1
|
McArthur N, Squire JD, Onyeachonam OJ, Bhatt NN, Jerez C, Holberton AL, Tessier PM, Wood LB, Kayed R, Kane RS. Generation of nanobodies with conformational specificity for tau oligomers that recognize tau aggregates from human Alzheimer's disease samples. Biomater Sci 2024. [PMID: 39434503 DOI: 10.1039/d4bm00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Tauopathies are neurodegenerative diseases that involve tau misfolding and aggregation in the brain. These diseases, including Alzheimer's disease (AD), are some of the least understood and most difficult to treat neurodegenerative disorders. Antibodies and antibody fragments that target tau oligomers, which are especially toxic forms of tau, are promising options for immunotherapies and diagnostic tools for tauopathies. In this study, we have developed conformational, tau oligomer-specific nanobodies, or single-domain antibodies. We demonstrate that these nanobodies, OT2.4 and OT2.6, are highly specific for tau oligomers relative to tau monomers and fibrils. We used epitope mapping to verify that these nanobodies bind to discontinuous epitopes on tau and to support the idea that they interact with a conformation present in the oligomeric, and not monomeric or fibrillar, forms of tau. We show that these nanobodies interact with tau oligomers in brain samples from AD patients and from healthy older adults with primary age-related tauopathy. Our results demonstrate the potential of these nanobodies as tau oligomer-specific binding reagents and future tauopathy therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nikki McArthur
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Jay D Squire
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ogechukwu J Onyeachonam
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Nemil N Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Abigail L Holberton
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
2
|
Feldman HH, Cummings JL, Boxer AL, Staffaroni AM, Knopman DS, Sukoff Rizzo SJ, Territo PR, Arnold SE, Ballard C, Beher D, Boeve BF, Dacks PA, Diaz K, Ewen C, Fiske B, Gonzalez MI, Harris GA, Hoffman BJ, Martinez TN, McDade E, Nisenbaum LK, Palma JA, Quintana M, Rabinovici GD, Rohrer JD, Rosen HJ, Troyer MD, Kim DY, Tanzi RE, Zetterberg H, Ziogas NK, May PC, Rommel A. A framework for translating tauopathy therapeutics: Drug discovery to clinical trials. Alzheimers Dement 2024. [PMID: 39316411 DOI: 10.1002/alz.14250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
The tauopathies are defined by pathological tau protein aggregates within a spectrum of clinically heterogeneous neurodegenerative diseases. The primary tauopathies meet the definition of rare diseases in the United States. There is no approved treatment for primary tauopathies. In this context, designing the most efficient development programs to translate promising targets and treatments from preclinical studies to early-phase clinical trials is vital. In September 2022, the Rainwater Charitable Foundation convened an international expert workshop focused on the translation of tauopathy therapeutics through early-phase trials. Our report on the workshop recommends a framework for principled drug development and a companion lexicon to facilitate communication focusing on reproducibility and achieving common elements. Topics include the selection of targets, drugs, biomarkers, participants, and study designs. The maturation of pharmacodynamic biomarkers to demonstrate target engagement and surrogate disease biomarkers is a crucial unmet need. HIGHLIGHTS: Experts provided a framework to translate therapeutics (discovery to clinical trials). Experts focused on the "5 Rights" (target, drug, biomarker, participants, trial). Current research on frontotemporal degeneration, progressive supranuclear palsy, and corticobasal syndrome therapeutics includes 32 trials (37% on biologics) Tau therapeutics are being tested in Alzheimer's disease; primary tauopathies have a large unmet need.
Collapse
Affiliation(s)
- Howard H Feldman
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada at Las Vegas, Las Vegas, Nevada, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, USA
| | - Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stacey J Sukoff Rizzo
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paul R Territo
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Steven E Arnold
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Penny A Dacks
- The Association for Frontotemporal Degeneration, King of Prussia, Pennsylvania, USA
| | | | | | - Brian Fiske
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | | | | | | | | | - Eric McDade
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jose-Alberto Palma
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | | | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, USA
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, Queen Square Institute of Neurology, University College of London, London, UK
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, California, USA
| | | | - Doo Yeon Kim
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Rudolph E Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | | | - Patrick C May
- ADvantage Neuroscience Consulting LLC, Fort Wayne, Indiana, USA
| | - Amy Rommel
- Rainwater Charitable Foundation, Fort Worth, Texas, USA
| |
Collapse
|
3
|
Santiago-Ruiz AN, Hugelier S, Bond CR, Lee EB, Lakadamyali M. Super-Resolution Imaging Uncovers Nanoscale Tau Aggregate Hyperphosphorylation Patterns in Human Alzheimer's Disease Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590893. [PMID: 38712162 PMCID: PMC11071528 DOI: 10.1101/2024.04.24.590893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tau aggregation plays a critical role in Alzheimer's Disease (AD), where tau neurofibrillary tangles (NFTs) are a key pathological hallmark. While much attention has been given to NFTs, emerging evidence underscores nano-sized pre-NFT tau aggregates as potentially toxic entities in AD. By leveraging DNA-PAINT super-resolution microscopy, we visualized and quantified nanoscale tau aggregates (nano-aggregates) in human postmortem brain tissues from intermediate and advanced AD, and Primary Age-Related Tauopathy (PART). Nano-aggregates were predominant across cases, with AD exhibiting a higher burden compared to PART. Hyperphosphorylated tau residues (p-T231, p-T181, and p-S202/T205) were present within nano-aggregates across all AD Braak stages and PART. Moreover, nano-aggregates displayed morphological differences between PART and AD, and exhibited distinct hyperphosphorylation patterns in advanced AD. These findings suggest that changes in nano-aggregate morphology and hyperphosphorylation patterns may exacerbate tau aggregation and AD progression. The ability to detect and profile nanoscale tau aggregates in human brain tissue opens new avenues for studying the molecular underpinnings of tauopathies.
Collapse
|
4
|
Xie Y, Ke X, Ye Z, Li X, Chen Z, Liu J, Wu Z, Liu Q, Du X. Se-methylselenocysteine ameliorates mitochondrial function by targeting both mitophagy and autophagy in the mouse model of Alzheimer's disease. Food Funct 2024; 15:4310-4322. [PMID: 38529619 DOI: 10.1039/d4fo00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Background: Alzheimer's disease (AD) exerts tremendous pressure on families and society due to its unknown etiology and lack of effective treatment options. Our previous study had shown that Se-methylselenocysteine (SMC) improved the cognition and synaptic plasticity of triple-transgenic AD (3 × Tg-AD) mice and alleviated the related pathological indicators. We are dedicated to investigating the therapeutic effects and molecular mechanisms of SMC on mitochondrial function in 3 × Tg-AD mice. Methods: Transmission electron microscopy (TEM), western blotting (WB), mitochondrial membrane potential (ΔΨm), mitochondrial swelling test, and mitochondrial oxygen consumption test were used to evaluate the mitochondrial morphology and function. Mitophagy flux and autophagy flux were assessed with immunofluorescence, TEM and WB. The Morris water maze test was applied to detect the behavioral ability of mice. Results: The destroyed mitochondrial morphology and function were repaired by SMC through ameliorating mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial fusion/fission balance in 3 × Tg-AD mice. In addition, SMC ameliorated mitochondria by activating mitophagy flux via the BNIP3/NIX pathway and triggering autophagy flux by suppressing the Ras/Raf/MEK/ERK/mTOR pathway. SMC remarkably increased the cognitive ability of AD mice. Conclusions: This research indicated that SMC might exert its therapeutic effect by protecting mitochondria in 3 × Tg-AD mice.
Collapse
Affiliation(s)
- Yongli Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xiaoshan Ke
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zhencong Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xuexia Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zetao Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Jiantao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Ziyi Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Qiong Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiubo Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
5
|
Al-Saad OM, Gabr M, Darwish SS, Rullo M, Pisani L, Miniero DV, Liuzzi GM, Kany AM, Hirsch AKH, Abadi AH, Engel M, Catto M, Abdel-Halim M. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B inhibitors endowed with neuroprotective activity. Eur J Med Chem 2024; 269:116266. [PMID: 38490063 DOI: 10.1016/j.ejmech.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.
Collapse
Affiliation(s)
- Omar M Al-Saad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
6
|
Arar S, Haque MA, Bhatt N, Zhao Y, Kayed R. Effect of Natural Osmolytes on Recombinant Tau Monomer: Propensity of Oligomerization and Aggregation. ACS Chem Neurosci 2024; 15:1366-1377. [PMID: 38503425 PMCID: PMC10995947 DOI: 10.1021/acschemneuro.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The pathological misfolding and aggregation of the microtubule associated protein tau (MAPT), a full length Tau2N4R with 441aa, is considered the principal disease relevant constituent in tauopathies including Alzheimer's disease (AD) with an imbalanced ratio in 3R/4R isoforms. The exact cellular fluid composition, properties, and changes that coincide with tau misfolding, seed formation, and propagation events remain obscure. The proteostasis network, along with the associated osmolytes, is responsible for maintaining the presence of tau in its native structure or dealing with misfolding. In this study, for the first time, the roles of natural brain osmolytes are being investigated for their potential effects on regulating the conformational stability of the tau monomer (tauM) and its propensity to aggregate or disaggregate. Herein, the effects of physiological osmolytes myo-inositol, taurine, trimethyl amine oxide (TMAO), betaine, sorbitol, glycerophosphocholine (GPC), and citrulline on tau's aggregation state were investigated. The overall results indicate the ability of sorbitol and GPC to maintain the monomeric form and prevent aggregation of tau, whereas myo-inositol, taurine, TMAO, betaine, and citrulline promote tau aggregation to different degrees, as revealed by protein morphology in atomic force microscopy images. Biochemical and biophysical methods also revealed that tau proteins adopt different conformations under the influence of these osmolytes. TauM in the presence of all osmolytes expressed no toxicity when tested by a lactate dehydrogenase assay. Investigating the conformational stability of tau in the presence of osmolytes may provide a better understanding of the complex nature of tau aggregation in AD and the protective and/or chaotropic nature of osmolytes.
