jianhua Su
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - He Tian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- PR China
| |
Collapse
|
35
|
Advances in development of fluorescent probes for detecting amyloid-β aggregates. Acta Pharmacol Sin 2016; 37:719-30. [PMID: 26997567 DOI: 10.1038/aps.2015.155] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/25/2015] [Indexed: 12/17/2022] Open
Abstract
With accumulating evidence suggesting that amyloid-β (Aβ) deposition is a good diagnostic biomarker for Alzheimer's disease (AD), the discovery of active Aβ probes has become an active area of research. Among the existing imaging methods, optical imaging targeting Aβ aggregates (fibrils or oligomers), especially using near-infrared (NIR) fluorescent probes, is increasingly recognized as a promising approach for the early diagnosis of AD due to its real time detection, low cost, lack of radioactive exposure and high-resolution. In the past decade, a variety of fluorescent probes have been developed and tested for efficiency in vitro, and several probes have shown efficacy in AD transgenic mice. This review classifies these representative probes based on their chemical structures and functional modes (dominant solvent-dependent mode and a novel solvent-independent mode). Moreover, the pharmaceutical characteristics of these representative probes are summarized and discussed. This review provides important perspectives for the future development of novel NIR Aβ diagnostic probes.
Collapse
|
36
|
Rajasekhar K, Narayanaswamy N, Murugan NA, Kuang G, Ågren H, Govindaraju T. A High Affinity Red Fluorescence and Colorimetric Probe for Amyloid β Aggregates. Sci Rep 2016; 6:23668. [PMID: 27032526 PMCID: PMC4817056 DOI: 10.1038/srep23668] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
A major challenge in the Alzheimer's disease (AD) is its timely diagnosis. Amyloid β (Aβ) aggregates have been proposed as the most viable biomarker for the diagnosis of AD. Here, we demonstrate hemicyanine-based benzothiazole-coumarin (TC) as a potential probe for the detection of highly toxic Aβ42 aggregates through switch-on, enhanced (~30 fold) red fluorescence (Emax = 654 nm) and characteristic colorimetric (light red to purple) optical outputs. Interestingly, TC exhibits selectivity towards Aβ42 fibrils compared to other abnormal protein aggregates. TC probe show nanomolar binding affinity (Ka = 1.72 × 10(7) M(-1)) towards Aβ42 aggregates and also displace ThT bound to Aβ42 fibrils due to its high binding affinity. The Aβ42 fibril-specific red-shift in the absorption spectra of TC responsible for the observed colorimetric optical output has been attributed to micro-environment change around the probe from hydrophilic-like to hydrophobic-like nature. The binding site, binding energy and changes in optical properties observed for TC upon interaction with Aβ42 fibrils have been further validated by molecular docking and time dependent density functional theory studies.
Collapse
Affiliation(s)
- K. Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - N. Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Guanglin Kuang
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - T. Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
37
|
Jung SJ, Lee JY, Kim TH, Lee DE, Jeon J, Yang SD, Hur MG, Min JJ, Park YD. Discovery of boronic acid-based fluorescent probes targeting amyloid-beta plaques in Alzheimer’s disease. Bioorg Med Chem Lett 2016; 26:1784-8. [DOI: 10.1016/j.bmcl.2016.02.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/01/2022]
|
38
|
Chaturvedi S, Mishra AK. Small Molecule Radiopharmaceuticals - A Review of Current Approaches. Front Med (Lausanne) 2016; 3:5. [PMID: 26942181 PMCID: PMC4763069 DOI: 10.3389/fmed.2016.00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022] Open
Abstract
Radiopharmaceuticals are an integral component of nuclear medicine and are widely applied in diagnostics and therapy. Though widely applied, the development of an “ideal” radiopharmaceutical can be challenging. Issues such as specificity, selectivity, sensitivity, and feasible chemistry challenge the design and synthesis of radiopharmaceuticals. Over time, strategies to address the issues have evolved by making use of new technological advances in the fields of biology and chemistry. This review presents the application of few advances in design and synthesis of radiopharmaceuticals. The topics covered are bivalent ligand approach and lipidization as part of design modifications for enhanced selectivity and sensitivity and novel synthetic strategies for optimized chemistry and radiolabeling of radiopharmaceuticals.
