1
|
Spetea M, Schmidhammer H. Kappa Opioid Receptor Ligands and Pharmacology: Diphenethylamines, a Class of Structurally Distinct, Selective Kappa Opioid Ligands. Handb Exp Pharmacol 2021; 271:163-195. [PMID: 33454858 DOI: 10.1007/164_2020_431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kappa opioid receptor (KOR), a G protein-coupled receptor, and its endogenous ligands, the dynorphins, are prominent members of the opioid neuromodulatory system. The endogenous kappa opioid system is expressed in the central and peripheral nervous systems, and has a key role in modulating pain in central and peripheral neuronal circuits and a wide array of physiological functions and neuropsychiatric behaviors (e.g., stress, reward, emotion, motivation, cognition, epileptic seizures, itch, and diuresis). We review the latest advances in pharmacology of the KOR, chemical developments on KOR ligands with advances and challenges, and therapeutic and potential applications of KOR ligands. Diverse discovery strategies of KOR ligands targeting natural, naturally derived, and synthetic compounds with different scaffolds, as small molecules or peptides, with short or long-acting pharmacokinetics, and central or peripheral site of action, are discussed. These research efforts led to ligands with distinct pharmacological properties, as agonists, partial agonists, biased agonists, and antagonists. Differential modulation of KOR signaling represents a promising strategy for developing pharmacotherapies for several human diseases, either by activating (treatment of pain, pruritus, and epilepsy) or blocking (treatment of depression, anxiety, and addiction) the receptor. We focus on the recent chemical and pharmacological advances on diphenethylamines, a new class of structurally distinct, selective KOR ligands. Design strategies and investigations to define structure-activity relationships together with in vivo pharmacology of diphenethylamines as agonists, biased agonists, and antagonists and their potential use as therapeutics are discussed.
Collapse
Affiliation(s)
- Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Bailey S, Husbands S. Targeting opioid receptor signaling in depression: do we need selective κ opioid receptor antagonists? Neuronal Signal 2018; 2:NS20170145. [PMID: 32714584 PMCID: PMC7373229 DOI: 10.1042/ns20170145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
The opioid receptors are a family of G-protein coupled receptors (GPCRs) with close structural homology. The opioid receptors are activated by a variety of endogenous opioid neuropeptides, principally β-endorphin, dynorphins, leu- and met-enkephalins. The clinical potential of targeting opioid receptors has largely focused on the development of analgesics. However, more recent attention has turned to the role of central opioid receptors in the regulation of stress responses, anhedonia and mood. Activation of the κ opioid receptor (KOP) subtype has been shown in both human and rodent studies to produce dysphoric and pro-depressive like effects. This has led to the idea that selective KOP antagonists might have therapeutic potential as antidepressants. Here we review data showing that mixed μ opioid (MOP) and KOP antagonists have antidepressant-like effects in rodent behavioural paradigms and highlight comparable studies in treatment-resistant depressed patients. We propose that developing multifunctional ligands which target multiple opioid receptors open up the potential for fine-tuning hedonic responses mediated by opioids. This alternative approach towards targeting multiple opioid receptors may lead to more effective treatments for depression.