Collapse
Affiliation(s)
- Sharif Arar
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department
of Chemistry, School of Science, The University
of Jordan, Amman 11942, Jordan
| | - Md Anzarul Haque
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Nemil Bhatt
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yingxin Zhao
- Department
of Internal Medicine, University of Texas
Medical Branch, Galveston, Texas 77555, United States
- Institute
for Translational Sciences, University of
Texas Medical Branch, Galveston, Texas 77555, United States
| | - Rakez Kayed
- Mitchell
Center for Neurodegenerative Diseases, University
of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments
of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
7
|
Manglano-Artuñedo Z, Peña-Díaz S, Ventura S. Small molecules to target tau amyloid aggregation. Neural Regen Res 2024; 19:509-511. [PMID: 37721277 PMCID: PMC10581584 DOI: 10.4103/1673-5374.380900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Zoe Manglano-Artuñedo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
8
|
Santos N, Segura L, Lewis A, Pham T, Cheng KH. Multiscale Modeling of Macromolecular Interactions between Tau-Amylin Oligomers and Asymmetric Lipid Nanodomains That Link Alzheimer's and Diabetic Diseases. Molecules 2024; 29:740. [PMID: 38338484 PMCID: PMC10856442 DOI: 10.3390/molecules29030740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The molecular events of protein misfolding and self-aggregation of tau and amylin are associated with the progression of Alzheimer's and diabetes, respectively. Recent studies suggest that tau and amylin can form hetero-tau-amylin oligomers. Those hetero-oligomers are more neurotoxic than homo-tau oligomers. So far, the detailed interactions between the hetero-oligomers and the neuronal membrane are unknown. Using multiscale MD simulations, the lipid binding and protein folding behaviors of hetero-oligomers on asymmetric lipid nanodomains or raft membranes were examined. Our raft membranes contain phase-separated phosphatidylcholine (PC), cholesterol, and anionic phosphatidylserine (PS) or ganglioside (GM1) in one leaflet of the lipid bilayer. The hetero-oligomers bound more strongly to the PS and GM1 than other lipids via the hydrophobic and hydrophilic interactions, respectively, in the raft membranes. The hetero-tetramer disrupted the acyl chain orders of both PC and PS in the PS-containing raft membrane, but only the GM1 in the GM1-containing raft membrane as effectively as the homo-tau-tetramer. We discovered that the alpha-helical content in the heterodimer was greater than the sum of alpha-helical contents from isolated tau and amylin monomers on both raft membranes, indicative of a synergetic effect of tau-amylin interactions in surface-induced protein folding. Our results provide new molecular insights into understanding the cross-talk between Alzheimer's and diabetes.
Collapse
Affiliation(s)
- Natalia Santos
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Luthary Segura
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Amber Lewis
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
| | - Thuong Pham
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| | - Kwan H. Cheng
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA; (N.S.); (L.S.); (A.L.)
- Physics Department, Trinity University, San Antonio, TX 78212, USA;
| |
Collapse
|
9
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
10
|
Cheng KH, Graf A, Lewis A, Pham T, Acharya A. Exploring Membrane Binding Targets of Disordered Human Tau Aggregates on Lipid Rafts Using Multiscale Molecular Dynamics Simulations. MEMBRANES 2022; 12:membranes12111098. [PMID: 36363654 PMCID: PMC9695534 DOI: 10.3390/membranes12111098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/01/2023]
Abstract
The self-aggregation of tau, a microtubule-binding protein, has been linked to the onset of Alzheimer's Disease. Recent studies indicate that the disordered tau aggregates, or oligomers, are more toxic than the ordered fibrils found in the intracellular neurofibrillary tangles of tau. At present, details of tau oligomer interactions with lipid rafts, a model of neuronal membranes, are not known. Using molecular dynamics simulations, the lipid-binding events, membrane-damage, and protein folding of tau oligomers on various lipid raft surfaces were investigated. Tau oligomers preferred to bind to the boundary domains (Lod) created by the coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains in the lipid rafts. Additionally, stronger binding of tau oligomers to the ganglioside (GM1) and phosphatidylserine (PS) domains, and subsequent protein-induced lipid chain order disruption and beta-sheet formation were detected. Our results suggest that GM1 and PS domains, located exclusively in the outer and inner leaflets, respectively, of the neuronal membranes, are specific membrane domain targets, whereas the Lod domains are non-specific targets, of tau oligomers binding to neurons. The molecular details of these specific and non-specific tau bindings to lipid rafts may provide new insights into understanding membrane-associated tauopathies leading to Alzheimer's Disease.
Collapse
Affiliation(s)
- Kwan H. Cheng
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA
- Physics Department, Trinity University, San Antonio, TX 78212, USA
| | - Angela Graf
- Physics Department, Trinity University, San Antonio, TX 78212, USA
| | - Amber Lewis
- Neuroscience Department, Trinity University, San Antonio, TX 78212, USA
| | - Thuong Pham
- Physics Department, Trinity University, San Antonio, TX 78212, USA
| | - Aakriti Acharya
- Physics Department, Trinity University, San Antonio, TX 78212, USA
| |
Collapse
|
11
|
Odfalk KF, Bieniek KF, Hopp SC. Microglia: Friend and foe in tauopathy. Prog Neurobiol 2022; 216:102306. [PMID: 35714860 PMCID: PMC9378545 DOI: 10.1016/j.pneurobio.2022.102306] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/24/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Aggregation of misfolded microtubule associated protein tau into abnormal intracellular inclusions defines a class of neurodegenerative diseases known as tauopathies. The consistent spatiotemporal progression of tau pathology in Alzheimer's disease (AD) led to the hypothesis that tau aggregates spread in the brain via bioactive tau "seeds" underlying advancing disease course. Recent studies implicate microglia, the resident immune cells of the central nervous system, in both negative and positive regulation of tau pathology. Polymorphisms in genes that alter microglial function are associated with the development of AD and other tauopathies. Experimental manipulation of microglia function can alter tau pathology and microglia-mediated neuroinflammatory cascades can exacerbate tau pathology. Microglia also exert protective functions by mitigating tau spread: microglia internalize tau seeds and have the capacity to degrade them. However, when microglia fail to degrade these tau seeds there are deleterious consequences, including secretion of exosomes containing tau that can spread to neurons. This review explores the intersection of microglia and tau from the perspective of neuropathology, neuroimaging, genetics, transcriptomics, and molecular biology. As tau-targeted therapies such as anti-tau antibodies advance through clinical trials, it is critical to understand the interaction between tau and microglia.
Collapse
Affiliation(s)
- Kristian F Odfalk
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pathology and Laboratory Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Sarah C Hopp
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
12
|
Islam M, Shen F, Regmi D, Du D. Therapeutic strategies for tauopathies and drug repurposing as a potential approach. Biochem Pharmacol 2022; 198:114979. [PMID: 35219701 PMCID: PMC9159505 DOI: 10.1016/j.bcp.2022.114979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Tauopathies are neurodegenerative diseases characterized by the deposition of abnormal tau in the brain. To date, there are no disease-modifying therapies approved by the U.S. Food and Drug Administration (US FDA) for the treatment of tauopathies. In the past decades, extensive efforts have been provided to develop disease-modifying therapies to treat tauopathies. Specifically, exploring existing drugs with the intent of repurposing for the treatment of tauopathies affords a reasonable alternative to discover potent drugs for treating these formidable diseases. Drug repurposing will not only reduce formulation and development stage effort and cost but will also take a key advantage of the established toxicological studies, which is one of the main causes of clinical trial failure of new molecules. In this review, we provide an overview of the current treatment strategies for tauopathies and the recent progress in drug repurposing as an alternative approach to treat tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
13
|
Sengupta U, Kayed R. Amyloid β, Tau, and α-Synuclein aggregates in the pathogenesis, prognosis, and therapeutics for neurodegenerative diseases. Prog Neurobiol 2022; 214:102270. [DOI: 10.1016/j.pneurobio.2022.102270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/28/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022]
|
14
|
Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Behl T, Abdellatif AAH, Bhaskaran PM, Dachani SR, Sehgal A, Singh S, Sharma N, Makeen HA, Albratty M, Dailah HG, Bhatia S, Al-Harrasi A, Bungau S. Involvement of molecular chaperone in protein-misfolding brain diseases. Biomed Pharmacother 2022; 147:112647. [PMID: 35149361 DOI: 10.1016/j.biopha.2022.112647] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022] Open
Abstract
Protein misfolding causes aggregation and build-up in a variety of brain diseases. There are numeral molecules that are linked with the protein homeostasis mechanism. Molecular chaperones are one of such molecules that are responsible for protection against protein misfolded and aggregation-induced neurotoxicity. Many studies have explored the participation of molecular chaperones in Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, and Huntington's diseases. In this review, we highlighted the constructive role of molecular chaperones in neurological diseases characterized by protein misfolding and aggregation and their capability to control aberrant protein interactions at an early stage thus successfully suppressing pathogenic cascades. A comprehensive understanding of the protein misfolding associated with brain diseases and the molecular basis of involvement of chaperone against aggregation-induced cellular stress might lead to the progress of new therapeutic intrusion-related to protein misfolding and aggregation.
