1
|
Penman R, Kariuki R, Shaw ZL, Dekiwadia C, Christofferson AJ, Bryant G, Vongsvivut J, Bryant SJ, Elbourne A. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci 2024; 654:390-404. [PMID: 37852025 DOI: 10.1016/j.jcis.2023.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
HYPOTHESIS Nanomaterials have been extensively investigated for a wide range of biomedical applications, including as antimicrobial agents, drug delivery vehicles, and diagnostic devices. The commonality between these biomedical applications is the necessity for the nanoparticle to interact with or pass through the cellular wall and membrane. Cell-nanomaterial interactions/uptake can occur in various ways, including adhering to the cell wall, forming aggregates on the surface, becoming absorbed within the cell wall itself, or transversing into the cell cytoplasm. These interactions are common to mammalian cells, bacteria, and yeast cells. This variety of interactions can cause changes to the integrity of the cell wall and the cell overall, but the precise mechanisms underpinning such interactions remain poorly understood. Here, we investigate the interaction between commonly investigated gold nanoparticles (AuNPs) and the cell wall/membrane of a model fungal cell to explore the general effects of interaction and uptake. EXPERIMENTS The interactions between 100 nm citrate-capped AuNPs and the cell wall of Candida albicans fungal cells were studied using a range of advanced microscopy techniques, including atomic force microscopy, confocal laser scanning microscopy, scanning electron microscopy, transmission electron microscopy, and synchrotron-FTIR micro-spectroscopy. FINDINGS In most cases, particles adhered on the cell surface, although instances of particles being up-taken into the cell cytoplasm and localised within the cell wall and membrane were also observed. There was a measurable increase in the stiffness of the fungal cell after AuNPs were introduced. Analysis of the synchrotron-FTIR data showed significant changes in spectral features associated with phospholipids and proteins after exposure to AuNPs.
Collapse
Affiliation(s)
- Rowan Penman
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Rashad Kariuki
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Z L Shaw
- School of Engineering, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Gary Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, VIC 3168, Australia
| | - Saffron J Bryant
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| | - Aaron Elbourne
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
2
|
Abelanet A, Camoin M, Rubin S, Bougaran P, Delobel V, Pernot M, Forfar I, Guilbeau-Frugier C, Galès C, Bats ML, Renault MA, Dufourcq P, Couffinhal T, Duplàa C. Increased Capillary Permeability in Heart Induces Diastolic Dysfunction Independently of Inflammation, Fibrosis, or Cardiomyocyte Dysfunction. Arterioscler Thromb Vasc Biol 2022; 42:745-763. [PMID: 35510550 DOI: 10.1161/atvbaha.121.317319] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. METHODS The ubiquitine ligase Pdzrn3, expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which Pdzrn3 is overexpressed in EC (iEC-Pdzrn3) in adults was developed. RESULTS EC-specific Pdzrn3 expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC-Pdzrn3 mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC-Pdzrn3 mice, reminiscent of heart failure with preserved ejection fraction features. CONCLUSIONS An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism.
Collapse
Affiliation(s)
- Alice Abelanet
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Marion Camoin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Sebastien Rubin
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Pauline Bougaran
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Valentin Delobel
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Mathieu Pernot
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Isabelle Forfar
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Céline Guilbeau-Frugier
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Céline Galès
- Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, INSERM U1048, I2MC, France (C.G.-F., C.G.)
| | - Marie Lise Bats
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Marie-Ange Renault
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| | - Pascale Dufourcq
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.).,CHU de Bordeaux, Pessac, France (M.C., S.R., M.P., M.L.B., P.D., T.C.)
| | - Cécile Duplàa
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, Pessac, France (A.A., M.C., S.R., P.B., V.D., M.P., I.F., M.L.B., M.-A.R., P.D., T.C., C.D.)
| |
Collapse
|
3
|
Decrease of Pdzrn3 is required for heart maturation and protects against heart failure. Sci Rep 2022; 12:8. [PMID: 34996942 PMCID: PMC8742099 DOI: 10.1038/s41598-021-03795-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/24/2021] [Indexed: 01/27/2023] Open
Abstract
Heart failure is the final common stage of most cardiopathies. Cardiomyocytes (CM) connect with others via their extremities by intercalated disk protein complexes. This planar and directional organization of myocytes is crucial for mechanical coupling and anisotropic conduction of the electric signal in the heart. One of the hallmarks of heart failure is alterations in the contact sites between CM. Yet no factor on its own is known to coordinate CM polarized organization. We have previously shown that PDZRN3, an ubiquitine ligase E3 expressed in various tissues including the heart, mediates a branch of the Planar cell polarity (PCP) signaling involved in tissue patterning, instructing cell polarity and cell polar organization within a tissue. PDZRN3 is expressed in the embryonic mouse heart then its expression dropped significantly postnatally corresponding with heart maturation and CM polarized elongation. A moderate CM overexpression of Pdzrn3 (Pdzrn3 OE) during the first week of life, induced a severe eccentric hypertrophic phenotype with heart failure. In models of pressure-overload stress heart failure, CM-specific Pdzrn3 knockout showed complete protection against degradation of heart function. We reported that Pdzrn3 signaling induced PKC ζ expression, c-Jun nuclear translocation and a reduced nuclear ß catenin level, consistent markers of the planar non-canonical Wnt signaling in CM. We then show that subcellular localization (intercalated disk) of junction proteins as Cx43, ZO1 and Desmoglein 2 was altered in Pdzrn3 OE mice, which provides a molecular explanation for impaired CM polarization in these mice. Our results reveal a novel signaling pathway that controls a genetic program essential for heart maturation and maintenance of overall geometry, as well as the contractile function of CM, and implicates PDZRN3 as a potential therapeutic target for the prevention of human heart failure.
