1
|
Rao RM, El Dhaybi I, Cadet F, Etchebest C, Diharce J. The mutual and dynamic role of TSPO and ligands in their binding process: An example with PK-11195. Biochimie 2024; 224:29-40. [PMID: 38494108 DOI: 10.1016/j.biochi.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Translocator protein (TSPO) is an 18 kDa transmembrane protein, localized primarily on the outer mitochondrial membrane. It has been found to be involved in various physiological processes and pathophysiological conditions. Though studies on its structure have been performed only recently, there is little information on the nature of dynamics and doubts about some structures referenced in the literature, especially the NMR structure of mouse TSPO. In the present work, we thoroughly study the dynamics of mouse TSPO protein by means of atomistic molecular dynamics simulations, in presence as well as in absence of the diagnostic ligand PKA. We considered two starting structures: the NMR structure and a homology model (HM) generated on the basis of X-ray structures from bacterial TSPO. We examine the conformational landscape in both the modes for both starting points, in presence and absence of the ligand, in order to measure its impact for both structures. The analysis highlights high flexibility of the protein globally, but NMR simulations show a surprisingly flexibility even in the presence of the ligand. Interestingly, this is not the case for HM calculations, to the point that the ligand seems not so stable as in the NMR system and an unbinding event process is partially sampled. All those results tend to show that the NMR structure of mTSPO seems not deficient but is just in another portion of the global conformation space of TSPO.
Collapse
Affiliation(s)
- Rajas M Rao
- Data Analytics, Bioinformatics and Structural Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India; Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France
| | - Ibaa El Dhaybi
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France
| | - Frédéric Cadet
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France; Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB, F-97715, Saint Denis Messag, France; PEACCEL, Artificial Intelligence Department, Paris, 75013 France
| | - Catherine Etchebest
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France
| | - Julien Diharce
- Université Paris Cité and Université de la Réunion and Université des Antilles, INSERM, BIGR, DSIMB UMR_S1134, F-74014, Paris, France; Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
2
|
Siméon FG, Lee JH, Morse CL, Stukes I, Zoghbi SS, Manly LS, Liow JS, Gladding RL, Dick RM, Yan X, Taliani S, Costa B, Martini C, Da Settimo F, Castellano S, Innis RB, Pike VW. Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery of a Promising 18F-Labeled Ligand. J Med Chem 2021; 64:16731-16745. [PMID: 34756026 PMCID: PMC8817670 DOI: 10.1021/acs.jmedchem.1c01562] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translocator protein 18 kDa (TSPO) is a biomarker of neuroinflammation. [11C]ER176 robustly quantifies TSPO in the human brain with positron emission tomography (PET), irrespective of subject genotype. We aimed to develop an ER176 analog with potential for labeling with longer-lived fluorine-18 (t1/2 = 109.8 min). New fluoro and trifluoromethyl analogs of ER176 were prepared through a concise synthetic strategy. These ligands showed high TSPO affinity and low human genotype sensitivity. Each ligand was initially labeled by a generic 11C-methylation procedure, thereby enabling speedy screening in mice. Each radioligand was rapidly taken up and well retained in the mouse brain at baseline after intravenous injection. Preblocking of TSPO showed that high proportions of brain uptake were specifically bound to TSPO at baseline. Overall, the 3-fluoro analog of [11C]ER176 ([11C]3b) displayed the most promising imaging properties. Therefore, a method was developed to label 3b with [18F]fluoride ion. [18F]3b gave similarly promising PET imaging results and deserves evaluation in higher species.