Collapse
Affiliation(s)
- Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | | | - Sudarshan Reddy Dachani
- Department of Pharmacy Practice & Pharmacology, College of Pharmacy, Shaqra University (Al-Dawadmi Campus), Al-Dawadmi, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan university, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.
| |
Collapse
|
15
|
Potential role of Drug Repositioning Strategy (DRS) for management of tauopathy. Life Sci 2022; 291:120267. [PMID: 34974076 DOI: 10.1016/j.lfs.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 01/08/2023]
Abstract
Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy.
Collapse
|
16
|
Aboushady Y, Gabr M, ElHady AK, Salah M, Abadi AH, Wilms G, Becker W, Abdel-Halim M, Engel M. Discovery of Hydroxybenzothiazole Urea Compounds as Multitargeted Agents Suppressing Major Cytotoxic Mechanisms in Neurodegenerative Diseases. ACS Chem Neurosci 2021; 12:4302-4318. [PMID: 34726394 DOI: 10.1021/acschemneuro.1c00475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are causally responsible and/or contribute to the progression of Alzheimer's and Parkinson's diseases. The protein kinase Dyrk1A was identified as a promising target as it phosphorylates tau protein, α-synuclein, and parkin. The first goal of our study was to optimize our previously identified Dyrk1A inhibitors of the 6-hydroxy benzothiazole urea chemotype in terms of potency and selectivity. Our efforts led to the development of the 3-fluorobenzyl amide derivative 16b, which displayed the highest potency against Dyrk1A (IC50 = 9.4 nM). In general, the diversification of the benzylamide moiety led to an enhanced selectivity over the most homologous isoform, Dyrk1B, which was a meaningful indicator, as the high selectivity could be confirmed in an extended selectivity profiling of 3b and 16b. Eventually, we identified the novel phenethyl amide derivative 24b as a triple inhibitor of Dyrk1A kinase activity (IC50 = 119 nM) and the aggregation of tau and α-syn oligomers. We provide evidence that the novel combination of selective Dyrk1A inhibition and suppression of tau and α-syn aggregations of our new lead compound confers efficacy in several established cellular models of neurotoxic mechanisms relevant to neurodegenerative diseases, including α-syn- and 6-hydroxydopamine-induced cytotoxicities.
Collapse
Affiliation(s)
- Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ahmed K. ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo 11311, Egypt
| | - Mohamed Salah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3 Saarbrücken D-66123, Germany
| |
Collapse
|
17
|
Zhu L, Gong Y, Lju H, Sun G, Zhang Q, Qian Z. Mechanisms of melatonin binding and destabilizing the protofilament and filament of tau R3-R4 domains revealed by molecular dynamics simulation. Phys Chem Chem Phys 2021; 23:20615-20626. [PMID: 34514491 DOI: 10.1039/d1cp03142b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accumulation of β-amyloid (Aβ) and tau protein is considered to be an important pathological characteristic of Alzheimer's disease (AD). Failure of medicine targeting Aβ has drawn more attention to the influence of tau protein and its fibrillization on neurodegeneration. Increasing evidence shows that melatonin (Mel) can effectively inhibit the formation of tau fibrils and disassemble preformed tau fibrils. However, the underlying mechanism is poorly understood. In this work, we investigated the kinetics of melatonin binding and destabilizing the tetrameric protofilament and octameric filament of tau R3-R4 domains by performing microsecond all-atom molecular dynamics simulations. Our results show that Mel is able to disrupt the C-shaped structure of the tau protofilament and filament, and destabilizes the association between N- and C-termini. Mel predominantly binds to β1 and β6-β8 regions and favors contact with the elongation surface, which is dominantly driven by hydrogen bonding interactions and facilitated by other interactions. The strong π-π stacking interaction of Mel with Y310 impedes the intramolecular CH-π interaction between I308 and Y310, and the cation-π interaction of Mel with R379 interferes with the formation of the D348-R379 salt bridge. Moreover, Mel occupies the protofilament surface in the tetrameric protofilament and prevents the formation of intermolecular hydrogen bonds between residues K331 and Q336 in the octameric filament. Our work provides molecular insights into Mel hindering tau fibrillization or destabilizing the protofilament and filament, and the revealed inhibitory mechanisms provide useful clues for the design of efficient anti-amyloid agents.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Hao Lju
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Gongwu Sun
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
18
|
Lo CH. Recent advances in cellular biosensor technology to investigate tau oligomerization. Bioeng Transl Med 2021; 6:e10231. [PMID: 34589603 PMCID: PMC8459642 DOI: 10.1002/btm2.10231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Tau is a microtubule binding protein which plays an important role in physiological functions but it is also involved in the pathogenesis of Alzheimer's disease and related tauopathies. While insoluble and β-sheet containing tau neurofibrillary tangles have been the histopathological hallmark of these diseases, recent studies suggest that soluble tau oligomers, which are formed prior to fibrils, are the primary toxic species. Substantial efforts have been made to generate tau oligomers using purified recombinant protein strategies to study oligomer conformations as well as their toxicity. However, no specific toxic tau species has been identified to date, potentially due to the lack of cellular environment. Hence, there is a need for cell-based models for direct monitoring of tau oligomerization and aggregation. This review will summarize the recent advances in the cellular biosensor technology, with a focus on fluorescence resonance energy transfer, bimolecular fluorescence complementation, and split luciferase complementation approaches, to monitor formation of tau oligomers and aggregates in living cells. We will discuss the applications of the cellular biosensors in examining the heterogeneous tau conformational ensembles and factors affecting tau self-assembly, as well as detecting cell-to-cell propagation of tau pathology. We will also compare the advantages and limitations of each type of tau biosensors, and highlight their translational applications in biomarker development and therapeutic discovery.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Neurology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
19
|
Zhi D, Yang W, Yue J, Xu S, Ma W, Zhao C, Wang X, Wang D. HSF-1 mediated combined ginsenosides ameliorating Alzheimer's disease like symptoms in Caernorhabditis elegans. Nutr Neurosci 2021; 25:2136-2148. [PMID: 34263695 DOI: 10.1080/1028415x.2021.1949791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There are few effective medications to treat Alzheimer's disease (AD). It has been suggested that several ginsenosides possess mild or moderate anti-AD activity. In our present work, a preferred combined ginsenosides was shown to have a more significant benefit effect on AD-like symptoms of worm paralysis and hypersensitivity to exogenous 5-HT in C. elegans. The combined ginsenosides can suppress Aβ deposits and Aβ oligomers, alleviating the toxicity induced by Aβ overexpression more effectively than used alone. Its anti-AD effect was partially abolished by hsf-1 RNAi knocked down or hsf-1 inactivation by point mutation, but not by daf-16 or skn-1 RNAi knocked down. Furthermore, it markedly activated hsp-16.2 gene expression downstream of HSF-1. Our results demonstrated that HSF-1 signaling pathway exerts an important role in mediating the therapeutic effect of combined ginsenosides on AD worms. These results provided powerful evidences and theoretical foundation for reshaping medicinal products of ginsenosides and ginseng on prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dejuan Zhi
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenqi Yang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Juan Yue
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Shuaishuai Xu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Wenjuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Chengmu Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Dongsheng Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
20
|
Neurotoxicity of oligomers of phosphorylated Tau protein carrying tauopathy-associated mutation is inhibited by prion protein. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166209. [PMID: 34246750 DOI: 10.1016/j.bbadis.2021.166209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Tauopathies, including Alzheimer's disease (AD), are manifested by the deposition of well-characterized amyloid aggregates of Tau protein in the brain. However, it is rather unlikely that these aggregates constitute the major form of Tau responsible for neurodegenerative changes. Currently, it is postulated that the intermediates termed as soluble oligomers, assembled on the amyloidogenic pathway, are the most neurotoxic form of Tau. However, Tau oligomers reported so far represent a population of poorly characterized, heterogeneous and unstable assemblies. In this study, to obtain the oligomers, we employed the aggregation-prone K18 fragment of Tau protein with deletion of Lys280 (K18Δ280) linked to a hereditary tauopathy. We have described a new procedure of inducing aggregation of mutated K18 which leads either to the formation of nontoxic amyloid fibrils or neurotoxic globular oligomers, depending on its phosphorylation status. We demonstrate that PKA-phosphorylated K18Δ280 oligomers are toxic to hippocampal neurons, which is manifested by loss of dendritic spines and neurites, and impairment of cell-membrane integrity leading to cell death. We also show that N1, the soluble N-terminal fragment of prion protein (PrP), protects neurons from the oligomers-induced cytotoxicity. Our findings support the hypothesis on the neurotoxicity of Tau oligomers and neuroprotective role of PrP-derived fragments in AD and other tauopathies. These observations could be useful in the development of therapeutic strategies for these diseases.