Collapse
|
4
|
Synthesis of human amyloid restricted to liver results in an Alzheimer disease-like neurodegenerative phenotype. PLoS Biol 2021; 19:e3001358. [PMID: 34520451 PMCID: PMC8439475 DOI: 10.1371/journal.pbio.3001358] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Several lines of study suggest that peripheral metabolism of amyloid beta (Aß) is associated with risk for Alzheimer disease (AD). In blood, greater than 90% of Aß is complexed as an apolipoprotein, raising the possibility of a lipoprotein-mediated axis for AD risk. In this study, we report that genetic modification of C57BL/6J mice engineered to synthesise human Aß only in liver (hepatocyte-specific human amyloid (HSHA) strain) has marked neurodegeneration concomitant with capillary dysfunction, parenchymal extravasation of lipoprotein-Aß, and neurovascular inflammation. Moreover, the HSHA mice showed impaired performance in the passive avoidance test, suggesting impairment in hippocampal-dependent learning. Transmission electron microscopy shows marked neurovascular disruption in HSHA mice. This study provides causal evidence of a lipoprotein-Aß /capillary axis for onset and progression of a neurodegenerative process. It has been suggested that peripheral metabolism of amyloid-beta is associated with risk for Alzheimer’s disease. This study reveals that the expression of human amyloid exclusively in the liver induces Alzheimer’s disease-like pathologies in mice, potentially indicating a completely novel pathway of Alzheimer’s disease aetiology and therapies.
Collapse
|
5
|
Lovergne L, Ghosh D, Schuck R, Polyzos AA, Chen AD, Martin MC, Barnard ES, Brown JB, McMurray CT. An infrared spectral biomarker accurately predicts neurodegenerative disease class in the absence of overt symptoms. Sci Rep 2021; 11:15598. [PMID: 34341363 PMCID: PMC8329289 DOI: 10.1038/s41598-021-93686-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Although some neurodegenerative diseases can be identified by behavioral characteristics relatively late in disease progression, we currently lack methods to predict who has developed disease before the onset of symptoms, when onset will occur, or the outcome of therapeutics. New biomarkers are needed. Here we describe spectral phenotyping, a new kind of biomarker that makes disease predictions based on chemical rather than biological endpoints in cells. Spectral phenotyping uses Fourier Transform Infrared (FTIR) spectromicroscopy to produce an absorbance signature as a rapid physiological indicator of disease state. FTIR spectromicroscopy has over the past been used in differential diagnoses of manifest disease. Here, we report that the unique FTIR chemical signature accurately predicts disease class in mouse with high probability in the absence of brain pathology. In human cells, the FTIR biomarker accurately predicts neurodegenerative disease class using fibroblasts as surrogate cells.
Collapse
Affiliation(s)
- Lila Lovergne
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dhruba Ghosh
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Renaud Schuck
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew D Chen
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Michael C Martin
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward S Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James B Brown
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Physicochemical characterisation of kafirins extracted from sorghum grain and dried distillers grain with solubles related to their biomaterial functionality. Sci Rep 2021; 11:15204. [PMID: 34312467 PMCID: PMC8313537 DOI: 10.1038/s41598-021-94718-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Kafirin, the hydrophobic prolamin storage protein in sorghum grain is enriched when the grain is used for bioethanol production to give dried distillers grain with solubles (DGGS) as a by-product. There is great interest in DDGS kafirin as a new source for biomaterials. There is however a lack of fundamental understanding of how the physicochemical properties of DDGS kafirin having been exposed to the high temperature conditions during ethanol production, compare to kafirin made directly from the grain. An understanding of these properties is required to catalyse the utilisation of DDGS kafirin for biomaterial applications. The aim of this study was to extract kafirin directly from sorghum grain and from DDGS derived from the same grain and, then perform a comparative investigation of the physicochemical properties of these kafirins in terms of: polypeptide profile by sodium-dodecyl sulphate polyacrylamide gel electrophoresis; secondary structure by Fourier transform infra-red spectroscopy and x-ray diffraction, self-assembly behaviour by small-angle x-ray scattering, surface morphology by scanning electron microscopy and surface chemical properties by energy dispersive x-ray spectroscopy. DDGS kafirin was found to have very similar polypeptide profile as grain kafirin but contained altered secondary structure with increased levels of β-sheets. The structure morphology showed surface fractals and surface elemental composition suggesting enhanced reactivity with possibility to endow interfacial wettability. These properties of DDGS kafirin may provide it with unique functionality and thus open up opportunities for it to be used as a novel food grade biomaterial.
Collapse
|
7
|
Hartnell D, Hollings A, Ranieri AM, Lamichhane HB, Becker T, Sylvain NJ, Hou H, Pushie MJ, Watkin E, Bambery KR, Tobin MJ, Kelly ME, Massi M, Vongsvivut J, Hackett MJ. Mapping sub-cellular protein aggregates and lipid inclusions using synchrotron ATR-FTIR microspectroscopy. Analyst 2021; 146:3516-3525. [PMID: 33881057 DOI: 10.1039/d1an00136a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visualising direct biochemical markers of cell physiology and disease pathology at the sub-cellular level is an ongoing challenge in the biological sciences. A suite of microscopies exists to either visualise sub-cellular architecture or to indirectly view biochemical markers (e.g. histochemistry), but further technique developments and innovations are required to increase the range of biochemical parameters that can be imaged directly, in situ, within cells and tissue. Here, we report our continued advancements in the application of synchrotron radiation attenuated total reflectance Fourier transform infrared (SR-ATR-FTIR) microspectroscopy to study sub-cellular biochemistry. Our recent applications demonstrate the much needed capability to map or image directly sub-cellular protein aggregates within degenerating neurons as well as lipid inclusions within bacterial cells. We also characterise the effect of spectral acquisition parameters on speed of data collection and the associated trade-offs between a realistic experimental time frame and spectral/image quality. Specifically, the study highlights that the choice of 8 cm-1 spectral resolutions provide a suitable trade-off between spectral quality and collection time, enabling identification of important spectroscopic markers, while increasing image acquisition by ∼30% (relative to 4 cm-1 spectral resolution). Further, this study explores coupling a focal plane array detector with SR-ATR-FTIR, revealing a modest time improvement in image acquisition time (factor of 2.8). Such information continues to lay the foundation for these spectroscopic methods to be readily available for, and adopted by, the biological science community to facilitate new interdisciplinary endeavours to unravel complex biochemical questions and expand emerging areas of study.
