1
|
Chu SS, Nguyen HA, Lin D, Bhatti M, Jones-Tinsley CE, Do AH, Frostig RD, Nenadic Z, Xu X, Lim MM, Cao H. Development of highly sensitive, flexible dual L-glutamate and GABA microsensors for in vivo brain sensing. Biosens Bioelectron 2023; 222:114941. [PMID: 36455372 DOI: 10.1016/j.bios.2022.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Real-time tracking of neurotransmitter levels in vivo has been technically challenging due to the low spatiotemporal resolution of current methods. Since the imbalance of cortical excitation/inhibition (E:I) ratios are associated with a variety of neurological disorders, accurate monitoring of excitatory and inhibitory neurotransmitter levels is crucial for investigating the underlying neural mechanisms of these conditions. Specifically, levels of the excitatory neurotransmitter L-glutamate, and the inhibitory neurotransmitter GABA, are assumed to play critical roles in the E:I balance. Therefore, in this work, a flexible electrochemical microsensor is developed for real-time simultaneous detection of L-glutamate and GABA. The flexible polyimide substrate was used for easier handling during implantation and measurement, along with less brain damage. Further, by electrochemically depositing Pt-black nanostructures on the sensor's surface, the active surface area was enhanced for higher sensitivity. This dual neurotransmitter sensor probe was validated under various settings for its performance, including in vitro, ex vivo tests with glutamatergic neuronal cells and in vivo test with anesthetized rats. Additionally, the sensor's performance has been further investigated in terms of longevity and biocompatibility. Overall, our dual L-glutamate:GABA sensor microprobe has its unique features to enable accurate, real-time, and long-term monitoring of the E:I balance in vivo. Thus, this new tool should aid investigations of neural mechanisms of normal brain function and various neurological disorders.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Sciences, University of California Irvine, 92697, CA, USA
| | - Derrick Lin
- Department of Neurology, University of California Irvine, CA, 92697, USA
| | - Mehwish Bhatti
- Department of Neurobiology and Behavior, University of California, CA, 92697, USA
| | - Carolyn E Jones-Tinsley
- VA Portland Health Care System, Department of Neurology, Oregon Health and Science University, OR, 97239, USA
| | - An Hong Do
- Department of Neurology, University of California Irvine, CA, 92697, USA
| | - Ron D Frostig
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Neurobiology and Behavior, University of California, CA, 92697, USA
| | - Zoran Nenadic
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Anatomy and Neurobiology, University of California Irvine, CA, 92697, USA; Center for Neural Circuit Mapping, University of California Irvine, CA, 92697, USA
| | - Miranda M Lim
- VA Portland Health Care System, Department of Neurology, Oregon Health and Science University, OR, 97239, USA
| | - Hung Cao
- Department of Biomedical Engineering, University of California Irvine, CA, 92697, USA; Department of Electrical Engineering and Computer Sciences, University of California Irvine, 92697, CA, USA; Center for Neural Circuit Mapping, University of California Irvine, CA, 92697, USA; Department of Computer Science, University of California Irvine, CA, 92697, USA.