Collapse
|
21
|
Ungerleider K, Beck J, Lissa D, Turnquist C, Horikawa I, Harris BT, Harris CC. Astrocyte senescence and SASP in neurodegeneration: tau joins the loop. Cell Cycle 2021; 20:752-764. [PMID: 33818291 DOI: 10.1080/15384101.2021.1909260] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tau accumulation is a core component of Alzheimer's disease and other neurodegenerative tauopathies. While tau's impact on neurons is a major area of research, the effect of extracellular tau on astrocytes is largely unknown. This article summarizes our recent studies showing that astrocyte senescence plays a critical role in neurodegenerative diseases and integrates extracellular tau into the regulatory loop of senescent astrocyte-mediated neurotoxicity. Human astrocytes in vitro undergoing senescence were shown to acquire the inflammatory senescence-associated secretory phenotype (SASP) and toxicity to neurons, which may recapitulate aging- and disease-associated neurodegeneration. Here, we show that human astrocytes exposed to extracellular tau in vitro also undergo cellular senescence and acquire a neurotoxic SASP (e.g. IL-6 secretion), with oxidative stress response (indicated by upregulated NRF2 target genes) and a possible activation of inflammasome (indicated by upregulated ASC and IL-1β). These findings suggest that senescent astrocytes induced by various conditions and insults, including tau exposure, may represent a therapeutic target to inhibit or delay the progression of neurodegenerative diseases. We also discuss the pathological activity of extracellular tau in microglia and astrocytes, the disease relevance and diversity of tau forms, therapeutics targeting senescence in neurodegeneration, and the roles of p53 and its isoforms in astrocyte-mediated neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Kyra Ungerleider
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Comparative Pathobiology, Purdue University, West Layfette, Indiana, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Casmir Turnquist
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brent T Harris
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Xia F, Ha Y, Shi S, Li Y, Li S, Luisi J, Kayed R, Motamedi M, Liu H, Zhang W. Early alterations of neurovascular unit in the retina in mouse models of tauopathy. Acta Neuropathol Commun 2021; 9:51. [PMID: 33762004 PMCID: PMC7992935 DOI: 10.1186/s40478-021-01149-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023] Open
Abstract
The retina, as the only visually accessible tissue in the central nervous system, has attracted significant attention for evaluating it as a biomarker for neurodegenerative diseases. Yet, most of studies focus on characterizing the loss of retinal ganglion cells (RGCs) and degeneration of their axons. There is no integrated analysis addressing temporal alterations of different retinal cells in the neurovascular unit (NVU) in particular retinal vessels. Here we assessed NVU changes in two mouse models of tauopathy, P301S and P301L transgenic mice overexpressing the human tau mutated gene, and evaluated the therapeutic effects of a tau oligomer monoclonal antibody (TOMA). We found that retinal edema and breakdown of blood-retina barrier were observed at the very early stage of tauopathy. Leukocyte adhesion/infiltration, and microglial recruitment/activation were constantly increased in the retinal ganglion cell layer of tau transgenic mice at different ages, while Müller cell gliosis was only detected in relatively older tau mice. Concomitantly, the number and function of RGCs progressively decreased during aging although they were not considerably altered in the very early stage of tauopathy. Moreover, intrinsically photosensitive RGCs appeared more sensitive to tauopathy. Remarkably, TOMA treatment in young tau transgenic mice significantly attenuated vascular leakage, inflammation and RGC loss. Our data provide compelling evidence that abnormal tau accumulation can lead to pathology in the retinal NVU, and vascular alterations occur more manifest and earlier than neurodegeneration in the retina. Oligomeric tau-targeted immunotherapy has the potential to treat tau-induced retinopathies. These data suggest that retinal NVU may serve as a potential biomarker for diagnosis and staging of tauopathy as well as a platform to study the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Fan Xia
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
| | - Yonju Ha
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
| | - Shuizhen Shi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
| | - Yi Li
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
| | - Shengguo Li
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
| | - Jonathan Luisi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX USA
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, TX USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0144 USA
- Departments of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555 USA
| |
Collapse
|
23
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
24
|
Ash PEA, Lei S, Shattuck J, Boudeau S, Carlomagno Y, Medalla M, Mashimo BL, Socorro G, Al-Mohanna LFA, Jiang L, Öztürk MM, Knobel M, Ivanov P, Petrucelli L, Wegmann S, Kanaan NM, Wolozin B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc Natl Acad Sci U S A 2021; 118:e2014188118. [PMID: 33619090 PMCID: PMC7936275 DOI: 10.1073/pnas.2014188118] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.
Collapse
Affiliation(s)
- Peter E A Ash
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Shuwen Lei
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Jenifer Shattuck
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Samantha Boudeau
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
| | - Bryce L Mashimo
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Guillermo Socorro
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Louloua F A Al-Mohanna
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Muhammet M Öztürk
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Mark Knobel
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, DZNE, Berlin, 10117, Germany
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University, Grand Rapids, MI 49503
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118;
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA 02118
- Neurophotonics Center, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
25
|
Paul A, Viswanathan GK, Huber A, Arad E, Engel H, Jelinek R, Gazit E, Segal D. Inhibition of tau amyloid formation and disruption of its preformed fibrils by Naphthoquinone-Dopamine hybrid. FEBS J 2021; 288:4267-4290. [PMID: 33523571 DOI: 10.1111/febs.15741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
Misfolding and aggregation of tau protein, into pathological amyloids, are hallmarks of a group of neurodegenerative diseases collectively termed tauopathies and their modulation may be therapeutically valuable. Herein, we describe the synthesis and characterization of a dopamine-based hybrid molecule, naphthoquinone-dopamine (NQDA). Using thioflavin S assay, CD, transmission electron microscopy, dynamic light scattering, Congo Red birefringence, and large unilamellar vesicle leakage assays, we demonstrated its efficacy in inhibiting the in vitro aggregation of key tau-derived amyloidogenic fragments, PHF6 (VQIVYK) and PHF6* (VQIINK), prime drivers of aggregation of full-length tau in disease pathology. Isothermal titration calorimetry analysis revealed that the interaction between NQDA and PHF6 is spontaneous and has significant binding efficiency driven by both entropic and enthalpic processes. Furthermore, NQDA efficiently disassembled preformed fibrils of PHF6 and PHF6* into nontoxic species. Molecular dynamic simulations supported the in vitro results and provided a plausible mode of binding of NQDA with PHF6 fibril. NQDA was also capable of inhibiting the aggregation of full-length tau protein and disrupting its preformed fibrils in vitro in a dose-dependent manner. In a comparative study, the IC50 value (50% inhibition of fibril formation) of NQDA in inhibiting the aggregation of PHF6 (25 µm) was ~ 17 µm, which is lower than for other bona fide amyloid inhibitors, naphthoquinone-tryptophan, rosmarinic acid, epigallocatechin gallate, ~ 21, ~ 77, or ~ 19 µm, respectively. Comparable superiority of NQDA was observed for inhibition of PHF6*. These findings suggest that NQDA can be a useful scaffold for designing new therapeutics for Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Guru KrishnaKumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology & Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology & Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel.,Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
26
|
Curcumin as Scaffold for Drug Discovery against Neurodegenerative Diseases. Biomedicines 2021; 9:biomedicines9020173. [PMID: 33572457 PMCID: PMC7916200 DOI: 10.3390/biomedicines9020173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases (NDs) are one of major public health problems and their impact is continuously growing. Curcumin has been proposed for the treatment of several of these pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD) due to the ability of this molecule to reduce inflammation and aggregation of involved proteins. Nevertheless, the poor metabolic stability and bioavailability of curcumin reduce the possibilities of its practical use. For these reasons, many curcumin derivatives were synthetized in order to overcome some limitations. In this review will be highlighted recent results on modification of curcumin scaffold in the search of new effective therapeutic agents against NDs, with particular emphasis on AD.