Collapse
Affiliation(s)
- David Hartnell
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia. and Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia
| | - Ashley Hollings
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia. and Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia
| | - Anna Maria Ranieri
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Hum Bahadur Lamichhane
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Thomas Becker
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Nicole J Sylvain
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - Huishu Hou
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - M Jake Pushie
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Bentley, Western Australia 6845
| | - Keith R Bambery
- ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Mark J Tobin
- ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Michael E Kelly
- Division of Neurosurgery, Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Canada S7N 5E5
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia.
| | - Jitraporn Vongsvivut
- ANSTO - Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria, 3168, Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Curtin University, Bentley, 6845, Western Australia. and Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia
| |
Collapse
|
8
|
Tracking biochemical changes induced by iron loading in AML12 cells with synchrotron live cell, time-lapse infrared microscopy. Biochem J 2021; 478:1227-1239. [PMID: 33616158 DOI: 10.1042/bcj20200653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Hepatocytes are essential for maintaining the homeostasis of iron and lipid metabolism in mammals. Dysregulation of either iron or lipids has been linked with serious health consequences, including non-alcoholic fatty liver disease (NAFLD). Considered the hepatic manifestation of metabolic syndrome, NAFLD is characterised by dysregulated lipid metabolism leading to a lipid storage phenotype. Mild to moderate increases in hepatic iron have been observed in ∼30% of individuals with NAFLD; however, direct observation of the mechanism behind this increase has remained elusive. To address this issue, we sought to determine the metabolic consequences of iron loading on cellular metabolism using live cell, time-lapse Fourier transform infrared (FTIR) microscopy utilising a synchrotron radiation source to track biochemical changes. The use of synchrotron FTIR is non-destructive and label-free, and allowed observation of spatially resolved, sub-cellular biochemical changes over a period of 8 h. Using this approach, we have demonstrated that iron loading in AML12 cells induced perturbation of lipid metabolism congruent with steatosis development. Iron-loaded cells had approximately three times higher relative ester carbonyl concentration compared with controls, indicating an accumulation of triglycerides. The methylene/methyl ratio qualitatively suggests the acyl chain length of fatty acids in iron-loaded cells increased over the 8 h period of monitoring compared with a reduction observed in the control cells. Our findings provide direct evidence that mild to moderate iron loading in hepatocytes drives de novo lipid synthesis, consistent with a role for iron in the initial hepatic lipid accumulation that leads to the development of hepatic steatosis.
Collapse
|
9
|
Hackett MJ, Hollings A, Majimbi M, Brook E, Cochran B, Giles C, Lam V, Nesbit M, Rye KA, Mamo JCL, Takechi R. Multimodal Imaging Analyses of Brain Hippocampal Formation Reveal Reduced Cu and Lipid Content and Increased Lactate Content in Non-Insulin-Dependent Diabetic Mice. ACS Chem Neurosci 2019; 10:2533-2540. [PMID: 30855947 DOI: 10.1021/acschemneuro.9b00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-insulin-dependent diabetes mellitus (NIDDM) is reported to increase the risk of cognitive impairment and dementia. However, the underlying mechanisms are not fully understood. While the brain homeostasis of metals and lipids is pivotal to maintaining energy metabolism and redox homeostasis for healthy brain function, no studies have reported hippocampal metal and biochemical changes in NIDDM. Therefore, we here utilized direct spectroscopic imaging to reveal the elemental distribution within the hippocampal subregions of an established murine model of NIDDM, db/db mice. In 26-week-old insulin resistant db/db mice, X-ray fluorescence microscopy revealed that the Cu content within the dentate gyrus and CA3 was significantly greater than that of the age-matched nondiabetic control mice. In addition, Fourier transform infrared (FTIR) spectroscopy analysis indicated a significant increase in the abundance of lactate within the corpus callosum (CC), dentate gyrus, CA1, and CA3 regions of diabetic db/db mice compared to that of the control, indicating altered energy metabolism. FTIR analysis also showed a significant decrease in the level of lipid methylene and ester within the CC of db/db mice. Furthermore, immunomicroscopy analyses demonstrated the increase in the level of glial fibrillary acidic protein expression and peri-vascular extravasation of IgG, indicating astrogliosis and blood-brain barrier dysfunction, respectively. These data suggest that astrogliosis-induced alterations in the supply of Cu, lipids, and energy substrates may be involved in the mechanisms of NIDDM-associated cognitive decline.
Collapse
Affiliation(s)
- Mark J. Hackett
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Ashley Hollings
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Science, Faculty of Science and Engineering, Curtin University, Bentley, WA 6102, Australia
| | - Maimuna Majimbi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Emily Brook
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Blake Cochran
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia
| | - John C. L. Mamo
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
10
|
Pushie MJ, Kelly ME, Hackett MJ. Direct label-free imaging of brain tissue using synchrotron light: a review of new spectroscopic tools for the modern neuroscientist. Analyst 2019; 143:3761-3774. [PMID: 29961790 DOI: 10.1039/c7an01904a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The incidence of brain disease and brain disorders is increasing on a global scale. Unfortunately, development of new therapeutic strategies has not increased at the same rate, and brain diseases and brain disorders now inflict substantial health and economic impacts. A greater understanding of the fundamental neurochemistry that underlies healthy brain function, and the chemical pathways that manifest in brain damage or malfunction, are required to enable and accelerate therapeutic development. A previous limitation to the study of brain function and malfunction has been the limited number of techniques that provide both a wealth of biochemical information, and spatially resolved information (i.e., there was a previous lack of techniques that provided direct biochemical or elemental imaging at the cellular level). In recent times, a suite of direct spectroscopic imaging techniques, such as Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence microscopy (XFM), and X-ray absorption spectroscopy (XAS) have been adapted, optimized and integrated into the field of neuroscience, to fill the above mentioned capability-gap. Advancements at synchrotron light sources, such as improved light intensity/flux, increased detector sensitivities and new capabilities of imaging/optics, has pushed the above suite of techniques beyond "proof-of-concept" studies, to routine application to study complex research problems in the field of neuroscience (and other scientific disciplines). This review examines several of the major advancements that have occurred over the last several years, with respect to FTIR, XFM and XAS capabilities at synchrotron facilities, and how the increases in technical capabilities have being integrated and used in the field of neuroscience.