Collapse
Affiliation(s)
- Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation , Delhi , India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation , Delhi , India
| |
Collapse
|
39
|
Lv G, Sun A, Wei P, Zhang N, Lan H, Yi T. A spiropyran-based fluorescent probe for the specific detection of β-amyloid peptide oligomers in Alzheimer's disease. Chem Commun (Camb) 2016; 52:8865-8. [DOI: 10.1039/c6cc02741e] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A fluorescent probe for the specific detection of Aβ oligomers in Alzheimer's disease both in vitro and in vivo was developed.
Collapse
Affiliation(s)
- Guanglei Lv
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai
- P. R. China
| | - Anyang Sun
- Laboratory of Neurodegenerative Diseases and Molecular Imaging
- Shanghai University of Medicine & Health Sciences
- Shanghai 201318
- P. R. China
| | - Peng Wei
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai
- P. R. China
| | - Ning Zhang
- Laboratory of Neurodegenerative Diseases and Molecular Imaging
- Shanghai University of Medicine & Health Sciences
- Shanghai 201318
- P. R. China
| | - Haichuang Lan
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai
- P. R. China
| | - Tao Yi
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai
- P. R. China
| |
Collapse
|
40
|
Cheng Y, Zhu BY, Li X, Li GB, Yang SY, Zhang ZR. A pyrane based fluorescence probe for noninvasive prediction of cerebral β-amyloid fibrils. Bioorg Med Chem Lett 2015; 25:4472-6. [DOI: 10.1016/j.bmcl.2015.08.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/18/2015] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
|
41
|
Cheng Y, Zhu B, Deng Y, Zhang Z. In Vivo Detection of Cerebral Amyloid Fibrils with Smart Dicynomethylene-4H-Pyran-Based Fluorescence Probe. Anal Chem 2015; 87:4781-7. [PMID: 25875134 DOI: 10.1021/acs.analchem.5b00017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yan Cheng
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Biyue Zhu
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yue Deng
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory
of Drug Targeting
and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
42
|
Kong MY, Chen QY, Yao L, Wang YB. Spectroscopic study on the interaction of Aβ42 with di(picolyl)amine derivatives and the toxicity to SH-S5Y5 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:225-228. [PMID: 25498817 DOI: 10.1016/j.saa.2014.11.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/21/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
In order to confirm the neurotoxicity of bifunctional chelators containing hydrophobic groups and metal chelating moiety, the interaction of di(picolyl)amine (dpa) derivatives toward Aβ42 peptide was investigated. Fluorescence titration reveals that a hydrophobic chelator (such as BODIPY) shows high binding affinity to amyloid Aβ42. Circular dichroism (CD) spectra confirm that the hydrophobic bifunctional chelator can decrease α-helix fraction and increase the β-sheet fraction of amyloid Aβ42. In particular, experimental results indicate that a bifunctional chelator can assemble with Cu(II)-Aβ42 forming chelator-Cu(II)-Aβ42 nanospheres, which are toxic to SH-S5Y5 cells. The hydrophobic interaction between the chelator and the amyloid peptide (Aβ42) has great contribution to the formation of neurotoxic chelator-Cu(II)-Aβ42 nanospheres. This work gives a general guide to the development of low cytotoxic inhibitors of Aβ42 aggregation.
Collapse
Affiliation(s)
- Meng-Yun Kong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ling Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yin-Bing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
43
|
Ono M, Saji H. Recent advances in molecular imaging probes for β-amyloid plaques. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00365a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review recent advances in our development of molecular imaging probes for PET, SPECT, and optical imaging for in vivo detection of β-amyloid plaques in the brain.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
44
|
Lv G, Cui B, Lan H, Wen Y, Sun A, Yi T. Diarylethene based fluorescent switchable probes for the detection of amyloid-β pathology in Alzheimer's disease. Chem Commun (Camb) 2015; 51:125-8. [DOI: 10.1039/c4cc07656g] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two fluorescent switchable diarylethene derivatives which can detect amyloid-β aggregates bothin vitroandin vivowere reported.