Collapse
Affiliation(s)
- Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 03772, South Korea
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ian Stukes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rachel M Dick
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Bokosi FRB, Beteck RM, Jordaan A, Seldon R, Warner DF, Tshiwawa T, Lobb K, Khanye SD. Arylquinolinecarboxamides: Synthesis,
in vitro
and
in silico
studies against
Mycobacterium tuberculosis
. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fostino R. B. Bokosi
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
| | - Richard M. Beteck
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
- Centre of Excellence for Pharmaceutical Sciences North‐West University Potchefstroom South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine University of Cape Town Cape Town South Africa
| | - Ronnet Seldon
- SAMRC Drug Discovery and Development Unit University of Cape Town Cape Town South Africa
| | - Digby F. Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine University of Cape Town Cape Town South Africa
- Wellcome Centre for Infectious Diseases Research in Africa University of Cape Town Cape Town South Africa
| | | | - Kevin Lobb
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
| | - Setshaba D. Khanye
- Department of Chemistry, Faculty of Science Rhodes University Makhanda South Africa
- Centre for Chemico‐ and Biomedicinal Research Rhodes University Makhanda South Africa
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy Rhodes University Makhanda South Africa
| |
Collapse
|
4
|
Giordani A, Menziani MC, Moresco RM, Matarrese M, Paolino M, Saletti M, Giuliani G, Anzini M, Cappelli A. Exploring Translocator Protein (TSPO) Medicinal Chemistry: An Approach for Targeting Radionuclides and Boron Atoms to Mitochondria. J Med Chem 2021; 64:9649-9676. [PMID: 34254805 DOI: 10.1021/acs.jmedchem.1c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Translocator protein 18 kDa [TSPO or peripheral-type benzodiazepine receptor (PBR)] was identified in the search of binding sites for benzodiazepine anxiolytic drugs in peripheral regions. In these areas, binding sites for TSPO ligands were recognized in steroid-producing tissues. TSPO plays an important role in many cellular functions, and its coding sequence is highly conserved across species. TSPO is located predominantly on the membrane of mitochondria and is overexpressed in several solid cancers. TSPO basal expression in the CNS is low, but it becomes high in neurodegenerative conditions. Thus, TSPO constitutes not only as an outstanding drug target but also as a valuable marker for the diagnosis of a number of diseases. The aim of the present article is to show the lesson we have learned from our activity in TSPO medicinal chemistry and in approaching the targeted delivery to mitochondria by means of TSPO ligands.
Collapse
Affiliation(s)
- Antonio Giordani
- Rottapharm Biotech S.p.A., Via Valosa di Sopra 9, 20900 Monza, Italy
| | - Maria Cristina Menziani
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via Campi 103, 41121 Modena, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery, University of Milan-Bicocca, Nuclear Medicine Department, San Raffaele Scientific Institute, IBFM-CNR, Via Olgettina 60, 20132 Milano, Italy
| | - Mario Matarrese
- Department of Medicine and Surgery, University of Milan-Bicocca, Nuclear Medicine Department, San Raffaele Scientific Institute, IBFM-CNR, Via Olgettina 60, 20132 Milano, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Maurizio Anzini
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
5
|
Lacapere JJ, Duma L, Finet S, Kassiou M, Papadopoulos V. Insight into the Structural Features of TSPO: Implications for Drug Development. Trends Pharmacol Sci 2020; 41:110-122. [PMID: 31864680 PMCID: PMC7021566 DOI: 10.1016/j.tips.2019.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
The translocator protein (TSPO), an 18-kDa transmembrane protein primarily found in the outer mitochondrial membrane, is evolutionarily conserved and widely distributed across species. In mammals, TSPO has been described as a key member of a multiprotein complex involved in many putative functions and, over the years, several classes of ligand have been developed to modulate these functions. In this review, we consider the currently available atomic structures of mouse and bacterial TSPO and propose a rationale for the development of new ligands for the protein. We provide a review of TSPO monomeric and oligomeric states and their conformational flexibility, together with ligand-binding site and interaction mechanisms. These data are expected to help considerably the development of high-affinity ligands for TSPO-based therapies or diagnostics.
Collapse
Affiliation(s)
- Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005 Paris, France.
| | - Luminita Duma
- CNRS Enzyme and Cell Engineering Laboratory, Sorbonne Université, Université de Technologie de Compiègne, 60203 Compiègne Cedex, France
| | - Stephanie Finet
- IMPMC, UMR 7590 CNRS Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, F11, Eastern Ave, Sydney, NSW 2006, Australia
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Synthesis and in vitro evaluation of new translocator protein ligands designed for positron emission tomography. Future Med Chem 2019; 11:539-550. [PMID: 30888874 DOI: 10.4155/fmc-2018-0444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM Dysregulated levels of the translocator protein TSPO 18 KDa have been reported in several disorders, particularly neurodegenerative diseases. This makes TSPO an interesting target for the development of diagnostic biomarkers. Even though several radioligands have already been developed for in vivo TSPO imaging, the ideal TSPO radiotracer has still not been found. RESULTS Here, we report the chemical synthesis of a set of new TSPO ligands designed for future application in positron emission tomography, together with the determination of their biological activity and applied 11C-labeling strategy. CONCLUSION The lead compound of our series, (R)-[11C]Me@NEBIQUINIDE, showed very promising results and is therefore proposed to be further evaluated under in vivo settings.