Collapse
Affiliation(s)
- M J Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | |
Collapse
|
11
|
Vongsvivut J, Pérez-Guaita D, Wood BR, Heraud P, Khambatta K, Hartnell D, Hackett MJ, Tobin MJ. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. Analyst 2019; 144:3226-3238. [DOI: 10.1039/c8an01543k] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coupling synchrotron IR beam to an ATR element enhances spatial resolution suited for high-resolution single cell analysis in biology, medicine and environmental science.
Collapse
Affiliation(s)
| | | | - Bayden R. Wood
- Centre for Biospectroscopy
- Monash University
- Clayton
- Australia
| | - Philip Heraud
- Centre for Biospectroscopy
- Monash University
- Clayton
- Australia
- Department of Microbiology and Biomedicine Discovery Institute
| | - Karina Khambatta
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | - David Hartnell
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | - Mark J. Hackett
- Curtin Institute for Functional Molecules and Interfaces
- School of Molecular and Life Sciences
- Curtin University
- Perth
- Australia
| | - Mark J. Tobin
- Infrared Microspectroscopy (IRM) Beamline
- Australian Synchrotron
- Clayton
- Australia
| |
Collapse
|
12
|
Aboualizadeh E, Ranji M, Sorenson CM, Sepehr R, Sheibani N, Hirschmugl CJ. Retinal oxidative stress at the onset of diabetes determined by synchrotron FTIR widefield imaging: towards diabetes pathogenesis. Analyst 2018; 142:1061-1072. [PMID: 28210739 DOI: 10.1039/c6an02603f] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Diabetic retinopathy is a microvascular complication of diabetes that can lead to blindness. In the present study, we aimed to determine the nature of diabetes-induced, highly localized biochemical changes in the neuroretina at the onset of diabetes. High-resolution synchrotron Fourier transform infrared (s-FTIR) wide field microscopy coupled with multivariate analysis (PCA-LDA) was employed to identify biomarkers of diabetic retinopathy with spatial resolution at the cellular level. We compared the retinal tissue prepared from 6-week-old Ins2Akita/+ heterozygous (Akita/+, N = 6; a model of diabetes) male mice with the wild-type (control, N = 6) mice. Male Akita/+ mice become diabetic at 4-weeks of age. Significant differences (P < 0.001) in the presence of biomarkers associated with diabetes and segregation of spectra were achieved. Differentiating IR bands attributed to nucleic acids (964, 1051, 1087, 1226 and 1710 cm-1), proteins (1662 and 1608 cm-1) and fatty acids (2854, 2923, 2956 and 3012 cm-1) were observed between the Akita/+ and the WT samples. A comparison between distinctive layers of the retina, namely the photoreceptor retinal layer (PRL), outer plexiform layer (OPL), inner nucleus layer (INL) and inner plexiform layer (IPL) suggested that the photoreceptor layer is the most susceptible layer to oxidative stress in short-term diabetes. Spatially-resolved chemical images indicated heterogeneities and oxidative-stress induced alterations in the diabetic retina tissue morphology compared with the WT retina. In this study, the spectral biomarkers and the spatial biochemical alterations in the diabetic retina and in specific layers were identified for the first time. We believe that the conclusions drawn from these studies will help to bridge the gap in our understanding of the molecular and cellular mechanisms that contribute to the pathobiology of diabetic retinopathy.
Collapse
Affiliation(s)
| | - Mahsa Ranji
- Biophotonics Laboratory, University of Wisconsin-Milwaukee, Milwaukee, USA
| | | | - Reyhaneh Sepehr
- Biophotonics Laboratory, University of Wisconsin-Milwaukee, Milwaukee, USA
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, USA
| | - Carol J Hirschmugl
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, USA.
| |
Collapse
|
13
|
Freitas RO, Deneke C, Maia FCB, Medeiros HG, Moreno T, Dumas P, Petroff Y, Westfahl H. Low-aberration beamline optics for synchrotron infrared nanospectroscopy. OPTICS EXPRESS 2018; 26:11238-11249. [PMID: 29716048 DOI: 10.1364/oe.26.011238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Synchrotron infrared nanospectroscopy is a recently developed technique that enables new possibilities in the broadband chemical analysis of materials in the nanoscale, far beyond the diffraction limit in this frequency domain. Synchrotron infrared ports have exploited mainly the high brightness advantage provided by electron storage rings across the whole infrared range. However, optical aberrations in the beam produced by the source depth of bending magnet emission at large angles prevent infrared nanospectroscopy to reach its maximum capability. In this work we present a low-aberration optical layout specially designed and constructed for a dedicated synchrotron infrared nanospectroscopy beamline. We report excellent agreement between simulated beam profiles (from standard wave propagation and raytracing optics simulations) with experimental measurements. We report an important improvement in the infrared nanospectroscopy experiment related to the improved beamline optics. Finally, we demonstrate the performance of the nanospectroscopy endstation by measuring a hyperspectral image of a polar material and we evaluate the setup sensitivity by measuring ultra-thin polymer films down to 6 nm thick.