Collapse
Affiliation(s)
- Sarah J. Bailey
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Stephen M. Husbands
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
3
|
Almatroudi A, Ostovar M, Bailey CP, Husbands SM, Bailey SJ. Antidepressant-like effects of BU10119, a novel buprenorphine analogue with mixed κ/μ receptor antagonist properties, in mice. Br J Pharmacol 2017; 175:2869-2880. [PMID: 28967123 DOI: 10.1111/bph.14060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND AND PURPOSE The κ receptor antagonists have potential for treating neuropsychiatric disorders. We have investigated the in vivo pharmacology of a novel buprenorphine analogue, BU10119, for the first time. EXPERIMENTAL APPROACH To determine the opioid pharmacology of BU10119 (0.3-3 mg·kg-1 , i.p.) in vivo, the warm-water tail-withdrawal assay was applied in adult male CD1 mice. A range of behavioural paradigms was used to investigate the locomotor effects, rewarding properties and antidepressant or anxiolytic potential of BU10119. Additional groups of mice were exposed to a single (1 × 2 h) or repeated restraint stress (3× daily 2 h) to determine the ability of BU10119 to block stress-induced analgesia. KEY RESULTS BU10119 alone was without any antinociceptive activity. BU10119 (1 mg·kg-1 ) was able to block U50,488, buprenorphine and morphine-induced antinociception. The κ antagonist effects of BU10119 in the tail-withdrawal assay reversed between 24 and 48 h. BU10119 was without significant locomotor or rewarding effects. BU10119 (1 mg·kg-1 ) significantly reduced the latency to feed in the novelty-induced hypophagia task and reduced immobility time in the forced swim test, compared to saline-treated animals. There were no significant effects of BU10119 in either the elevated plus maze or the light-dark box. Both acute and repeated restraint stress-induced analgesia were blocked by pretreatment with BU10119 (1 mg·kg-1 ). Parallel stress-induced increases in plasma corticosterone were not affected. CONCLUSIONS AND IMPLICATIONS BU10119 is a mixed κ/μ receptor antagonist with relatively short-duration κ antagonist activity. Based on these preclinical data, BU10119 has therapeutic potential for the treatment of depression and other stress-induced conditions. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
| | - Mehrnoosh Ostovar
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | | | - Sarah J Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
4
|
Helal MA, Habib ES, Chittiboyina AG. Selective kappa opioid antagonists for treatment of addiction, are we there yet? Eur J Med Chem 2017; 141:632-647. [PMID: 29107424 DOI: 10.1016/j.ejmech.2017.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/06/2017] [Accepted: 10/07/2017] [Indexed: 11/30/2022]
Abstract
Kappa opioid receptor (KOP) is a G-protein coupled receptor mainly expressed in the cerebral cortex and hypothalamus. It is implicated in nociception, diuresis, emotion, cognition, and immune system functions. KOP agonists possess a strong analgesic effect accompanied by a feeling of dysphoria. On the other hand, antagonists of this receptor were found to block depression, anxiety, and drug-seeking behaviors in animal models. Recently, great interest has been given to the development of selective KOP antagonists as an addiction treatment that does not cause dependence itself or show high relapse rates like the currently used agents. This review provides a comprehensive survey of the KOP antagonists developed for this purpose together with their in vivo studies and clinical trials. In addition, a future perspective and recommendations for the work needed to develop clinically relevant KOP antagonists are presented.
Collapse
Affiliation(s)
- Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12588, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Eman S Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Amar G Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
5
|
Cai Z, Li S, Pracitto R, Navarro A, Shirali A, Ropchan J, Huang Y. Fluorine-18-Labeled Antagonist for PET Imaging of Kappa Opioid Receptors. ACS Chem Neurosci 2017; 8:12-16. [PMID: 27741398 DOI: 10.1021/acschemneuro.6b00268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kappa opioid receptor (KOR) antagonists are potential drug candidates for diseases such as treatment-refractory depression, anxiety, and addictive disorders. PET imaging radiotracers for KOR can be used in occupancy study to facilitate drug development, and to investigate the roles of KOR in health and diseases. We have previously developed two 11C-labeled antagonist radiotracers with high affinity and selectivity toward KOR. What is limiting their wide applications is the short half-life of 11C. Herein, we report the synthesis of a first 18F-labeled KOR antagonist radiotracer and the initial PET imaging study in a nonhuman primate.