Collapse
Affiliation(s)
- Guanglei Lv
- Department of Chemistry & Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Baiping Cui
- Laboratory of Neurodegenerative Diseases and Repair
- Yancheng Institute of Health Sciences
- Yancheng 224005
- P. R. China
| | - Haichuang Lan
- Department of Chemistry & Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Ying Wen
- Department of Chemistry & Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Anyang Sun
- Laboratory of Neurodegenerative Diseases and Repair
- Yancheng Institute of Health Sciences
- Yancheng 224005
- P. R. China
| | - Tao Yi
- Department of Chemistry & Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
45
|
Filippov AV, Kotenkov SA, Munavirov B, Antzutkin ON. Effect of curcumin on lateral diffusion of phosphatidylcholines in saturated and unsaturated bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10686-10690. [PMID: 25157681 DOI: 10.1021/la502338c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Curcumin, a dietary polyphenol, is a natural spice with preventive and therapeutic potential for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Curcumin possesses a spectrum of antioxidant, anti-inflammatory, anticarcinogenic, and antimutagenic properties. Because of this broad spectrum of pharmacological activity, it has been suggested that, like cholesterol, curcumin exerts its effect on a rather basic biological level, such as on lipid bilayers of biomembranes. The effect of curcumin on translational mobility of lipids in biomembranes has not yet been studied. In this work, we used (1)H NMR diffusometry to explore lateral diffusion in planar-oriented bilayers of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) at curcumin concentrations of up to 40 mol % and in the temperature range of 298-333 K. The presence of curcumin at much lower concentrations (∼7 mol %) leads to a decrease in the lateral diffusion coefficient of DOPC by a factor of 1.3 at lower temperatures and by a factor of 1.14 at higher temperatures. For DMPC, the diffusion coefficient decreases by a factor of 1.5 at lower temperatures and by a factor of 1.2 at higher temperatures. Further increasing the curcumin concentration has no effect. Comparison with cholesterol showed that curcumin and cholesterol influence lateral diffusion of lipids differently. The effect of curcumin is determined by its solubility in lipid bilayers, which is as low as 10 mol % that is much less than that of cholesteroĺs 66 mol %.
Collapse
Affiliation(s)
- Andrei V Filippov
- Chemistry of Interfaces, Luleå University of Technology , SE-91187 Luleå, Sweden
| | | | | | | |
Collapse
|
46
|
Palmal S, Maity AR, Singh BK, Basu S, Jana NR, Jana NR. Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles. Chemistry 2014; 20:6184-91. [PMID: 24691975 DOI: 10.1002/chem.201400079] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Inhibition of amyloid fibrillation and clearance of amyloid fibrils/plaques are essential for the prevention and treatment of various neurodegenerative disorders involving protein aggregation. Herein, we report curcumin-functionalized gold nanoparticles (Au-curcumin) of hydrodynamic diameter 10-25 nm, which serve to inhibit amyloid fibrillation and disintegrate/dissolve amyloid fibrils. In nanoparticle form, curcumin is water-soluble and can efficiently interact with amyloid protein/peptide, offering enhanced performance in inhibiting amyloid fibrillation and dissolving amyloid fibrils. Our results imply that nanoparticle-based artificial molecular chaperones may offer a promising therapeutic approach to combat neurodegenerative disease.
Collapse
Affiliation(s)
- Sharbari Palmal
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032 (India)
| | | | | | | | | | | |
Collapse
|
47
|
Ansari N, Khodagholi F. Natural products as promising drug candidates for the treatment of Alzheimer's disease: molecular mechanism aspect. Curr Neuropharmacol 2014; 11:414-29. [PMID: 24381531 PMCID: PMC3744904 DOI: 10.2174/1570159x11311040005] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/24/2013] [Accepted: 02/25/2013] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder to date, with no curative or preventive therapy. Histopathological hallmarks of AD include deposition of β-amyloid plaques and formation of neurofibrillary tangles. Extent studies on pathology of the disease have made important discoveries regarding mechanism of disease and potential therapeutic targets. Many cellular changes including oxidative stress, disruption of Ca2+ homeostasis, inflammation, metabolic disturbances, and accumulation of unfolded/misfolded proteins can lead to programmed cell death in AD. Despite intensive research, only five approved drugs are available for the management of AD. Hence, there is a need to look at alternative therapies. Use of natural products and culinary herbs in medicine has gained popularity in recent years. Several natural substances with neuroprotective effects have been widely studied. Most of these compounds have remarkable antioxidant properties and act mainly by scavenging free radical species. Some of them increase cell survival and improve cognition by directly affecting amyloidogenesis and programmed cell death pathways. Further studies on these natural products and their mechanism of action, parallel with the use of novel pharmaceutical drug design and delivery techniques, enable us to offer an addition to conventional medicine. This review discussed some natural products with potential neuroprotective properties against Aβ with respect to their mechanism of action.