Collapse
|
14
|
Alaverdashvili M, Hackett MJ, Caine S, Paterson PG. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats. Neuroimage 2017; 149:275-284. [PMID: 28179168 DOI: 10.1016/j.neuroimage.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/25/2016] [Accepted: 02/04/2017] [Indexed: 12/30/2022] Open
Abstract
While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH2) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; College of Pharmacy and Nutrition, Canada; Department of Anatomy and Cell Biology, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada.
| | - Mark J Hackett
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; Department of Geological Sciences, Canada
| | - Sally Caine
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; Department of Anatomy and Cell Biology, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada
| | - Phyllis G Paterson
- Neuroscience Research Group, Department of Anatomy and Cell Biology and College of Pharmacy and Nutrition University of Saskatchewan, D Wing GD30 (Box 1) Health Sciences, 107 Wiggins Road, Saskatoon, SK, Canada, S7N 5E5; College of Pharmacy and Nutrition, Canada; Cameco MS Neuroscience Center, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
15
|
Aboualizadeh E, Carmichael OT, He P, Albarado DC, Morrison CD, Hirschmugl CJ. Quantifying Biochemical Alterations in Brown and Subcutaneous White Adipose Tissues of Mice Using Fourier Transform Infrared Widefield Imaging. Front Endocrinol (Lausanne) 2017; 8:121. [PMID: 28620356 PMCID: PMC5450226 DOI: 10.3389/fendo.2017.00121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
Stimulating increased thermogenic activity in adipose tissue is an important biological target for obesity treatment, and label-free imaging techniques with the potential to quantify stimulation-associated biochemical changes to the adipose tissue are highly sought after. In this study, we used spatially resolved Fourier transform infrared (FTIR) imaging to quantify biochemical changes caused by cold exposure in the brown and subcutaneous white adipose tissues (BAT and s-WAT) of 6 week-old C57BL6 mice exposed to 30°C (N = 5), 24°C (N = 5), and 10°C (N = 5) conditions for 10 days. Fat exposed to colder temperatures demonstrated greater thermogenic activity as indicated by increased messenger RNA expression levels of a panel of thermogenic marker genes including uncoupling protein 1 (UCP-1) and Dio2. Protein to lipid ratio, calculated from the ratio of the integrated area from 1,600 to 1,700 cm-1 (amide I) to the integrated area from 2,830 to 2,980 cm-1 (saturated lipids), was elevated in 10°C BAT and s-WAT compared to 24°C (p = 0.004 and p < 0.0001) and 30°C (p = 0.0033 and p < 0.0001). Greater protein to lipid ratio was associated with greater UCP-1 expression level in the BAT (p = 0.021) and s-WAT (p = 0.032) and greater Dio2 expression in s-WAT (p = 0.033). The degree of unsaturation, calculated from the ratio of the integrated area from 2,992 to 3,020 cm-1 (unsaturated lipids) to the integrated area from 2,830 to 2,980 cm-1 (saturated lipids), showed stepwise decreases going from colder-exposed to warmer-exposed BAT. Complementary 1H NMR measurements confirmed the findings from this ratio in BAT. Principal component analysis applied to FTIR spectra revealed pronounced differences in overall spectral characteristics between 30, 24, and 10°C BAT and s-WAT. Spatially resolved FTIR imaging is a promising technique to quantify cold-induced biochemical changes in BAT and s-WAT in a label-free manner.
Collapse
Affiliation(s)
- Ebrahim Aboualizadeh
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | | | - Ping He
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Diana C. Albarado
- Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | | | - Carol J. Hirschmugl
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
- *Correspondence: Carol J. Hirschmugl,
| |
Collapse
|
16
|
Hackett MJ, Sylvain NJ, Hou H, Caine S, Alaverdashvili M, Pushie MJ, Kelly ME. Concurrent Glycogen and Lactate Imaging with FTIR Spectroscopy To Spatially Localize Metabolic Parameters of the Glial Response Following Brain Ischemia. Anal Chem 2016; 88:10949-10956. [DOI: 10.1021/acs.analchem.6b02588] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mark J. Hackett
- Nanochemistry
Research Institute, Department of Chemistry, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Nicole J. Sylvain
- Department
of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Suite B419 Health
Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Huishu Hou
- Department
of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Suite B419 Health
Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sally Caine
- College
of Pharmacy and Nutrition, College of Medicine, University of Saskatchewan, 107 Wiggins
Road, Suite B221 Health Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Mariam Alaverdashvili
- College
of Pharmacy and Nutrition, College of Medicine, University of Saskatchewan, 107 Wiggins
Road, Suite B221 Health Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Michael J. Pushie
- Department
of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Suite B419 Health
Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Michael E. Kelly
- Department
of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Suite B419 Health
Sciences Building, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
17
|
Hackett MJ, Paterson PG, Pickering IJ, George GN. Imaging Taurine in the Central Nervous System Using Chemically Specific X-ray Fluorescence Imaging at the Sulfur K-Edge. Anal Chem 2016; 88:10916-10924. [PMID: 27700065 DOI: 10.1021/acs.analchem.6b02298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A method to image taurine distributions within the central nervous system and other organs has long been sought. Since taurine is small and mobile, it cannot be chemically "tagged" and imaged using conventional immuno-histochemistry methods. Combining numerous indirect measurements, taurine is known to play critical roles in brain function during health and disease and is proposed to act as a neuro-osmolyte, neuro-modulator, and possibly a neuro-transmitter. Elucidation of taurine's neurochemical roles and importance would be substantially enhanced by a direct method to visualize alterations, due to physiological and pathological events in the brain, in the local concentration of taurine at or near cellular spatial resolution in vivo or in situ in tissue sections. We thus have developed chemically specific X-ray fluorescence imaging (XFI) at the sulfur K-edge to image the sulfonate group in taurine in situ in ex vivo tissue sections. To our knowledge, this represents the first undistorted imaging of taurine distribution in brain at 20 μm resolution. We report quantitative technique validation by imaging taurine in the cerebellum and hippocampus regions of the rat brain. Further, we apply the technique to image taurine loss from the vulnerable CA1 (cornus ammonis 1) sector of the rat hippocampus following global brain ischemia. The location-specific loss of taurine from CA1 but not CA3 neurons following ischemia reveals osmotic stress may be a key factor in delayed neurodegeneration after a cerebral ischemic insult and highlights the significant potential of chemically specific XFI to study the role of taurine in brain disease.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, Curtin University , GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan , 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
18
|
