1
|
Moldovean-Cioroianu NS. Reviewing the Structure-Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int J Mol Sci 2024; 25:6789. [PMID: 38928495 PMCID: PMC11204371 DOI: 10.3390/ijms25126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Polyglutamine (polyQ) disorders are a group of neurodegenerative diseases characterized by the excessive expansion of CAG (cytosine, adenine, guanine) repeats within host proteins. The quest to unravel the complex diseases mechanism has led researchers to adopt both theoretical and experimental methods, each offering unique insights into the underlying pathogenesis. This review emphasizes the significance of combining multiple approaches in the study of polyQ disorders, focusing on the structure-function correlations and the relevance of polyQ-related protein dynamics in neurodegeneration. By integrating computational/theoretical predictions with experimental observations, one can establish robust structure-function correlations, aiding in the identification of key molecular targets for therapeutic interventions. PolyQ proteins' dynamics, influenced by their length and interactions with other molecular partners, play a pivotal role in the polyQ-related pathogenic cascade. Moreover, conformational dynamics of polyQ proteins can trigger aggregation, leading to toxic assembles that hinder proper cellular homeostasis. Understanding these intricacies offers new avenues for therapeutic strategies by fine-tuning polyQ kinetics, in order to prevent and control disease progression. Last but not least, this review highlights the importance of integrating multidisciplinary efforts to advancing research in this field, bringing us closer to the ultimate goal of finding effective treatments against polyQ disorders.
Collapse
Affiliation(s)
- Nastasia Sanda Moldovean-Cioroianu
- Institute of Materials Science, Bioinspired Materials and Biosensor Technologies, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany;
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Das E, Sahu KK, Roy I. The functional role of Ire1 in regulating autophagy and proteasomal degradation under prolonged proteotoxic stress. FEBS J 2023. [PMID: 36757110 DOI: 10.1111/febs.16747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Inhibition of endoribonuclease/kinase Ire1 has shown beneficial effects in many proteotoxicity-induced pathology models. The mechanism by which this occurs has not been elucidated completely. Using a proteotoxic yeast model of Huntington's disease, we show that the deletion of Ire1 led to lower protein aggregation at longer time points. The rate of protein degradation was higher in ΔIre1 cells. We monitored the two major protein degradation mechanisms in the cell. The increase in expression of Rpn4, coding for the transcription factor controlling proteasome biogenesis, was higher in ΔIre1 cells. The chymotrypsin-like proteasomal activity was also significantly enhanced in these cells at later time points of aggregation. The gene and protein expression levels of the autophagy gene Atg8 were higher in ΔIre1 than in wild-type cells. Significant increase in autophagy flux was also seen in ΔIre1 cells at later time points of aggregation. The results suggest that the deletion of Ire1 activates UPR-independent arms of the proteostasis network, especially under conditions of aggravated stress. Thus, the inhibition of Ire1 may regulate UPR-independent cellular stress-response pathways under prolonged stress.
Collapse
Affiliation(s)
- Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Kiran Kumari Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, India
| |
Collapse
|
3
|
Yang J, Yang X. Phase Transition of Huntingtin: Factors and Pathological Relevance. Front Genet 2020; 11:754. [PMID: 32849783 PMCID: PMC7396480 DOI: 10.3389/fgene.2020.00754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Formation of intracellular mutant Huntingtin (mHtt) aggregates is a hallmark of Huntington’s disease (HD). The mechanisms underlying mHtt aggregation, however, are still not fully understood. A few recent studies indicated mHtt undergoes phase transition, bringing new clues to understand how mHtt aggregates assemble. Here in this mini review, we will summarize these findings with a focus on the factors that affect mHtt phase transition. We will also discuss the possible pathological roles of mHtt phase separation in HD.