| |
Collapse
|
2
|
Kuebler IRK, Jolton JA, Hermreck C, Hubbard NA, Wakabayashi KT. Contrasting dose-dependent effects of acute intravenous methamphetamine on lateral hypothalamic extracellular glucose dynamics in male and female rats. J Neurophysiol 2022; 128:819-836. [PMID: 36043803 PMCID: PMC9529272 DOI: 10.1152/jn.00257.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Glucose is the brain's primary energetic resource. The brain's use of glucose is dynamic, balancing delivery from the neurovasculature with local metabolism. Although glucose metabolism is known to differ in humans with and without methamphetamine use disorder (MUD), it is unknown how central glucose regulation changes with acute methamphetamine experience. Here, we determined how intravenous methamphetamine regulates extracellular glucose levels in a brain region implicated in MUD-like behavior, the lateral hypothalamus (LH). We measured extracellular LH glucose in awake adult male and female drug-naive Wistar rats using enzyme-linked amperometric glucose biosensors. Changes in LH glucose were monitored during a single session after: 1) natural nondrug stimuli (novel object presentation and a tail-touch), 2) increasing cumulative doses of intravenous methamphetamine (0.025, 0.05, 0.1, and 0.2 mg/kg), and 3) an injection of 60 mg of glucose. We found second-scale fluctuations in LH glucose in response to natural stimuli that differed by both stimulus type and sex. Although rapid, second-scale changes in LH glucose during methamphetamine injections were variable, slow, minute-scale changes following most injections were robust and resulted in a reduction in LH glucose levels. Dose and sex differences at this timescale indicated that female rats may be more sensitive to the impact of methamphetamine on central glucose regulation. These findings suggest that the effects of MUD on healthy brain function may be linked to how methamphetamine alters extracellular glucose regulation in the LH and point to possible mechanisms by which methamphetamine influences central glucose metabolism more broadly.NEW & NOTEWORTHY Enzyme-linked glucose biosensors were used to monitor lateral hypothalamic (LH) extracellular fluctuations during nondrug stimuli and intravenous methamphetamine injections in drug-naive awake male and female rats. Second-scale glucose changes occurred after nondrug stimuli, differing by modality and sex. Robust minute-scale decreases followed most methamphetamine injections. Sex differences at the minute-scale indicate female central glucose regulation is more sensitive to methamphetamine effects. We discuss likely mechanisms underlying these fluctuations, and their implications in methamphetamine use disorder.
Collapse
Affiliation(s)
- Isabel R K Kuebler
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Joshua A Jolton
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Chase Hermreck
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Nicholas A Hubbard
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ken T Wakabayashi
- Neurocircuitry of Motivated Behavior Laboratory, Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
3
|
Enzyme Encapsulation by Facile Self-Assembly Silica-Modified Magnetic Nanoparticles for Glucose Monitoring in Urine. Pharmaceutics 2022; 14:pharmaceutics14061154. [PMID: 35745727 PMCID: PMC9227432 DOI: 10.3390/pharmaceutics14061154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
Silica nanoparticles hold tremendous potential for the encapsulation of enzymes. However, aqueous alcohol solutions and catalysts are prerequisites for the production of silica nanoparticles, which are too harsh for maintaining the enzyme activity. Herein, a procedure without any organic solvents and catalysts (acidic or alkaline) is developed for the synthesis of silica-encapsulated glucose-oxidase-coated magnetic nanoparticles by a facile self-assembly route, avoiding damage of the enzyme structure in the reaction system. The encapsulated enzyme was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, and a vibrating sample magnetometer. Finally, a colorimetric sensing method was developed for the detection of glucose in urine samples based on the encapsulated glucose oxidase and a hydrogen peroxide test strip. The method exhibited a good linear performance in the concentration range of 20~160 μg mL−1 and good recoveries ranging from 94.3 to 118.0%. This work proves that the self-assembly method could be employed to encapsulate glucose oxidase into silica-coated magnetic particles. The developed colorimetric sensing method shows high sensitivity, which will provide a promising tool for the detection of glucose and the monitoring of diabetes.
Collapse
|
4
|
Ren J, Hu H, Wang S, He Y, Ji Y, Chen Y, Wang K, Zhang H, Zhao Y, Dai F. Prevent Drug Leakage via the Boronic Acid Glucose-Insensitive Micelle for Alzheimer's Disease Combination Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23182-23193. [PMID: 35544753 DOI: 10.1021/acsami.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boronic acid (BA) materials have been widely applied to glucose and oxidative stress-sensitive drug delivery for the treatment of cancer, diabetes, and Alzheimer's disease (AD). There are completely various BA-sensitive delivery conditions in different diseases. BA materials in the treatment of diabetes show better performance at a high-glucose environment than normal. In contrast, the concentration of glucose in the brain is much lower than that in the blood of AD patients. Hence, the typical glucose and oxidative stress dual-sensitive BA materials inevitably encounter drug leakage in circulation in AD. Attempts to decrease the glucose-sensitive capacity of BA materials are extremely essential for AD drug delivery. In this study, the epoxy group (electron-donating group) was introduced to increase the pKa values of BA materials by increasing the electron cloud density, and thus, the glucose-insensitive micelle (GIM) was obtained. The treatment effect and the synergism mechanism of the drug-loaded GIM micelle were studied on senescence-accelerated mouse prone 8 mice. This work provided excellent antioxidant drugs (vitamin E succinate, melatonin, and quercetin) and a glucose metabolism drug (insulin) loaded in GIM micelle for AD treatment. The discovery of the combination mechanism is enormously valuable for AD clinical research.