Collapse
Affiliation(s)
- Zhengxin Cai
- PET
Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Songye Li
- PET
Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Richard Pracitto
- PET
Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Antonio Navarro
- Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Anupama Shirali
- PET
Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Jim Ropchan
- PET
Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| | - Yiyun Huang
- PET
Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Ramos-Colon CN, Lee YS, Remesic M, Hall SM, LaVigne J, Davis P, Sandweiss AJ, McIntosh MI, Hanson J, Largent-Milnes TM, Vanderah TW, Streicher J, Porreca F, Hruby VJ. Structure-Activity Relationships of [des-Arg 7]Dynorphin A Analogues at the κ Opioid Receptor. J Med Chem 2016; 59:10291-10298. [PMID: 27797517 DOI: 10.1021/acs.jmedchem.6b01411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynorphin A (Dyn A) is an endogenous ligand for the opioid receptors with preference for the κ opioid receptor (KOR), and its structure-activity relationship (SAR) has been extensively studied at the KOR to develop selective potent agonists and antagonists. Numerous SAR studies have revealed that the Arg7 residue is essential for KOR activity. In contrast, our systematic SAR studies on [des-Arg7]Dyn A analogues found that Arg7 is not a key residue and even deletion of the residue does not affect biological activities at the KOR. In addition, it was also found that [des-Arg7]Dyn A(1-9)-NH2 is a minimum pharmacophore and its modification at the N-terminus leads to selective KOR antagonists. A lead ligand, 14, with high affinity and antagonist activity showed improved metabolic stability and could block antinociceptive effects of a KOR selective agonist, FE200665, in vivo, indicating high potential to treat KOR mediated disorders such as stress-induced relapse.
Collapse
Affiliation(s)
- Cyf N Ramos-Colon
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Yeon Sun Lee
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael Remesic
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Sara M Hall
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Justin LaVigne
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Peg Davis
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Alexander J Sandweiss
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Mary I McIntosh
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Jessica Hanson
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Tally M Largent-Milnes
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Todd W Vanderah
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - John Streicher
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Frank Porreca
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| | - Victor J Hruby
- Department of Pharmacology and Toxicology, ‡Department of Chemistry and Biochemistry, and §Department of Pharmacology, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
7
|
Wang YJ, Hang A, Lu YC, Long Y, Zan GY, Li XP, Wang Q, Zhao ZX, He L, Chi ZQ, Liu JG. κ Opioid receptor activation in different brain regions differentially modulates anxiety-related behaviors in mice. Neuropharmacology 2016; 110:92-101. [PMID: 27106167 DOI: 10.1016/j.neuropharm.2016.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/31/2022]
Abstract
κ Opioid receptor system is widely implicated in the regulation of emotion. However, the findings about the role on anxiety in rodents are highly controversial, since both anxiogenic- and anxiolytic-like effects have been reported with κ opioid receptor activation. The mechanism and the underlying neuroanatomical substrates are unexplored. In the present study, we first investigated the effects of κ agonist U50,488H on anxiety-related behaviors over a wide range of doses, and we found that U50,488H produced dual effects in anxiety, with low dose being anxiogenic and high dose being anxiolytic. To assess the potential neuroanatomical substrates, we used phosphorylation of extracellular signal-related kinase1/2 (pERK1/2) to map the underlying neural circuits. We found that the anxiogenic effect of U50,488H was paralleled by an increase of pERK1/2 in the nucleus accumbens, whereas the anxiolytic effect was paralleled by an increase of pERK1/2 in the lateral septal nucleus. We then examined the behavioral consequences with locally microinjection of U50,488H, and we found that microinjection of U50,488H into the nucleus accumbens exerted anxiogenic-like effects, whereas microinjection of U50,488H into the lateral septal nucleus. Both effects can be abolished by κ antagonist nor-BNI pretreatment. To the best of our knowledge, the present work firstly provides the neuroanatomical sites that mediating the dual anxiogenic- and anxiolytic-like effects of U50,488H in mice. This study may help to explain current controversial role of κ receptor activation in anxiety-related behaviors in rodents, and may open new perspectives in the areas of anxiety disorders and κ receptor function.