Collapse
Affiliation(s)
- Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xiaotong Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Sethi R, Roy I. Stabilization of elongated polyglutamine tracts by a helical peptide derived from N-terminal huntingtin. IUBMB Life 2020; 72:1528-1536. [PMID: 32320524 DOI: 10.1002/iub.2288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 01/03/2023]
Abstract
In Huntington's disease, the length of the polyglutamine tract in the mutant protein correlates positively with the formation of aggregates and disease symptoms and severity of the disease. Some disease-modifying factors exist. However, no organized study has been carried out to investigate the effect of polyglutamine length in the mutant protein on the efficacy of a therapeutic strategy. We had shown earlier that the helical peptide arising out of the N-terminal stretch of normal huntingtin is able to inhibit aggregation of a number of proteins, including luciferase, α-synuclein, p53, and Rnq1. In this work, we show that polyglutamine stretches of differing lengths, namely 51Q, 72Q, and 103Q, form a mixture of aggregates at different rates, with the rate increasing in a polyQ length-dependent manner. The helical peptide is able to inhibit the rate of aggregation. The extent of inhibition was different when measuring either total aggregation or only fibrillar aggregates, suggesting that the helical peptide with benign polyQ stretch alters the aggregation landscape of different elongated polyQ lengths differently. Our results suggest that designing a therapeutic approach to inhibit protein aggregation must take note of polyQ length of the protein.
Collapse
Affiliation(s)
- Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| |
Collapse
|
5
|
Skruzny M, Pohl E, Abella M. FRET Microscopy in Yeast. BIOSENSORS 2019; 9:E122. [PMID: 31614546 PMCID: PMC6956097 DOI: 10.3390/bios9040122] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
Förster resonance energy transfer (FRET) microscopy is a powerful fluorescence microscopy method to study the nanoscale organization of multiprotein assemblies in vivo. Moreover, many biochemical and biophysical processes can be followed by employing sophisticated FRET biosensors directly in living cells. Here, we summarize existing FRET experiments and biosensors applied in yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, two important models of fundamental biomedical research and efficient platforms for analyses of bioactive molecules. We aim to provide a practical guide on suitable FRET techniques, fluorescent proteins, and experimental setups available for successful FRET experiments in yeasts.
Collapse
Affiliation(s)
- Michal Skruzny
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany.
| | - Emma Pohl
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Marc Abella
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
6
|
Skrzypek MS, Nash RS, Wong ED, MacPherson KA, Hellerstedt ST, Engel SR, Karra K, Weng S, Sheppard TK, Binkley G, Simison M, Miyasato SR, Cherry JM. Saccharomyces genome database informs human biology. Nucleic Acids Res 2019; 46:D736-D742. [PMID: 29140510 PMCID: PMC5753351 DOI: 10.1093/nar/gkx1112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and to provide this wealth of information to advance, in many ways, research on other organisms, even those as evolutionarily distant as humans. To build such a bridge between biological kingdoms, SGD is curating data regarding yeast-human complementation, in which a human gene can successfully replace the function of a yeast gene, and/or vice versa. These data are manually curated from published literature, made available for download, and incorporated into a variety of analysis tools provided by SGD.
Collapse
Affiliation(s)
- Marek S Skrzypek
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Robert S Nash
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Edith D Wong
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Kevin A MacPherson
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Sage T Hellerstedt
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Kalpana Karra
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Shuai Weng
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Travis K Sheppard
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Gail Binkley
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Matt Simison
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - Stuart R Miyasato
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| | - J Michael Cherry
- Department of Genetics, Stanford University, Stanford, CA, 94305-5120 USA
| |
Collapse
|
7
|
Kevadiya BD, Ottemann BM, Thomas MB, Mukadam I, Nigam S, McMillan J, Gorantla S, Bronich TK, Edagwa B, Gendelman HE. Neurotheranostics as personalized medicines. Adv Drug Deliv Rev 2019; 148:252-289. [PMID: 30421721 PMCID: PMC6486471 DOI: 10.1016/j.addr.2018.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022]
Abstract
The discipline of neurotheranostics was forged to improve diagnostic and therapeutic clinical outcomes for neurological disorders. Research was facilitated, in largest measure, by the creation of pharmacologically effective multimodal pharmaceutical formulations. Deployment of neurotheranostic agents could revolutionize staging and improve nervous system disease therapeutic outcomes. However, obstacles in formulation design, drug loading and payload delivery still remain. These will certainly be aided by multidisciplinary basic research and clinical teams with pharmacology, nanotechnology, neuroscience and pharmaceutic expertise. When successful the end results will provide "optimal" therapeutic delivery platforms. The current report reviews an extensive body of knowledge of the natural history, epidemiology, pathogenesis and therapeutics of neurologic disease with an eye on how, when and under what circumstances neurotheranostics will soon be used as personalized medicines for a broad range of neurodegenerative, neuroinflammatory and neuroinfectious diseases.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brendan M Ottemann