Caine S, Hackett MJ, Hou H, Kumar S, Maley J, Ivanishvili Z, Suen B, Szmigielski A, Jiang Z, Sylvain NJ, Nichol H, Kelly ME. A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol Dis 2016; 91:132-42. [DOI: 10.1016/j.nbd.2016.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/13/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
|
19
|
Hackett MJ, George GN, Pickering IJ, Eames BF. Chemical Biology in the Embryo: In Situ Imaging of Sulfur Biochemistry in Normal and Proteoglycan-Deficient Cartilage Matrix. Biochemistry 2016; 55:2441-51. [PMID: 26985789 DOI: 10.1021/acs.biochem.5b01136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteoglycans (PGs) are heavily glycosylated proteins that play major structural and biological roles in many tissues. Proteoglycans are abundant in cartilage extracellular matrix; their loss is a main feature of the joint disease osteoarthritis. Proteoglycan function is regulated by sulfation-sulfate ester formation with specific sugar residues. Visualization of sulfation within cartilage matrix would yield vital insights into its biological roles. We present synchrotron-based X-ray fluorescence imaging of developing zebrafish cartilage, providing the first in situ maps of sulfate ester distribution. Levels of both sulfur and sulfate esters decrease as cartilage develops through late phase differentiation (maturation or hypertrophy), suggesting a functional link between cartilage matrix sulfur content and chondrocyte differentiation. Genetic experiments confirm that sulfate ester levels were due to cartilage proteoglycans and support the hypothesis that sulfate ester levels regulate chondrocyte differentiation. Surprisingly, in the PG synthesis mutant, the total level of sulfur was not significantly reduced, suggesting sulfur is distributed in an alternative chemical form during lowered cartilage proteoglycan production. Fourier transform infrared imaging indicated increased levels of protein in the mutant fish, suggesting that this alternative sulfur form might be ascribed to an increased level of protein synthesis in the mutant fish, as part of a compensatory mechanism.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5B3, Canada
| | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
20
|
Hackett MJ, Smith SE, Caine S, Nichol H, George GN, Pickering IJ, Paterson PG. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat. Free Radic Biol Med 2015; 89:806-18. [PMID: 26454085 PMCID: PMC5509437 DOI: 10.1016/j.freeradbiomed.2015.08.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/16/2015] [Accepted: 08/31/2015] [Indexed: 10/22/2022]
Abstract
Global brain ischemia resulting from cardiac arrest and cardiac surgery can lead to permanent brain damage and mental impairment. A clinical hallmark of global brain ischemia is delayed neurodegeneration, particularly within the CA1 subsector of the hippocampus. Unfortunately, the biochemical mechanisms have not been fully elucidated, hindering optimization of current therapies (i.e., therapeutic hypothermia) or development of new therapies. A major limitation to elucidating the mechanisms that contribute to neurodegeneration and understanding how these are influenced by potential therapies is the inability to relate biochemical markers to alterations in the morphology of individual neurons. Although immunocytochemistry allows imaging of numerous biochemical markers at the sub-cellular level, it is not a direct chemical imaging technique and requires successful "tagging" of the desired analyte. Consequently, important biochemical parameters, particularly those that manifest from oxidative damage to biological molecules, such as aggregated protein levels, have been notoriously difficult to image at the cellular or sub-cellular level. It has been hypothesized that reactive oxygen species (ROS) generated during ischemia and reperfusion facilitate protein aggregation, impairing neuronal protein homeostasis (i.e., decreasing protein synthesis) that in turn promotes neurodegeneration. Despite indirect evidence for this theory, direct measurements of morphology and ROS induced biochemical damage, such as increased protein aggregates and decreased protein synthesis, within the same neuron is lacking, due to the unavailability of a suitable imaging method. Our experimental approach has incorporated routine histology with novel wide-field synchrotron radiation Fourier transform infrared imaging (FTIRI) of the same neurons, ex vivo within brain tissue sections. The results demonstrate for the first time that increased protein aggregation and decreased levels of total protein occur in the same CA1 pyramidal neurons 1 day after global ischemia. Further, analysis of serial tissue sections using X-ray absorption spectroscopy at the sulfur K-edge has revealed that CA1 pyramidal neurons have increased disulfide levels, a direct indicator of oxidative stress, at this time point. These changes at 1 day after ischemia precede a massive increase in aggregated protein and disulfide levels concomitant with loss of neuron integrity 2 days after ischemia. Therefore, this study has provided direct support for a correlative mechanistic link in both spatial and temporal domains between oxidative stress, protein aggregation and altered protein homeostasis prior to irreparable neuron damage following global ischemia.
Collapse
Affiliation(s)
- Mark J Hackett
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Shari E Smith
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Sally Caine
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada; Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Phyllis G Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada.
| |
Collapse
|
21
|
Hackett MJ, Aitken JB, El-Assaad F, McQuillan JA, Carter EA, Ball HJ, Tobin MJ, Paterson D, de Jonge MD, Siegele R, Cohen DD, Vogt S, Grau GE, Hunt NH, Lay PA. Mechanisms of murine cerebral malaria: Multimodal imaging of altered cerebral metabolism and protein oxidation at hemorrhage sites. SCIENCE ADVANCES 2015; 1:e1500911. [PMID: 26824064 PMCID: PMC4730848 DOI: 10.1126/sciadv.1500911] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/03/2015] [Indexed: 06/05/2023]
Abstract
Using a multimodal biospectroscopic approach, we settle several long-standing controversies over the molecular mechanisms that lead to brain damage in cerebral malaria, which is a major health concern in developing countries because of high levels of mortality and permanent brain damage. Our results provide the first conclusive evidence that important components of the pathology of cerebral malaria include peroxidative stress and protein oxidation within cerebellar gray matter, which are colocalized with elevated nonheme iron at the site of microhemorrhage. Such information could not be obtained previously from routine imaging methods, such as electron microscopy, fluorescence, and optical microscopy in combination with immunocytochemistry, or from bulk assays, where the level of spatial information is restricted to the minimum size of tissue that can be dissected. We describe the novel combination of chemical probe-free, multimodal imaging to quantify molecular markers of disturbed energy metabolism and peroxidative stress, which were used to provide new insights into understanding the pathogenesis of cerebral malaria. In addition to these mechanistic insights, the approach described acts as a template for the future use of multimodal biospectroscopy for understanding the molecular processes involved in a range of clinically important acute and chronic (neurodegenerative) brain diseases to improve treatment strategies.