Collapse
Affiliation(s)
- Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haodong Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Shaoteng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang He
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanhong Ji
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiran Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kangna Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiyan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
5
|
Nakajima T, Takeda S, Ito Y, Oyama A, Takami Y, Takeya Y, Yamamoto K, Sugimoto K, Shimizu H, Shimamura M, Rakugi H, Morishita R. A novel chronic dural port platform for continuous collection of cerebrospinal fluid and intrathecal drug delivery in free-moving mice. Fluids Barriers CNS 2022; 19:31. [PMID: 35505336 PMCID: PMC9066940 DOI: 10.1186/s12987-022-00331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) provides a close representation of pathophysiological changes occurring in the central nervous system (CNS); therefore, it has been employed in pathogenesis research and biomarker development for CNS disorders. CSF obtained from valid mouse models relevant to CNS disorders can be an important resource for successful biomarker and drug development. However, the limited volume of CSF that can be collected from tiny intrathecal spaces and the technical difficulties involved in CSF sampling has been a bottleneck that has hindered the detailed analysis of CSF in mouse models. METHODS We developed a novel chronic dural port (CDP) method without cannulation for CSF collection of mice. This method enables easy and repeated access to the intrathecal space in a free-moving, unanesthetized mouse, thereby enabling continuous long-term CSF collection with minimal tissue damage and providing a large volume of high-quality CSF from a single mouse. When combined with chemical biosensors, the CDP method allows for real-time monitoring of the dynamic changes in neurochemicals in the CSF at a one-second temporal resolution in free-moving mice. Moreover, the CDP can serve as a direct access point for the intrathecal injection of CSF tracers and drugs. RESULTS We established a CDP implantation and continuous CSF collection protocol. The CSF collected using CDP was not contaminated with blood and maintained physiological concentrations of basic electrolytes and proteins. The CDP method did not affect mouse's physiological behavior or induce tissue damage, thereby enabling a stable CSF collection for up to four weeks. The spatio-temporal distribution of CSF tracers delivered using CDP revealed that CSF metabolism in different brain areas is dynamic. The direct intrathecal delivery of centrally acting drugs using CDP enabled real-time behavioral assessments in free-moving mice. CONCLUSIONS The CDP method enables the collection of a large volume of high-quality CSF and direct intrathecal drug administration with real-time behavioral assessment in free-moving mice. Combined with animal models relevant to CNS disorders, this method provides a unique and valuable platform for biomarker and therapeutic drug research.
Collapse
Affiliation(s)
- Tsuneo Nakajima
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Shuko Takeda
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Yuki Ito
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Akane Oyama
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka 573- 0022 Japan
| | - Yoichi Takami
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Yasushi Takeya
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Clinical Nursing Division of Health Sciences Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Koichi Yamamoto
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ken Sugimoto
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.415086.e0000 0001 1014 2000General and Geriatric Medicine, Kawasaki Medical School General Medical Center, Okayama, 700-8505 Japan
| | - Hideo Shimizu
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan ,grid.412378.b0000 0001 1088 0812Department of Internal Medicine, Osaka Dental University, Hirakata, Osaka 573-1121 Japan
| | - Munehisa Shimamura
- grid.136593.b0000 0004 0373 3971Department of Neurology, Department of Health Development and Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Hiromi Rakugi
- grid.136593.b0000 0004 0373 3971Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Ryuichi Morishita
- grid.136593.b0000 0004 0373 3971Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| |
Collapse
|
6
|