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Midhun Ben Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Saumya Nigam
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D. Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. Front Mol Neurosci 2018; 11:318. [PMID: 30233317 PMCID: PMC6131589 DOI: 10.3389/fnmol.2018.00318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that leads to progressive neuronal loss, provoking impaired motor control, cognitive decline, and dementia. So far, HD remains incurable, and available drugs are effective only for symptomatic management. HD is caused by a mutant form of the huntingtin protein, which harbors an elongated polyglutamine domain and is highly prone to aggregation. However, many aspects underlying the cytotoxicity of mutant huntingtin (mHTT) remain elusive, hindering the efficient development of applicable interventions to counteract HD. An important strategy to obtain molecular insights into human disorders in general is the use of eukaryotic model organisms, which are easy to genetically manipulate and display a high degree of conservation regarding disease-relevant cellular processes. The budding yeast Saccharomyces cerevisiae has a long-standing and successful history in modeling a plethora of human maladies and has recently emerged as an effective tool to study neurodegenerative disorders, including HD. Here, we summarize some of the most important contributions of yeast to HD research, specifically concerning the elucidation of mechanistic features of mHTT cytotoxicity and the potential of yeast as a platform to screen for pharmacological agents against HD.
Collapse
Affiliation(s)
- Sebastian Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Maria A. Bauer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | |
Collapse
|
9
|
Sethi R, Tripathi N, Pallapati AR, Gaikar A, Bharatam PV, Roy I. Does N-terminal huntingtin function as a 'holdase' for inhibiting cellular protein aggregation? FEBS J 2018; 285:1791-1811. [PMID: 29630769 DOI: 10.1111/febs.14457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/14/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
Abstract
Proteolytic cleavage of huntingtin gives rise to N-terminal fragments. While the role of truncated mutant huntingtin is described in Huntington's disease (HD) pathogenesis, the function of N-terminal wild-type protein is less studied. The yeast model of HD is generated by the presence of FLAG tag and absence of polyproline tract as flanking sequences of the elongated polyglutamine stretch. We show that the same sequence derived from wild-type huntingtin exon1 is able to inhibit the aggregation of proteins in vitro and in yeast cells. It is able to stabilize client proteins as varied as luciferase, α-synuclein, and p53 in a soluble but non-native state. This is somewhat similar to the 'holdase' function of small heat shock proteins and 'nonchaperone proteins' which are able to stabilize partially unfolded client proteins in a nonspecific manner, slowing down their aggregation. Mutagenesis studies show this property to be localized at the N17 domain preceding the polyglutamine tract. Distortion of this ordered segment, either by deletion of this segment or mutation of a single residue (L4A), leads to decreased stability and increased aggregation of client proteins. It is interesting to note that the helical conformation of the N17 domain is also essential for aggregation of the N-terminal mutant protein. Our results provide evidence for a novel function for the amphipathic helix derived from exon1 of wild-type huntingtin.
Collapse
Affiliation(s)
- Ratnika Sethi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Neha Tripathi
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Anusha R Pallapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Abhishek Gaikar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Prasad V Bharatam
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Punjab, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
10
|
Alexandrov AI, Serpionov GV, Kushnirov VV, Ter-Avanesyan MD. Wild type huntingtin toxicity in yeast: Implications for the role of amyloid cross-seeding in polyQ diseases. Prion 2017; 10:221-7. [PMID: 27220690 DOI: 10.1080/19336896.2016.1176659] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proteins with expanded polyglutamine (polyQ) regions are prone to form amyloids, which can cause diseases in humans and toxicity in yeast. Recently, we showed that in yeast non-toxic amyloids of Q-rich proteins can induce aggregation and toxicity of wild type huntingtin (Htt) with a short non-pathogenic polyglutamine tract. Similarly to mutant Htt with an elongated N-terminal polyQ sequence, toxicity of its wild type counterpart was mediated by induced aggregation of the essential Sup35 protein, which contains a Q-rich region. Notably, polymerization of Sup35 was not caused by the initial benign amyloids and, therefore, aggregates of wild type Htt acted as intermediaries in seeding Sup35 polymerization. This exemplifies a protein polymerization cascade which can generate a network of interdependent polymers. Here we discuss cross-seeded protein polymerization as a possible mechanism underlying known interrelations between different polyQ diseases. We hypothesize that similar mechanisms may enable proteins, which possess expanded Q-rich tracts but are not associated with diseases, to promote the development of polyQ diseases.