Collapse
Affiliation(s)
- Mark J. Hackett
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jade B. Aitken
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fatima El-Assaad
- Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - James A. McQuillan
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elizabeth A. Carter
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Helen J. Ball
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mark J. Tobin
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - David Paterson
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Martin D. de Jonge
- Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Rainer Siegele
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - David D. Cohen
- Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
| | - Stefan Vogt
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Georges E. Grau
- Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nicholas H. Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A. Lay
- School of Chemistry and Vibrational Spectroscopy Core Facility, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
22
|
Hackett MJ, DeSouza M, Caine S, Bewer B, Nichol H, Paterson PG, Colbourne F. A new method to image heme-Fe, total Fe, and aggregated protein levels after intracerebral hemorrhage. ACS Chem Neurosci 2015; 6:761-70. [PMID: 25695130 DOI: 10.1021/acschemneuro.5b00037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An intracerebral hemorrhage (ICH) is a devastating stroke that results in high mortality and significant disability in survivors. Unfortunately, the underlying mechanisms of this injury are not yet fully understood. After the primary (mechanical) trauma, secondary degenerative events contribute to ongoing cell death in the peri-hematoma region. Oxidative stress is thought to be a key reason for this delayed injury, which is likely due to free-Fe-catalyzed free radical reactions. Unfortunately, this is difficult to prove with conventional biochemical assays that fail to differentiate between alterations that occur within the hematoma and peri-hematoma zone. This is a critical limitation, as the hematoma contains tissue severely damaged by the initial hemorrhage and is unsalvageable, whereas the peri-hematoma region is less damaged but at risk from secondary degenerative events. Such events include oxidative stress mediated by free Fe presumed to originate from hemoglobin breakdown. Therefore, minimizing the damage caused by oxidative stress following hemoglobin breakdown and Fe release is a major therapeutic target. However, the extent to which free Fe contributes to the pathogenesis of ICH remains unknown. This investigation used a novel imaging approach that employed resonance Raman spectroscopic mapping of hemoglobin, X-ray fluorescence microscopic mapping of total Fe, and Fourier transform infrared spectroscopic imaging of aggregated protein following ICH in rats. This multimodal spectroscopic approach was used to accurately define the hematoma/peri-hematoma boundary and quantify the Fe concentration and the relative aggregated protein content, as a marker of oxidative stress, within each region. The results revealed total Fe is substantially increased in the hematoma (0.90 μg cm(-2)), and a subtle but significant increase in Fe that is not in the chemical form of hemoglobin is present within the peri-hematoma zone (0.32 μg cm(-2)) within 1 day of ICH, relative to sham animals (0.22 μg cm(-2)). Levels of aggregated protein were significantly increased within both the hematoma (integrated band area 0.10 AU) and peri-hematoma zone (integrated band area 0.10 AU) relative to sham animals (integrated band area 0.056 AU), but no significant difference in aggregated protein content was observed between the hematoma and peri-hematoma zone. This result suggests that the chemical form of Fe and its ability to generate free radicals is likely to be a more critical predictor of tissue damage than the total Fe content of the tissue. Furthermore, this article describes a novel approach to colocalize nonheme Fe and aggregated protein in the peri-hematoma zone following ICH, a significant methodological advancement for the field.
Collapse
Affiliation(s)
- Mark J. Hackett
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Mauren DeSouza
- Department
of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Stress,
Memory and Behaviour Lab, Graduate Program in Biochemistry, Federal University of Pampa, Uruguaiana, Rio Grande do Sul 97500-970, Brazil
| | - Sally Caine
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Brian Bewer
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Helen Nichol
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Phyllis G. Paterson
- College of
Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins
Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Frederick Colbourne
- Department
of Psychology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
23
|
Hackett MJ, Britz CJ, Paterson PG, Nichol H, Pickering IJ, George GN. In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain. ACS Chem Neurosci 2015; 6:226-38. [PMID: 25350866 PMCID: PMC4372066 DOI: 10.1021/cn500157j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
Rapid advances in
imaging technologies have pushed novel spectroscopic
modalities such as Fourier transform infrared spectroscopy (FTIR)
and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the
forefront of direct in situ investigation of brain biochemistry. However,
few studies have examined the extent to which sample preparation artifacts
confound results. Previous investigations using traditional analyses,
such as tissue dissection, homogenization, and biochemical assay,
conducted extensive research to identify biochemical alterations that
occur ex vivo during sample preparation. In particular, altered metabolism
and oxidative stress may be caused by animal death. These processes
were a concern for studies using biochemical assays, and protocols
were developed to minimize their occurrence. In this investigation,
a similar approach was taken to identify the biochemical alterations
that are detectable by two in situ spectroscopic methods (FTIR, XAS)
that occur as a consequence of ischemic conditions created during
humane animal killing. FTIR and XAS are well suited to study markers
of altered metabolism such as lactate and creatine (FTIR) and markers
of oxidative stress such as aggregated proteins (FTIR) and altered
thiol redox (XAS). The results are in accordance with previous investigations
using biochemical assays and demonstrate that the time between animal
death and tissue dissection results in ischemic conditions that alter
brain metabolism and initiate oxidative stress. Therefore, future
in situ biospectroscopic investigations utilizing FTIR and XAS must
take into consideration that brain tissue dissected from a healthy
animal does not truly reflect the in vivo condition, but rather reflects
a state of mild ischemia. If studies require the levels of metabolites
(lactate, creatine) and markers of oxidative stress (thiol redox)
to be preserved as close as possible to the in vivo condition, then
rapid freezing of brain tissue via decapitation into liquid nitrogen,
followed by chiseling the brain out at dry ice temperatures is required.