Collapse
Affiliation(s)
- Niloufar Ansari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Rosini M, Simoni E, Milelli A, Minarini A, Melchiorre C. Oxidative Stress in Alzheimer’s Disease: Are We Connecting the Dots? J Med Chem 2013; 57:2821-31. [DOI: 10.1021/jm400970m] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michela Rosini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elena Simoni
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto
237, 47921 Rimini, Italy
| | - Anna Minarini
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Carlo Melchiorre
- Department
of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
49
|
The effect of cyclodextrin-solubilized curcuminoids on amyloid plaques in Alzheimer transgenic mice: brain uptake and metabolism after intravenous and subcutaneous injection. ALZHEIMERS RESEARCH & THERAPY 2013; 5:16. [PMID: 23537472 PMCID: PMC3706801 DOI: 10.1186/alzrt170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/09/2013] [Accepted: 03/18/2013] [Indexed: 12/25/2022]
Abstract
Introduction Curcuminoids may improve pathological conditions associated with Alzheimer's disease. However, their therapeutic potential is limited by their exceedingly low bioavailability after oral administration. A method to deliver solubilized curcuminoids by injection was evaluated in Alzheimer transgenic mice. Methods Amyloid protein precursor (APP)SWE, PS1dE9 mice were intravenously or subcutaneously injected at weekly intervals between the ages of 4 and 12 months with serum- or cyclodextrin-solubilized curcuminoids to assess their potential for plaque prevention. Alternatively, mice between the ages of 11 and 12 months were intravenously injected with cyclodextrin-solubilized curcuminoids at biweekly intervals to evaluate their ability to eliminate existing plaques. Plasma and brain levels of curcuminoids and their metabolites were also determined after subcutaneous and intravenous injection. Results Weekly long-term injections did not result in a significant plaque load reduction. However, intravenous injection of cyclodextrin-solubilized curcuminoids at higher curcuminoid concentrations and at a biweekly frequency between the ages of 11 and 12 months reduced the plaque load to approximately 70% of the control value. After intravenous injection, plasma levels of 100 μM curcuminoids and brain levels of 47 nmol/g could initially be achieved that declined to essentially undetectable levels within 20 minutes. The primary curcuminoid metabolites in plasma were the conjugates of glucuronide or sulfate and hexahydrocurcuminoids as reduction products. In the brain, both hexahydrocurcuminoids and octahydrocurcuminoids were detected as major metabolites. After subcutaneous injection, maximal curcuminoid plasma levels of 23 μM and brain levels of 8 nmol/g were observed at 30 minutes after injection and curcuminoids remained detectable for 2 to 3 h. Conclusion Curcuminoids are rapidly metabolized after injection and their effect on reducing plaque load associated with Alzheimer's disease may be dependent on the frequency of administration.
Collapse
|
50
|
Liu K, Chen J, Chojnacki J, Zhang S. BF 3·OEt 2-Promoted Concise Synthesis of Difluoroboron-Derivatized Curcumins from Aldehydes and 2,4-Pentanedione. Tetrahedron Lett 2013; 54:2070-2073. [PMID: 23538780 DOI: 10.1016/j.tetlet.2013.02.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A concise and one-pot cascade method has been developed to achieve the synthesis of difluoroboron-derivatized curcumins (BF2C). Treatment of 2,4-pentanedione with BF3·OEt2, followed by condensation with aldehydes in the presence of tributyl borate and butylamine at 65 °C in toluene furnished the corresponding symmetric (s-BF2C) and unsymmetric difluoroboron-derivatized curcumins (us-BF2C) in good (60 - 99%) and moderate yields (23 - 42%) within 6 - 12 h, respectively.
Collapse
Affiliation(s)
- Kai Liu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | |
Collapse
|