Collapse
|
27
|
Lo CH, Sachs JN. The role of wild-type tau in Alzheimer's disease and related tauopathies. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2020; 2:1-17. [PMID: 33665646 PMCID: PMC7929479 DOI: 10.36069/jols/20201201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tau oligomers have recently emerged as the principal toxic species in Alzheimer's disease (AD) and tauopathies. Tau oligomers are spontaneously self-assembled soluble tau proteins that are formed prior to fibrils, and they have been shown to play a central role in neuronal cell death and in the induction of neurodegeneration in animal models. As the therapeutic paradigm shifts to targeting toxic tau oligomers, this suggests the focus to study tau oligomerization in species that are less susceptible to fibrillization. While truncated and mutation containing tau as well as the isolated repeat domains are particularly prone to fibrillization, the wild-type (WT) tau proteins have been shown to be resistant to fibril formation in the absence of aggregation inducers. In this review, we will summarize and discuss the toxicity of WT tau both in vitro and in vivo, as well as its involvement in tau oligomerization and cell-to-cell propagation of pathology. Understanding the role of WT tau will enable more effective biomarker development and therapeutic discovery for treatment of AD and tauopathies.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Jonathan N. Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
28
|
Liu M, Sui D, Dexheimer T, Hovde S, Deng X, Wang KW, Lin HL, Chien HT, Kweon HK, Kuo NS, Ayoub CA, Jimenez-Harrison D, Andrews PC, Kwok R, Bochar DA, Kuret J, Fortin J, Tsay YG, Kuo MH. Hyperphosphorylation Renders Tau Prone to Aggregate and to Cause Cell Death. Mol Neurobiol 2020; 57:4704-4719. [PMID: 32780352 PMCID: PMC7530023 DOI: 10.1007/s12035-020-02034-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/22/2020] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder without a cure or prevention to date. Hyperphosphorylated tau forms the neurofibrillary tangles (NFTs) that correlate well with the progression of cognitive impairments. Animal studies demonstrated the pathogenic role of hyperphosphorylated tau. Understanding how abnormal phosphorylation renders a normal tau prone to form toxic fibrils is key to delineating molecular pathology and to developing efficacious drugs for AD. Production of a tau bearing the disease-relevant hyperphosphorylation and molecular characters is a pivotal step. Here, we report the preparation and characterization of a recombinant hyperphosphorylated tau (p-tau) with strong relevance to disease. P-tau generated by the PIMAX approach resulted in phosphorylation at multiple epitopes linked to the progression of AD neuropathology. In stark contrast to unmodified tau that required an aggregation inducer, and which had minimal effects on cell functions, p-tau formed inducer-free fibrils that triggered a spike of mitochondrial superoxide, induced apoptosis, and caused cell death at sub-micromolar concentrations. P-tau-induced apoptosis was suppressed by inhibitors for reactive oxygen species. Hyperphosphorylation apparently caused rapid formation of a disease-related conformation. In both aggregation and cytotoxicity, p-tau exhibited seeding activities that converted the unmodified tau into a cytotoxic species with an increased propensity for fibrillization. These characters of p-tau are consistent with the emerging view that hyperphosphorylation causes tau to become an aggregation-prone and cytotoxic species that underlies diffusible pathology in AD and other tauopathies. Our results further suggest that p-tau affords a feasible tool for Alzheimer's disease mechanistic and drug discovery studies.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stacy Hovde
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Xiexiong Deng
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
| | - Hsin Lian Lin
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, China
| | - Hsiao-Tien Chien
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, China
| | - Hye Kyong Kweon
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nora Sheen Kuo
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christopher A Ayoub
- Center for Molecular Neurobiology, Department of Molecular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniela Jimenez-Harrison
- Center for Molecular Neurobiology, Department of Molecular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Philip C Andrews
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Roland Kwok
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeff Kuret
- Center for Molecular Neurobiology, Department of Molecular Biochemistry, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jessica Fortin
- College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, China
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, East Lansing, MI, 48824, USA.
| |
Collapse
|
29
|
Liu M, Dexheimer T, Sui D, Hovde S, Deng X, Kwok R, Bochar DA, Kuo MH. Hyperphosphorylated tau aggregation and cytotoxicity modulators screen identified prescription drugs linked to Alzheimer's disease and cognitive functions. Sci Rep 2020; 10:16551. [PMID: 33024171 PMCID: PMC7539012 DOI: 10.1038/s41598-020-73680-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
The neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies. Intracerebral injection of tau aggregates isolated from tauopathy brains causes similar pathology in the recipient mice, demonstrating the pathogenic role of abnormally phosphorylated tau. Compounds controlling the aggregation of hyperphosphorylated tau therefore are probable modulators for the disease. Here we report the use of recombinant hyperphosphorylated tau (p-tau) to identify potential tauopathy therapeutics and risk factors. Hyperphosphorylation renders tau prone to aggregate and to impair cell viability. Taking advantage of these two characters of p-tau, we performed a screen of a 1280-compound library, and tested a selective group of prescription drugs in p-tau aggregation and cytotoxicity assays. R-(-)-apomorphine and raloxifene were found to be p-tau aggregation inhibitors that protected p-tau-treated cells. In contrast, a subset of benzodiazepines exacerbated p-tau cytotoxicity apparently via enhancing p-tau aggregation. R-(-)apomorphine and raloxifene have been shown to improve cognition in animals or in humans, whereas benzodiazepines were linked to increased risks of dementia. Our results demonstrate the feasibility and potential of using hyperphosphorylated tau-based assays for AD drug discovery and risk factor identification.
Collapse
Affiliation(s)
- Mengyu Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Thomas Dexheimer
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Stacy Hovde
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
| | - Xiexiong Deng
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - Roland Kwok
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | | | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, Room 401, Biochemistry Building, East Lansing, MI, 48824, USA.
| |
Collapse
|
30
|
Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discov Today 2020; 25:2110-2129. [PMID: 33011341 DOI: 10.1016/j.drudis.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease leading to progressive loss of memory that mainly affects people above 60 years of age. It is one of the leading causes of deaths in the USA. Given its inherent heterogeneity and a still-incomplete understanding of its pathology, biomarkers, and targets available for therapy, it is a challenge to design an effective therapeutic strategy. Several hypotheses have been proposed to understand the disease and to identify reliable markers and targets for treatments. However, none have resulted in strong support from clinical trials. In this review, we objectively discuss the various therapeutic strategies and mechanistic approaches to improve the current clinical outcome of AD therapy.
Collapse
|
31
|
Walsh DM, Selkoe DJ. Amyloid β-protein and beyond: the path forward in Alzheimer's disease. Curr Opin Neurobiol 2020; 61:116-124. [PMID: 32197217 DOI: 10.1016/j.conb.2020.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Basic research on the biological mechanism of Alzheimer's disease has focused for decades on the age-related aggregation of the amyloid β-protein and its apparent downstream effects on microglia, astrocytes and neurons, including the posttranslational modification of the tau protein that seems necessary for symptom expression. Here, we discuss the highly challenging process of developing disease-modifying therapies and highlight several key areas of current research that are progressing in exciting directions. We conclude that further deep molecular analyses of the disease, including the mechanisms of β-amyloidosis, will enable more effective clinical trials and ultimately achieve the progress that our patients so deserve.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States; Alzheimer's Disease and Dementia Research Unit, Biogen Inc., 115 Broadway, Cambridge, MA 02142, United States.
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
32
|
Gabr MT, Peccati F. Dual Targeting of Monomeric Tau and α-Synuclein Aggregation: A New Multitarget Therapeutic Strategy for Neurodegeneration. ACS Chem Neurosci 2020; 11:2051-2057. [PMID: 32579329 DOI: 10.1021/acschemneuro.0c00281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Development of efficient multitargeted therapeutic strategies is crucial in facing the multifaceted nature of neurodegenerative diseases. Parkinson's disease (PD) and Alzheimer's disease (AD), the two most common neurodegenerative disorders, share a common hallmark of accumulation of misfolded protein aggregates which are Lewy bodies (LBs) and neurofibrillary tangles (NFTs), respectively. Tau protein and α-synuclein (α-syn), the precursors of LBs and NFTs, have demonstrated synergistic aggregation and neurotoxicity in both in vitro and in vivo models. Herein, we validate for the first time dual targeting of monomeric tau and α-syn aggregation as an efficient platform for development of multitarget therapeutics for neurological disorders. Cellular fluorescence resonance energy transfer (FRET)-based high-throughput screening for tau-binding compounds, followed by additional screening of the hits for their ability to impede α-syn aggregation identified MG-2119 as a potential lead. The high binding affinity of MG-2119 to monomeric tau was verified using cellular FRET assay, isothermal titration calorimetry (ITC), surface plasmon resonance (SPR), and microscale thermophoresis (MSH). Moreover, MG-2119 inhibited α-syn aggregation as revealed by thioflavin T (ThT) assay and dynamic light scattering (DLS) measurements. Interestingly, MG-2119 was capable of rescuing combined tau and α-syn-induced cytotoxicity in SH-SY5Y neuroblastoma cells in a dose-dependent manner. Less pronounced cell-rescuing effects were observed for single-targeted tau and α-syn aggregation inhibitors showcasing the superiority of the multitargeted approach described in this study. The satisfactory pharmacokinetic profile and low toxicity of MG-2119 hold promise for future optimization to develop potential therapeutics for neurological disorders.