Collapse
|
7
|
Costa B, Cavallini C, Da Pozzo E, Taliani S, Da Settimo F, Martini C. The Anxiolytic Etifoxine Binds to TSPO Ro5-4864 Binding Site with Long Residence Time Showing a High Neurosteroidogenic Activity. ACS Chem Neurosci 2017; 8:1448-1454. [PMID: 28362078 DOI: 10.1021/acschemneuro.7b00027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The low binding affinity of the approved anxiolytic drug etifoxine (Stresam) at the steroidogenic 18 kDa translocator protein (TSPO) has questioned the specific contribution of this protein in mediating the etifoxine neurosteroidogenic efficacy. Residence time (RT) at the binding site of the classical TSPO ligand PK11195 is emerging as a relevant neurosteroidogenic efficacy measure rather than the binding affinity. Here etifoxine was evaluated for (i) the in vitro neurosteroidogenic activity in comparison to poorly neurosteroidogenic reference TSPO ligands (PK11195 and Ro5-4864) and (ii) the affinity and RT at [3H]PK11195 and [3H]Ro5-4864 binding sites in rat kidney membranes. Etifoxine shows (i) high neurosteroidogenic efficacy and (ii) low affinity/short RT at the [3H]PK11195 site and low affinity/long RT at the [3H]Ro5-4864 site, at which etifoxine competitively bound. These findings suggest that the long RT of etifoxine at the Ro5-4864 binding site could account for its high neurosteroidogenic efficacy.
Collapse
Affiliation(s)
- Barbara Costa
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Chiara Cavallini
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56126 Pisa, Italy
| |
Collapse
|
8
|
Brouwer C, Jenko KJ, Zoghbi SS, Morse CL, Innis RB, Pike VW. Translocator protein ligands based on N-methyl-(quinolin-4-yl)oxypropanamides with properties suitable for PET radioligand development. Eur J Med Chem 2016; 124:677-688. [PMID: 27622910 DOI: 10.1016/j.ejmech.2016.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/28/2016] [Accepted: 08/21/2016] [Indexed: 11/17/2022]
Abstract
Modifications to an N-methyl-(quinolin-4-yl)oxypropanamide scaffold were explored to discover leads for developing new radioligands for PET imaging of brain TSPO (translocator protein), a biomarker of neuroinflammation. Whereas contraction of the quinolinyl portion of the scaffold or cyclization of the tertiary amido group abolished high TSPO affinity, insertion of an extra nitrogen atom into the 2-arylquinolinyl portion was effective in retaining sub-nanomolar affinity for rat TSPO, while also decreasing lipophilicity to within the moderate range deemed preferable for a PET radioligand. Replacement of a phenyl group on the amido nitrogen with an isopropyl group was similarly effective. Among others, compound 20 (N-methyl-N-phenyl-2-[2-(pyridin-2-yl)-1,8-naphthyridin-4-yloxy]propanamide) appears especially appealing for PET radioligand development, based on high selectivity and high affinity (Ki = 0.5 nM) for rat TSPO, moderate lipophilicity (logD = 2.48), and demonstrated amenability to labeling with carbon-11.
Collapse
Affiliation(s)
- Chad Brouwer
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States.
| |
Collapse
|
9
|
Design, synthesis and anxiolytic-like activity of 1-arylpyrrolo[1,2-a]pyrazine-3-carboxamides. Bioorg Med Chem 2015; 23:3368-78. [DOI: 10.1016/j.bmc.2015.04.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 11/19/2022]
|
10
|
Jaremko L, Jaremko M, Giller K, Becker S, Zweckstetter M. Structure of the mitochondrial translocator protein in complex with a diagnostic ligand. Science 2014; 343:1363-6. [PMID: 24653034 DOI: 10.1126/science.1248725] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The 18-kilodalton translocator protein TSPO is found in mitochondrial membranes and mediates the import of cholesterol and porphyrins into mitochondria. In line with the role of TSPO in mitochondrial function, TSPO ligands are used for a variety of diagnostic and therapeutic applications in animals and humans. We present the three-dimensional high-resolution structure of mammalian TSPO reconstituted in detergent micelles in complex with its high-affinity ligand PK11195. The TSPO-PK11195 structure is described by a tight bundle of five transmembrane α helices that form a hydrophobic pocket accepting PK11195. Ligand-induced stabilization of the structure of TSPO suggests a molecular mechanism for the stimulation of cholesterol transport into mitochondria.