Collapse
Affiliation(s)
- Mark J. Hackett
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Carter J. Britz
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Phyllis G. Paterson
- College
of Pharmacy and Nutrition, University of Saskatchewan, D Wing Health Sciences, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Helen Nichol
- Department
of Anatomy and Cell Biology, University of Saskatchewan, 107
Wiggins Rd, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ingrid J. Pickering
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Graham N. George
- Molecular
and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| |
Collapse
|
24
|
Barabas ME, Mattson EC, Aboualizadeh E, Hirschmugl CJ, Stucky CL. Chemical structure and morphology of dorsal root ganglion neurons from naive and inflamed mice. J Biol Chem 2014; 289:34241-9. [PMID: 25271163 DOI: 10.1074/jbc.m114.570101] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fourier transform infrared spectromicroscopy provides label-free imaging to detect the spatial distribution of the characteristic functional groups in proteins, lipids, phosphates, and carbohydrates simultaneously in individual DRG neurons. We have identified ring-shaped distributions of lipid and/or carbohydrate enrichment in subpopulations of neurons which has never before been reported. These distributions are ring-shaped within the cytoplasm and are likely representative of the endoplasmic reticulum. The prevalence of chemical ring subtypes differs between large- and small-diameter neurons. Peripheral inflammation increased the relative lipid content specifically in small-diameter neurons, many of which are nociceptive. Because many small-diameter neurons express an ion channel involved in inflammatory pain, transient receptor potential ankyrin 1 (TRPA1), we asked whether this increase in lipid content occurs in TRPA1-deficient (knock-out) neurons. No statistically significant change in lipid content occurred in TRPA1-deficient neurons, indicating that the inflammation-mediated increase in lipid content is largely dependent on TRPA1. Because TRPA1 is known to mediate mechanical and cold sensitization that accompanies peripheral inflammation, our findings may have important implications for a potential role of lipids in inflammatory pain.
Collapse
Affiliation(s)
- Marie E Barabas
- From the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509 and
| | - Eric C Mattson
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Ebrahim Aboualizadeh
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Carol J Hirschmugl
- the Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211
| | - Cheryl L Stucky
- From the Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-0509 and
| |
Collapse
|
25
|
Alaverdashvili M, Hackett MJ, Pickering IJ, Paterson PG. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat. Neuroimage 2014; 103:502-510. [PMID: 25192655 DOI: 10.1016/j.neuroimage.2014.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/29/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022] Open
Abstract
The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways.
Collapse
Affiliation(s)
- Mariam Alaverdashvili
- Neuroscience Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Mark J Hackett
- Neuroscience Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ingrid J Pickering
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Phyllis G Paterson
- Neuroscience Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
26
|
Opportunities for live cell FT-infrared imaging: macromolecule identification with 2D and 3D localization. Int J Mol Sci 2013; 14:22753-81. [PMID: 24256815 PMCID: PMC3856089 DOI: 10.3390/ijms141122753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/22/2022] Open
Abstract
Infrared (IR) spectromicroscopy, or chemical imaging, is an evolving technique that is poised to make significant contributions in the fields of biology and medicine. Recent developments in sources, detectors, measurement techniques and speciman holders have now made diffraction-limited Fourier transform infrared (FTIR) imaging of cellular chemistry in living cells a reality. The availability of bright, broadband IR sources and large area, pixelated detectors facilitate live cell imaging, which requires rapid measurements using non-destructive probes. In this work, we review advances in the field of FTIR spectromicroscopy that have contributed to live-cell two and three-dimensional IR imaging, and discuss several key examples that highlight the utility of this technique for studying the structure and chemistry of living cells.
Collapse
|
27
|
Birarda G, Holman EA, Fu S, Weikel K, Hu P, Blankenberg FG, Holman HY, Taylor A. Synchrotron infrared imaging of advanced glycation endproducts (AGEs) in cardiac tissue from mice fed high glycemic diets. BIOMEDICAL SPECTROSCOPY AND IMAGING 2013; 2:301-315. [PMID: 26500847 PMCID: PMC4617198 DOI: 10.3233/bsi-130057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent research findings correlate an increased risk for dieases such as diabetes, macular degeneration and cardiovascular disease (CVD) with diets that rapidly raise the blood sugar levels; these diets are known as high glycemic index (GI) diets which include white breads, sodas and sweet deserts. Lower glycemia diets are usually rich in fruits, non-starchy vegetables and whole grain products. The goal of our study was to compare and contrast the effects of a low vs. high glycemic diet using the biochemical composition and microstructure of the heart. The improved spatial resolution and signal-to-noise for SR-FTIR obtained through the coupling of the bright synchrotron infrared photon source to an infrared spectral microscope enabled the molecular-level observation of diet-related changes within unfixed fresh frozen histologic sections of mouse cardiac tissue. High and low glycemic index (GI) diets were started at the age of five-months and continued for one year, with the diets only differing in their starch distribution (high GI diet = 100% amylopectin versus low GI diet = 30% amylopectin/70% amylose). Serial cryosections of cardiac tissue for SR-FTIR imaging alternated with adjacent hematoxylin and eosin (H&E) stained sections allowed not only fine-scale chemical analyses of glycogen and glycolipid accumulation along a vein as well as protein glycation hotspots co-localizing with collagen cold spots but also the tracking of morphological differences occurring in tandem with these chemical changes. As a result of the bright synchrotron infrared photon source coupling, we were able to provide significant molecular evidence for a positive correlation between protein glycation and collagen degradation in our mouse model. Our results bring a new insight not only to the effects of long-term GI dietary practices of the public but also to the molecular and chemical foundation behind the cardiovascular disease pathogenesis commonly seen in diabetic patients.
Collapse
Affiliation(s)
- Giovanni Birarda
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | - Elizabeth A. Holman
- Department of Radiology and Pediatrics/Molecular Imaging Program at Stanford, Stanford, CA, USA
| | - Shang Fu
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA HNRCA at Tufts University, Tufts University, Boston, MA, USA
| | - Karen Weikel
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA HNRCA at Tufts University, Tufts University, Boston, MA, USA
- Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Ping Hu
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | - Francis G. Blankenberg
- Department of Radiology and Pediatrics/Molecular Imaging Program at Stanford, Stanford, CA, USA
| | - Hoi-Ying Holman
- Berkeley Synchrotron Infrared Structural Biology Program, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA HNRCA at Tufts University, Tufts University, Boston, MA, USA
| |
Collapse
|