Collapse
Affiliation(s)
- Moustafa T. Gabr
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Francesca Peccati
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
33
|
Lo CH, Lim CKW, Ding Z, Wickramasinghe SP, Braun AR, Ashe KH, Rhoades E, Thomas DD, Sachs JN. Targeting the ensemble of heterogeneous tau oligomers in cells: A novel small molecule screening platform for tauopathies. Alzheimers Dement 2019; 15:1489-1502. [PMID: 31653529 DOI: 10.1016/j.jalz.2019.06.4954] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/30/2019] [Accepted: 06/19/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Understanding the heterogeneous pathology in Alzheimer's disease and related tauopathies is one of the most urgent and fundamental challenges facing the discovery of novel disease-modifying therapies. Through monitoring ensembles of toxic and nontoxic tau oligomers spontaneously formed in cells, our biosensor technology can identify tool compounds that modulate tau oligomer structure and toxicity, providing much needed insight into the nature and properties of toxic tau oligomers. BACKGROUND Tauopathies are a group of neurodegenerative disorders characterized by pathologic aggregation of the microtubule binding protein tau. Recent studies suggest that tau oligomers are the primary toxic species in tauopathies. NEW/UPDATED HYPOTHESIS We hypothesize that tau biosensors capable of monitoring tau oligomer conformation are able to identify tool compounds that modulate the structure and conformation of these tau assemblies, providing key insight into the unique structural fingerprints of toxic tau oligomers. These fingerprints will provide gravely needed biomarker profiles to improve staging of early tauopathy pathology and generate lead compounds for potential new therapeutics. Our time-resolved fluorescence resonance energy transfer biosensors provide us an exquisitely sensitive technique to monitor minute structural changes in monomer and oligomer conformation. In this proof-of-concept study, we identified a novel tool compound, MK-886, which directly binds tau, perturbs the conformation of toxic tau oligomers, and rescues tau-induced cytotoxicity. Furthermore, we show that MK-886 alters the conformation of tau monomer at the proline-rich and microtubule binding regions, stabilizing an on-pathway oligomer. MAJOR CHALLENGES FOR THE HYPOTHESIS Our approach monitors changes in the ensemble of assemblies that are spontaneously formed in cells but does not specifically isolate or enrich unique toxic tau species. However, time-resolved fluorescence resonance energy transfer does not provide high-resolution, atomic scale information, requiring additional experimental techniques to resolve the structural features stabilized by different tool compounds. LINKAGE TO OTHER MAJOR THEORIES Our biosensor technology is broadly applicable to other areas of tauopathy therapeutic development. These biosensors can be readily modified for different isoforms of tau, specific post-translational modifications, and familial Alzheimer's disease-associated mutations. We are eager to explore tau interactions with chaperone proteins, monitor cross-reactivity with other intrinsically disordered proteins, and target seeded oligomer pathology.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Colin Kin-Wye Lim
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhipeng Ding
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sanjula P Wickramasinghe
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA; N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA; Geriatric Research, Education, and Clinical Centers, Veterans Affairs Medical Center, Minneapolis, MN, USA
| | - Elizabeth Rhoades
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Photonic Pharma LLC, Minneapolis, MN, USA
| | - Jonathan N Sachs
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
34
|
Despres C, Di J, Cantrelle FX, Li Z, Huvent I, Chambraud B, Zhao J, Chen J, Chen S, Lippens G, Zhang F, Linhardt R, Wang C, Klärner FG, Schrader T, Landrieu I, Bitan G, Smet-Nocca C. Major Differences between the Self-Assembly and Seeding Behavior of Heparin-Induced and in Vitro Phosphorylated Tau and Their Modulation by Potential Inhibitors. ACS Chem Biol 2019; 14:1363-1379. [PMID: 31046227 PMCID: PMC6636790 DOI: 10.1021/acschembio.9b00325] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Self-assembly of
the microtubule-associated protein tau into neurotoxic
oligomers, fibrils, and paired helical filaments, and cell-to-cell
spreading of these pathological tau species are critical processes
underlying the pathogenesis of Alzheimer’s disease and other
tauopathies. Modulating the self-assembly process and inhibiting formation
and spreading of such toxic species are promising strategies for therapy
development. A challenge in investigating tau self-assembly in vitro
is that, unlike most amyloidogenic proteins, tau does not aggregate
in the absence of posttranslational modifications (PTM), aggregation
inducers, or preformed seeds. The most common induction method is
addition of polyanions, such as heparin; yet, this artificial system
may not represent adequately tau self-assembly in vivo, which is driven
by aberrant phosphorylation and other PTMs, potentially leading to
in vitro data that do not reflect the behavior of tau and its interaction
with modulators in vivo. To tackle these challenges, methods for in
vitro phosphorylation of tau to produce aggregation-competent forms
recently have been introduced (Despres
et al. (2017) , 114, 9080−908528784767). However, the oligomerization, seeding, and interaction
with assembly modulators of the different forms of tau have not been
studied to date. To address these knowledge gaps, we compared here
side-by-side the self-assembly and seeding activity of heparin-induced
tau with two forms of in vitro phosphorylated tau and tested how the
molecular tweezer CLR01, a negatively charged compound, affected these
processes. Tau was phosphorylated by incubation either with activated
extracellular signal-regulated kinase 2 or with a whole rat brain
extract. Seeding activity was measured using a fluorescence-resonance
energy transfer-based biosensor-cell method. We also used solution-state
NMR to investigate the binding sites of CLR01 on tau and how they
were impacted by phosphorylation. Our systematic structure–activity
relationship study demonstrates that heparin-induced tau behaves differently
from in vitro phosphorylated tau. The aggregation rates of the different
forms are distinct as is the intracellular localization of the induced
aggregates, which resemble brain-derived tau strains suggesting that
heparin-induced tau and in vitro phosphorylated tau have different
conformations, properties, and activities. CLR01 inhibits aggregation
and seeding of both heparin-induced and in vitro phosphorylated tau
dose-dependently, although heparin induction interferes with the interaction
between CLR01 and tau.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianle Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Shiguo Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Guy Lippens
- Lille University CNRS UMR 8576, UGSF, F-59000 Lille, France
| | | | - Robert Linhardt
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | | | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | | | | | |
Collapse
|
35
|
Luppi M, Hitrec T, Di Cristoforo A, Squarcio F, Stanzani A, Occhinegro A, Chiavetta P, Tupone D, Zamboni G, Amici R, Cerri M. Phosphorylation and Dephosphorylation of Tau Protein During Synthetic Torpor. Front Neuroanat 2019; 13:57. [PMID: 31244617 PMCID: PMC6563845 DOI: 10.3389/fnana.2019.00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
Tau protein is of primary importance for many physiological processes in neurons, where it affects the dynamics of the microtubule system. When hyperphosphorylated (PP-Tau), Tau monomers detach from microtubules and tend to aggregate firstly in oligomers, and then in neurofibrillary tangles, as it occurs in a group of neurodegenerative disorders named thauopathies. A hypothermia-related accumulation of PP-Tau, which is quickly reversed after the return to normothermia, has been shown to occur in the brain of hibernators during torpor. Since, recently, in our lab, a hypothermic torpor-like condition (synthetic torpor, ST) was pharmacologically induced in the rat, a non-hibernator, the aim of the present work was to assess whether ST can lead to a reversible PP-Tau accumulation in the rat brain. PP-Tau was immunohistochemically assessed by staining for AT8 (phosphorylated Tau) and Tau-1 (non-phosphorylated Tau) in 19 brain structures, which were chosen mostly due to their involvement in the regulation of autonomic and cognitive functions in relation to behavioral states. During ST, AT8 staining was strongly expressed throughout the brain, while Tau-1 staining was reduced compared to control conditions. During the following recovery period, AT8 staining progressively reduced close to zero after 6 h from ST. However, Tau-1 staining remained low even after 38 h from ST. Thus, overall, these results show that ST induced an accumulation of PP-Tau that was, apparently, only partially reversed to normal during the recovery period. While the accumulation of PP-Tau may only depend on the physicochemical characteristics of the enzymes regulating Tau phosphorylation, the reverse process of dephosphorylation should be actively regulated, also in non-hibernators. In conclusion, in this work a reversible and widespread PP-Tau accumulation has been induced through a procedure that leads a non-hibernator to a degree of reversible hypothermia, which is comparable to that observed in hibernators. Therefore, the physiological mechanism involved in this process can sustain an adaptive neuronal response to extreme conditions, which may however lead to neurodegeneration when particular intensities and durations are exceeded.