Collapse
Affiliation(s)
- Lukasz Jaremko
- Max-Planck-Institut für Biophysikalische Chemie, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
11
|
Castellano S, Taliani S, Viviano M, Milite C, Da Pozzo E, Costa B, Barresi E, Bruno A, Cosconati S, Marinelli L, Greco G, Novellino E, Sbardella G, Da Settimo F, Martini C. Structure–Activity Relationship Refinement and Further Assessment of 4-Phenylquinazoline-2-carboxamide Translocator Protein Ligands as Antiproliferative Agents in Human Glioblastoma Tumors. J Med Chem 2014; 57:2413-28. [DOI: 10.1021/jm401721h] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sabrina Castellano
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Sabrina Taliani
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Monica Viviano
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Eleonora Da Pozzo
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Barbara Costa
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Barresi
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Agostino Bruno
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Sandro Cosconati
- DiSTABiF, Seconda Universitá di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giovanni Greco
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Universitá di Napoli “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Gianluca Sbardella
- Dipartimento
di Farmacia, Universitá di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Federico Da Settimo
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Dipartimento
di Farmacia, Universitá di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
12
|
Jiang H, Cheng Y, Wang R, Zhang Y, Yu S. Synthesis of isoquinolines via visible light-promoted insertion of vinyl isocyanides with diaryliodonium salts. Chem Commun (Camb) 2014; 50:6164-7. [DOI: 10.1039/c4cc01122h] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
14
|
Sulima A, Cheng K, Jacobson AE, Rice KC, Gawrisch K, Lee YS. Z and E rotamers of N-formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one and their interconversion as studied by 1H/13C NMR spectroscopy and quantum chemical calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:82-8. [PMID: 23233124 PMCID: PMC3551572 DOI: 10.1002/mrc.3909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 06/01/2023]
Abstract
N-Formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one (compound 2), an important intermediate in the NIH Opiate Total Synthesis, presumably exists as a mixture of two rotamers (Z and E) in both CHCl(3) and DMSO at room temperature due to the hindered rotation of its N-C18 bond in the amide moiety. By comparing the experimental (1)H and (13)C chemical shifts of a single rotamer and the mixture of compound 2 in CDCl(3) with the calculated chemical shifts of the geometry optimized Z and E rotamers utilizing density functional theory, the crystalline rotamer of compound 2 was characterized as having the E configuration. The energy barrier between the two rotamers was also determined with the temperature dependence of (1)H and (13)C NMR coalescence experiments, and then compared with that from the reaction path for the interconversion of the two rotamers calculated at the level of B3LYP/6-31G*. Detailed geometry of the ground state and the transition states of both rotamers are given and discussed.
Collapse
Affiliation(s)
- Agnieszka Sulima
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-0815, USA
| | - Kejun Cheng
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-0815, USA
| | - Arthur E. Jacobson
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-0815, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, 20892-0815, USA
| | - Klaus Gawrisch
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | - Yong-Sok Lee
- Center for Molecular Modeling, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Guérard F, Lee YS, Tripier R, Szajek LP, Deschamps JR, Brechbiel MW. Investigation of Zr(IV) and 89Zr(IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem Commun (Camb) 2012; 49:1002-4. [PMID: 23250287 DOI: 10.1039/c2cc37549d] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Single crystal X-ray diffraction shows that Zr(iv) forms an octa-coordinated complex with 4 bidentate hydroxamates whose solution structures were investigated by utilizing density functional theory at the level of B3LYP/DGDZVP. Stability constants obtained by potentiometry were in accordance with the tendency observed when radiolabeling with (89)Zr.
Collapse
Affiliation(s)
- François Guérard
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, NCI, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|