Collapse
Affiliation(s)
- Yu-Jun Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China
| | - Ai Hang
- Pharmacology and Toxicology Department, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Chen Lu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China
| | - Yu Long
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Gui-Ying Zan
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China
| | - Xue-Ping Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China
| | - Qian Wang
- Department of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zeng-Xiang Zhao
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Qiang Chi
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China
| | - Jing-Gen Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China.
| |
Collapse
|
8
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
An Q, Shen J, Butt N, Liu D, Liu Y, Zhang W. The Construction of 3-Methyl-4-arylpiperidinesviaatrans- Perhydroindolic Acid-Catalyzed Asymmetric Aza-Diels-Alder Reaction. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500550] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Almatroudi A, Husbands SM, Bailey CP, Bailey SJ. Combined administration of buprenorphine and naltrexone produces antidepressant-like effects in mice. J Psychopharmacol 2015; 29:812-21. [PMID: 26045511 PMCID: PMC5075030 DOI: 10.1177/0269881115586937] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Opiates have been used historically for the treatment of depression. Renewed interest in the use of opiates as antidepressants has focused on the development of kappa opioid receptor (κ-receptor) antagonists. Buprenorphine acts as a partial µ-opioid receptor agonist and a κ-receptor antagonist. By combining buprenorphine with the opioid antagonist naltrexone, the activation of µ-opioid receptors will be reduced and the κ-antagonist properties enhanced. We have established that a combination dose of buprenorphine (1 mg/kg) with naltrexone (1 mg/kg) functions as a short-acting κ-antagonist in the mouse tail withdrawal test. Furthermore, this dose combination is neither rewarding nor aversive in the conditioned place preference paradigm, and is without significant locomotor effects. We have shown for the first time that systemic co-administration of buprenorphine (1 mg/kg) with naltrexone (1 mg/kg) in CD-1 mice produced an antidepressant-like response in behaviours in both the forced swim test and novelty induced hypophagia task. Behaviours in the elevated plus maze and light dark box were not significantly altered by treatment with buprenorphine alone, or in combination with naltrexone. We propose that the combination of buprenorphine with naltrexone represents a novel, and potentially a readily translatable approach, to the treatment of depression.
Collapse
Affiliation(s)
| | | | | | - Sarah J Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|
11
|
Guerrieri E, Mallareddy JR, Tóth G, Schmidhammer H, Spetea M. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor. ACS Chem Neurosci 2015; 6:456-63. [PMID: 25496417 DOI: 10.1021/cn5002792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.
Collapse
Affiliation(s)
- Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Jayapal Reddy Mallareddy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, H-6726 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, H-6726 Szeged, Hungary
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
12
|
Carroll FI, Dolle RE. The discovery and development of the N-substituted trans-3,4-dimethyl-4-(3'-hydroxyphenyl)piperidine class of pure opioid receptor antagonists. ChemMedChem 2014; 9:1638-54. [PMID: 24981721 PMCID: PMC5588862 DOI: 10.1002/cmdc.201402142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 01/12/2023]
Abstract
N-Substituted trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines are a class of pure opioid receptor antagonists with a novel pharmacophore. This opioid receptor antagonist pharmacophore was used as a lead structure to design and develop several interesting and useful opioid receptor antagonists. In this review we describe: 1) early SAR studies that led to the discovery of LY255582 and analogues that are nonselective opioid receptor antagonists developed for the treatment of obesity; 2) the discovery and commercialization of LY246736 (alvimopan; ENTEREG®), a peripherally selective opioid receptor antagonist that accelerates the time to upper and lower GI recovery following surgeries that include partial bowel resection with primary anastomosis; and 3) the discovery and development of the potent and selective κ opioid receptor antagonist JDTic and analogues as potential pharmacotherapies for treating depression, anxiety, and substance abuse (nicotine, alcohol, and cocaine). In addition, the use of JDTic for obtaining the X-ray structure of the human κ opioid receptor is discussed.
Collapse
Affiliation(s)
- F Ivy Carroll
- Research Triangle Institute, Center for Organic and Medicinal Chemistry, 3040 Cornwallis Road, Research Triangle Park, NC 27709 (USA).
| | | |
Collapse
|