Collapse
Affiliation(s)
- Marco Luppi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessia Di Cristoforo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabio Squarcio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Agnese Stanzani
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Giovanni Zamboni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
36
|
Perea JR, López E, Díez-Ballesteros JC, Ávila J, Hernández F, Bolós M. Extracellular Monomeric Tau Is Internalized by Astrocytes. Front Neurosci 2019; 13:442. [PMID: 31118883 PMCID: PMC6504834 DOI: 10.3389/fnins.2019.00442] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/17/2019] [Indexed: 01/21/2023] Open
Abstract
Tau is a microtubule-associated protein that is expressed in neurons. However, in a group of neurodegenerative diseases named tauopathies – characterized by an increase in aggregated and/or hyperphosphorylated Tau – the protein accumulates inside other cells, such as astrocytes and microglia. Given that these glial cells do not produce Tau, its presence can be explained by internalization from the extracellular medium and consequent formation of Tau aggregates. Among internalization mechanisms, heparan sulfate proteoglycans (HSPGs) have been proposed to be responsible for fibrillary Tau uptake in various cell types. Here we studied whether monomeric Tau, which has been observed to be internalized by glial cells such as microglia, was also taken up by astrocytes. Although this Tau form was internalized from the extracellular medium by these cells, the mechanism of uptake was found to be independent of HSPGs.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Esther López
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain
| | | | - Jesús Ávila
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Félix Hernández
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centre for Molecular Biology "Severo Ochoa", CSIC, Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases, Madrid, Spain
| |
Collapse
|
37
|
Ha Y, Liu W, Liu H, Zhu S, Xia F, Gerson JE, Azhar NA, Tilton RG, Motamedi M, Kayed R, Zhang W. AAV2-mediated GRP78 Transfer Alleviates Retinal Neuronal Injury by Downregulating ER Stress and Tau Oligomer Formation. Invest Ophthalmol Vis Sci 2019; 59:4670-4682. [PMID: 30267089 PMCID: PMC6155472 DOI: 10.1167/iovs.18-24427] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Retinal ganglion cell (RGC) death following axonal injury occurring in traumatic optic neuropathy (TON) causes irreversible vision loss. GRP78 is a molecular chaperone that enhances protein folding and controls activation of endoplasmic reticulum (ER) stress pathways. This study determined whether adeno-associated virus (AAV)-mediated gene transfer of GRP78 protected RGCs from death in a mouse model of TON induced by optic nerve crush (ONC). Methods ONC was induced by a transient crush of optic nerve behind the eye globe. AAV was used to deliver genes into retina. Molecules in the ER stress branches, tau oligomers, and RGC injury were determined by immunohistochemistry or Western blot. Results Among tested AAV serotypes, AAV2 was the most efficient for delivering genes to RGCs. Intravitreal delivery of AAV2-GRP78 markedly attenuated ER stress and RGC death 3 days after ONC, and significantly improved RGC survival and function 7 days after ONC. Protein aggregation is increased during ER stress and aggregated proteins such as tau oligomers are key players in neurodegenerative diseases. AAV2-GRP78 alleviated ONC-induced increases in tau phosphorylation and oligomerization. Furthermore, tau oligomers directly induced RGC death, and blocking tau oligomers with tau oligomer monoclonal antibody (TOMA) attenuated ONC-induced RGC loss. Conclusion These data indicate that the beneficial effect of AAV2-GRP78 is partially mediated by the reduction of misfolded tau, and provide compelling evidence that gene therapy with AAV2-GRP78 or immunotherapy with TOMA offers novel therapeutic approaches to alleviate RGC loss in TON.
Collapse
Affiliation(s)
- Yonju Ha
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States.,Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shuang Zhu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States.,Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Julia E Gerson
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Nisha A Azhar
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Ronald G Tilton
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States.,Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States.,Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States
| | - Rakez Kayed
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States.,Departments of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
38
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
39
|
Heat Shock Proteins in Alzheimer's Disease: Role and Targeting. Int J Mol Sci 2018; 19:ijms19092603. [PMID: 30200516 PMCID: PMC6163571 DOI: 10.3390/ijms19092603] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Among diseases whose cure is still far from being discovered, Alzheimer’s disease (AD) has been recognized as a crucial medical and social problem. A major issue in AD research is represented by the complexity of involved biochemical pathways, including the nature of protein misfolding, which results in the production of toxic species. Considering the involvement of (mis)folding processes in AD aetiology, targeting molecular chaperones represents a promising therapeutic perspective. This review analyses the connection between AD and molecular chaperones, with particular attention toward the most important heat shock proteins (HSPs) as representative components of the human chaperome: Hsp60, Hsp70 and Hsp90. The role of these proteins in AD is highlighted from a biological point of view. Pharmacological targeting of such HSPs with inhibitors or regulators is also discussed.
Collapse
|
40
|
Perea JR, Ávila J, Bolós M. Dephosphorylated rather than hyperphosphorylated Tau triggers a pro-inflammatory profile in microglia through the p38 MAPK pathway. Exp Neurol 2018; 310:14-21. [PMID: 30138606 DOI: 10.1016/j.expneurol.2018.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/04/2018] [Accepted: 08/15/2018] [Indexed: 01/24/2023]
Abstract
Tauopathies are a broad set of neurodegenerative dementias characterized by the aggregation of Tau protein. Activated microglia and elevated levels of pro-inflammatory molecules are also pathological hallmarks of tauopathies. In these diseases, intracellular Tau is secreted to the extracellular space, where it interacts with other cells, such as neurons and glia, promoting inflammation. However, the mechanism through which extracellular Tau triggers pro-inflammatory responses in microglia remains unknown. Primary microglia cultures were treated with extracellular Tau in its hyperphosphorylated, dephosphorylated or non-phosphorylated form. Protein cytokine arrays, real-time PCR, inhibition of the p38 MAPK pathway, phosphatase assays, and quantification of proteins through immunoblotting were used to analyze the effect of extracellular Tau on the pro-inflammatory response of microglia. The main finding of this work is that extracellular non-phosphorylated and dephosphorylated forms of Tau, rather than hyperphosphorylated Tau, activate the p38 MAPK pathway in microglia, thus triggering a pro-inflammatory response in these cells.
Collapse
Affiliation(s)
- Juan Ramón Perea
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Marta Bolós
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSIC, Madrid, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
41
|
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder affecting millions of people worldwide. Therefore, finding effective interventions and therapies is extremely important. AD is one of over 20 different disorders known as tauopathies, characterized by the pathological aggregation and accumulation of tau, a microtubule-associated protein. Tau aggregates are heterogeneous and can be divided into two major groups: large metastable fibrils, including neurofibrillary tangles, and oligomers. The smaller, soluble and dynamic tau oligomers have been shown to be more toxic with more proficient seeding properties for the propagation of tau pathology as compared to the fibrillar Paired Helical Filaments (PHFs). Therefore, developing small molecules that target and interact with toxic tau oligomers can be beneficial to modulate their aggregation pathways and toxicity, preventing progression of the pathology. In this study, we show that Azure C (AC) is capable of modulating tau oligomer aggregation pathways at micromolar concentrations and rescues tau oligomers-induced toxicity in cell culture. We used both biochemical and biophysical in vitro techniques to characterize preformed tau oligomers in the presence and absence of AC. Interestingly, AC prevents toxicity not by disassembling the oligomers but rather by converting them into clusters of aggregates with nontoxic conformation.
Collapse
Affiliation(s)
- Filippa Lo Cascio
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, 90127 Palermo, Italy
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
42
|
Manoutcharian K, Perez-Garmendia R, Gevorkian G. Recombinant Antibody Fragments for Neurodegenerative Diseases. Curr Neuropharmacol 2018; 15:779-788. [PMID: 27697033 PMCID: PMC5771054 DOI: 10.2174/1570159x01666160930121647] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recombinant antibody fragments are promising alternatives to full-length immunoglobulins and offer important advantages compared with conventional monoclonal antibodies: extreme specificity, higher affinity, superior stability and solubility, reduced immunogenicity as well as easy and inexpensive large-scale production. OBJECTIVE In this article we will review and discuss recombinant antibodies that are being evaluated for neurodegenerative diseases in pre-clinical models and in clinical studies and will summarize new strategies that are being developed to optimize their stability, specificity and potency for advancing their use. METHODS Articles describing recombinant antibody fragments used for neurological diseases were selected (PubMed) and evaluated for their significance. RESULTS Different antibody formats such as single-chain fragment variable (scFv), single-domain antibody fragments (VHHs or sdAbs), bispecific antibodies (bsAbs), intrabodies and nanobodies, are currently being studied in pre-clinical models of cancer as well as infectious and autoimmune diseases and many of them are being tested as therapeutics in clinical trials. Immunotherapy approaches have shown therapeutic efficacy in several animal models of Alzheimer´s disease (AD), Parkinson disease (PD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Huntington disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). It has been demonstrated that recombinant antibody fragments may neutralize toxic extra- and intracellular misfolded proteins involved in the pathogenesis of AD, PD, DLB, FTD, HD or TSEs and may target toxic immune cells participating in the pathogenesis of MS. CONCLUSION Recombinant antibody fragments represent a promising tool for the development of antibody-based immunotherapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico. 0
| |
Collapse
|
43
|
Tau-based therapies in neurodegeneration: opportunities and challenges. Nat Rev Drug Discov 2017; 16:863-883. [DOI: 10.1038/nrd.2017.155] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE. Small-molecule PET Tracers for Imaging Proteinopathies. Semin Nucl Med 2017; 47:553-575. [PMID: 28826526 DOI: 10.1053/j.semnuclmed.2017.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this chapter, we provide a review of the challenges and advances in developing successful PET imaging agents for 3 major types of aggregated amyloid proteins: amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn). These 3 amyloids are involved in the pathogenesis of a variety of neurodegenerative diseases, referred to as proteinopathies or proteopathies, that include Alzheimer disease, Lewy body dementias, multiple system atrophy, and frontotemporal dementias, among others. In the Introduction section, we briefly discuss the history of amyloid in neurodegenerative diseases and describe why progress in developing effective imaging agents has been hampered by the failure of crystallography to provide definitive ligand-protein interactions for rational radioligand design efforts. Instead, the field has relied on largely serendipitous, trial-and-error methods to achieve useful and specific PET amyloid imaging tracers for Aβ, tau, and α-syn deposits. Because many of the proteopathies involve more than 1 amyloid protein, it is important to develop selective PET tracers for the different amyloids to help assess the relative contribution of each to total amyloid burden. We use Pittsburgh compound B to illustrate some of the critical steps in developing a potent and selective Aβ PET imaging agent. Other selective Aβ and tau PET imaging compounds have followed similar pathways in their developmental processes. Success for selective α-syn PET imaging agents has not been realized yet, but work is ongoing in multiple laboratories throughout the world. In the tau sections, we provide background regarding 3-repeat (3R) and 4-repeat (4R) tau proteins and how they can affect the binding of tau radioligands in different tauopathies. We review the ongoing efforts to assess the properties of tau ligands, which are useful in 3R, 4R, or combined 3R-4R tauopathies. Finally, we describe in the α-syn sections recent attempts to develop selective tracers to image α-synucleinopathies.