Collapse
Affiliation(s)
- A I Alexandrov
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - G V Serpionov
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - V V Kushnirov
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| | - M D Ter-Avanesyan
- a Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
11
|
Multiple discrete soluble aggregates influence polyglutamine toxicity in a Huntington's disease model system. Sci Rep 2016; 6:34916. [PMID: 27721444 PMCID: PMC5056504 DOI: 10.1038/srep34916] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/21/2016] [Indexed: 12/16/2022] Open
Abstract
Huntington’s disease (HD) results from expansions of polyglutamine stretches (polyQ) in the huntingtin protein (Htt) that promote protein aggregation, neurodegeneration, and death. Since the diversity and sizes of the soluble Htt-polyQ aggregates that have been linked to cytotoxicity are unknown, we investigated soluble Htt-polyQ aggregates using analytical ultracentrifugation. Soon after induction in a yeast HD model system, non-toxic Htt-25Q and cytotoxic Htt-103Q both formed soluble aggregates 29S to 200S in size. Because current models indicate that Htt-25Q does not form soluble aggregates, reevaluation of previous studies may be necessary. Only Htt-103Q aggregation behavior changed, however, with time. At 6 hr mid-sized aggregates (33S to 84S) and large aggregates (greater than 100S) became present while at 24 hr primarily only mid-sized aggregates (20S to 80S) existed. Multiple factors that decreased cytotoxicity of Htt-103Q (changing the length of or sequences adjacent to the polyQ, altering ploidy or chaperone dosage, or deleting anti-aging factors) altered the Htt-103Q aggregation pattern in which the suite of mid-sized aggregates at 6 hr were most correlative with cytotoxicity. Hence, the amelioration of HD and other neurodegenerative diseases may require increased attention to and discrimination of the dynamic alterations in soluble aggregation processes.
Collapse
|
12
|
Bhadra AK, Das E, Roy I. Protein aggregation activates erratic stress response in dietary restricted yeast cells. Sci Rep 2016; 6:33433. [PMID: 27633120 PMCID: PMC5025734 DOI: 10.1038/srep33433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington's disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account.
Collapse
Affiliation(s)
- Ankan Kumar Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| |
Collapse
|
13
|
Sethi R, Patel V, Saleh AA, Roy I. Cellular toxicity of yeast prion protein Rnq1 can be modulated by N-terminal wild type huntingtin. Arch Biochem Biophys 2016; 590:82-89. [DOI: 10.1016/j.abb.2015.11.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 01/07/2023]
|
14
|
Brandstaetter H, Kruppa AJ, Buss F. Huntingtin is required for ER-to-Golgi transport and for secretory vesicle fusion at the plasma membrane. Dis Model Mech 2014; 7:1335-40. [PMID: 25368120 PMCID: PMC4257002 DOI: 10.1242/dmm.017368] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntingtin is a large membrane-associated scaffolding protein that associates with endocytic and exocytic vesicles and modulates their trafficking along cytoskeletal tracks. Although the progression of Huntington’s disease is linked to toxic accumulation of mutant huntingtin protein, loss of wild-type huntingtin function might also contribute to neuronal cell death, but its precise function is not well understood. Therefore, we investigated the molecular role of huntingtin in exocytosis and observed that huntingtin knockdown in HeLa cells causes a delay in endoplasmic reticulum (ER)-to-Golgi transport and a reduction in the number of cargo vesicles leaving the trans-Golgi network. In addition, we found that huntingtin is required for secretory vesicle fusion at the plasma membrane. Similar defects in the early exocytic pathway were observed in primary fibroblasts from homozygous Htt140Q/140Q knock-in mice, which have the expansion inserted into the mouse huntingtin gene so lack wild-type huntingtin expression. Interestingly, heterozygous fibroblasts from a Huntington’s disease patient with a 180Q expansion displayed no obvious defects in the early secretory pathway. Thus, our results highlight the requirement for wild-type huntingtin at distinct steps along the secretory pathway.
Collapse
Affiliation(s)
- Hemma Brandstaetter
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Antonina J Kruppa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK.
| |
Collapse
|