Collapse
Affiliation(s)
- Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
45
|
Castillo-Carranza DL, Nilson AN, Van Skike CE, Jahrling JB, Patel K, Garach P, Gerson JE, Sengupta U, Abisambra J, Nelson P, Troncoso J, Ungvari Z, Galvan V, Kayed R. Cerebral Microvascular Accumulation of Tau Oligomers in Alzheimer's Disease and Related Tauopathies. Aging Dis 2017; 8:257-266. [PMID: 28580182 PMCID: PMC5440106 DOI: 10.14336/ad.2017.0112] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
The importance of vascular contributions to cognitive impairment and dementia (VCID) associated with Alzheimer's disease (AD) and related neurodegenerative diseases is increasingly recognized, however, the underlying mechanisms remain obscure. There is growing evidence that in addition to Aβ deposition, accumulation of hyperphosphorylated oligomeric tau contributes significantly to AD etiology. Tau oligomers are toxic and it has been suggested that they propagate in a "prion-like" fashion, inducing endogenous tau misfolding in cells. Their role in VCID, however, is not yet understood. The present study was designed to determine the severity of vascular deposition of oligomeric tau in the brain in patients with AD and related tauopathies, including dementia with Lewy bodies (DLB) and progressive supranuclear palsy (PSP). Further, we examined a potential link between vascular deposition of fibrillar Aβ and that of tau oligomers in the Tg2576 mouse model. We found that tau oligomers accumulate in cerebral microvasculature of human patients with AD and PSP, in association with vascular endothelial and smooth muscle cells. Cerebrovascular deposition of tau oligomers was also found in DLB patients. We also show that tau oligomers accumulate in cerebral microvasculature of Tg2576 mice, partially in association with cerebrovascular Aβ deposits. Thus, our findings add to the growing evidence for multifaceted microvascular involvement in the pathogenesis of AD and other neurodegenerative diseases. Accumulation of tau oligomers may represent a potential novel mechanism by which functional and structural integrity of the cerebral microvessels is compromised.
Collapse
Affiliation(s)
- Diana L Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashley N Nilson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Jordan B Jahrling
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Kishan Patel
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Prajesh Garach
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Julia E Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jose Abisambra
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Peter Nelson
- Division of Neuropathology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Juan Troncoso
- Clinical and Neuropathology Core, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zoltan Ungvari
- Department of Geriatric Medicine and Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, TX 78245, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
46
|
Shafiei SS, Guerrero-Muñoz MJ, Castillo-Carranza DL. Tau Oligomers: Cytotoxicity, Propagation, and Mitochondrial Damage. Front Aging Neurosci 2017; 9:83. [PMID: 28420982 PMCID: PMC5378766 DOI: 10.3389/fnagi.2017.00083] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/16/2017] [Indexed: 11/13/2022] Open
Abstract
Aging has long been considered as the main risk factor for several neurodegenerative disorders including a large group of diseases known as tauopathies. Even though neurofibrillary tangles (NFTs) have been examined as the main histopathological hallmark, they do not seem to play a role as the toxic entities leading to disease. Recent studies suggest that an intermediate form of tau, prior to NFT formation, the tau oligomer, is the true toxic species. However, the mechanisms by which tau oligomers trigger neurodegeneration remain unknown. This review summarizes recent findings regarding the role of tau oligomers in disease, including release from cells, propagation from affected to unaffected brain regions, uptake into cells, and toxicity via mitochondrial dysfunction. A greater understanding of tauopathies may lead to future advancements in regards to prevention and treatment.
Collapse
Affiliation(s)
- Scott S Shafiei
- Department of Neurology, Neuroscience and Cell Biology, University of Texas Medical BranchGalveston, TX, USA
| | | | | |
Collapse
|
47
|
Nilson AN, English KC, Gerson JE, Barton Whittle T, Nicolas Crain C, Xue J, Sengupta U, Castillo-Carranza DL, Zhang W, Gupta P, Kayed R. Tau Oligomers Associate with Inflammation in the Brain and Retina of Tauopathy Mice and in Neurodegenerative Diseases. J Alzheimers Dis 2017; 55:1083-1099. [PMID: 27716675 PMCID: PMC5147514 DOI: 10.3233/jad-160912] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
It is well-established that inflammation plays an important role in Alzheimer's disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles. However, evidence suggests that smaller soluble aggregates, called oligomers, are the most toxic species and form prior to tangles. Furthermore, tau oligomers can spread to neighboring cells and between anatomically connected brain regions. In addition, recent evidence suggests that inspecting the retina may be a window to brain pathology. We hypothesized that there is a relationship between tau oligomers and inflammation, which are hallmarks of early disease. We conducted immunofluorescence and biochemical analyses on tauopathy mice, FTLD, and AD subjects. We showed that oligomers co-localize with astrocytes, microglia, and HMGB1, a pro-inflammatory cytokine. Additionally, we show that tau oligomers are present in the retina and are associated with inflammatory cells suggesting that the retina may be a valid non-invasive biomarker for brain pathology. These results suggest that there may be a toxic relationship between tau oligomers and inflammation. Therefore, the ability of tau oligomers to spread may initiate a feed-forward cycle in which tau oligomers induce inflammation, leading to neuronal damage, and thus more inflammation. Further mechanistic studies are warranted in order to understand this relationship, which may have critical implications for improving the treatment of tauopathies.
Collapse
Affiliation(s)
- Ashley N. Nilson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelsey C. English
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Julia E. Gerson
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - T. Barton Whittle
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - C. Nicolas Crain
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Judy Xue
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Diana L. Castillo-Carranza
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Praveena Gupta
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
48
|
Affiliation(s)
- Kathleen Farmer
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| | - Julia E. Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases; 301 University Blvd, Room 10.138C, University of Texas Medical Branch Galveston TX 77555-1045 USA
- Department of Neurology; University of Texas Medical Branch; Galveston TX USA
- Department of Neuroscience and Cell Biology; University of Texas Medical Branch; Galveston TX USA
| |
Collapse
|
49
|
Gerson JE, Mudher A, Kayed R. Potential mechanisms and implications for the formation of tau oligomeric strains. Crit Rev Biochem Mol Biol 2016; 51:482-496. [PMID: 27650389 PMCID: PMC5285467 DOI: 10.1080/10409238.2016.1226251] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The culmination of many years of increasing research into the toxicity of tau aggregation in neurodegenerative disease has led to the consensus that soluble, oligomeric forms of tau are likely the most toxic entities in disease. While tauopathies overlap in the presence of tau pathology, each disease has a unique combination of symptoms and pathological features; however, most study into tau has grouped tau oligomers and studied them as a homogenous population. Established evidence from the prion field combined with the most recent tau and amyloidogenic protein research suggests that tau is a prion-like protein, capable of seeding the spread of pathology throughout the brain. Thus, it is likely that tau may also form prion-like strains or diverse conformational structures that may differ by disease and underlie some of the differences in symptoms and pathology in neurodegenerative tauopathies. The development of techniques and new technology for the detection of tau oligomeric strains may, therefore, lead to more efficacious diagnostic and treatment strategies for neurodegenerative disease. [Formula: see text].
Collapse
Affiliation(s)
- Julia E. Gerson
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Rakez Kayed
- George P. and Cynthia Woods Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
- Departments of Neurology, and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1045, USA
| |
Collapse
|
50
|
Okamura N, Harada R, Furukawa K, Furumoto S, Tago T, Yanai K, Arai H, Kudo Y. Advances in the development of tau PET radiotracers and their clinical applications. Ageing Res Rev 2016; 30:107-13. [PMID: 26802556 DOI: 10.1016/j.arr.2015.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/30/2015] [Accepted: 12/30/2015] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease and other neurodegenerative dementias belong to the family of tauopathies. These diseases are characterized by the deposition of insoluble tau aggregates possessing an enriched β-sheet structure. In vivo imaging of the tau deposits by positron emission tomography (PET) will facilitate the early and accurate diagnosis of these diseases, tracking of disease progression, assessment of disease severity, and prediction of disease prognosis. Furthermore, this technology is expected to play a vital role in the monitoring of treatment outcomes and in the selection of patients for the therapeutic trials of anti-dementia drugs. Recently, several tau PET tracers have been successfully developed and demonstrated as having high binding affinity and selectivity to tau protein deposits. Recent clinical studies using these tracers have demonstrated significant tracer retention in sites susceptible to tau deposition in Alzheimer's disease, as well as correlations with the disease severity and cognitive impairment in cases with dementia. These tracers, thus, have the potential to effectively diagnose the tauopathies. Further longitudinal assessment will clarify the effect of the tau deposition on the neurodegenerative process and cognitive decline and the interaction of tau with amyloid-β in the human brain.
Collapse
|