Clay M, Monbouquette HG. Simulated Performance of Electroenzymatic Glutamate Biosensors In Vivo Illuminates the Complex Connection to Calibration In Vitro. ACS Chem Neurosci 2021; 12:4275-4285. [PMID: 34734695 DOI: 10.1021/acschemneuro.1c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Detailed simulations show that the relationship between electroenzymatic glutamate (Glut) sensor performance in vitro and that modeled in vivo is complicated by the influence of both resistances to mass transfer and clearance rates of Glut and H2O2 in the brain extracellular space (ECS). Mathematical modeling provides a powerful means to illustrate how these devices are expected to respond to a variety of conditions in vivo in ways that cannot be accomplished readily using existing experimental techniques. Through the use of transient model simulations in one spatial dimension, it is shown that the sensor response in vivo may exhibit much greater dependence on H2O2 mass transfer and clearance in the surrounding tissue than previously thought. This dependence may lead to sensor signals more than double the expected values (based on prior sensor calibration in vitro) for Glut release events within a few microns of the sensor surface. The sensor response in general is greatly affected by the distance between the device and location of Glut release, and apparent concentrations reported by simulated sensors consistently are well below the actual Glut levels for events occurring at distances greater than a few microns. Simulations of transient Glut concentrations, including a physiologically relevant bolus release, indicate that detection of Glut signaling likely is limited to events within 30 μm of the sensor surface based on representative sensor detection limits. It follows that important limitations also exist with respect to interpretation of decays in sensor signals, including relation of such data to actual Glut concentration declines in vivo. Thus, the use of sensor signal data to determine quantitatively the rates of Glut uptake from the brain ECS likely is problematic. The model is designed to represent a broad range of relevant physiological conditions, and although limited to one dimension, provides much needed guidance regarding the interpretation in general of electroenzymatic sensor data gathered in vivo.
Collapse
Affiliation(s)
- Mackenzie Clay
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, California 90095−1592, United States
| | - Harold G. Monbouquette
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, California 90095−1592, United States
| |
Collapse
|
7
|
Relationships between oxygen changes in the brain and periphery following physiological activation and the actions of heroin and cocaine. Sci Rep 2021; 11:6355. [PMID: 33737657 PMCID: PMC7973713 DOI: 10.1038/s41598-021-85798-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 11/09/2022] Open
Abstract
Using two-sensor electrochemical recordings in freely moving rats, we examined the relationship between physiological and drug-induced oxygen fluctuations in the brain and periphery. Animals chronically implanted with oxygen sensors in the nucleus accumbens (NAc) and subcutaneous (SC) space were subjected to several mildly arousing stimuli (sound, tail-pinch and social interaction) and intravenous injections of cocaine and heroin. Arousing stimuli induced rapid increases in NAc oxygen levels followed by and correlated with oxygen decreases in the SC space. Therefore, cerebral vasodilation that increases cerebral blood flow and oxygen entry into brain tissue results from both direct neuronal activation and peripheral vasoconstriction, which redistributes arterial blood from periphery to the brain. The latter factor could also explain a similar pattern of oxygen responses found in the substantia nigra reticulata, suggesting hyperoxia as a global phenomenon with minor structural differences during early time intervals following the stimulus onset. While arousing stimuli and cocaine induced similar oxygen responses in the brain and SC space, heroin induced a biphasic down-up brain oxygen fluctuation associated with a monophasic oxygen decrease in the SC space. Oxygen decreases occurred more rapidly and stronger in the SC space, reflecting a drop in blood oxygen levels due to respiratory depression.
Collapse
|
8
|
Kiyatkin EA. Brain temperature and its role in physiology and pathophysiology: Lessons from 20 years of thermorecording. Temperature (Austin) 2019; 6:271-333. [PMID: 31934603 PMCID: PMC6949027 DOI: 10.1080/23328940.2019.1691896] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022] Open
Abstract
It is well known that temperature affects the dynamics of all physicochemical processes governing neural activity. It is also known that the brain has high levels of metabolic activity, and all energy used for brain metabolism is finally transformed into heat. However, the issue of brain temperature as a factor reflecting neural activity and affecting various neural functions remains in the shadow and is usually ignored by most physiologists and neuroscientists. Data presented in this review demonstrate that brain temperature is not stable, showing relatively large fluctuations (2-4°C) within the normal physiological and behavioral continuum. I consider the mechanisms underlying these fluctuations and discuss brain thermorecording as an important tool to assess basic changes in neural activity associated with different natural (sexual, drinking, eating) and drug-induced motivated behaviors. I also consider how naturally occurring changes in brain temperature affect neural activity, various homeostatic parameters, and the structural integrity of brain cells as well as the results of neurochemical evaluations conducted in awake animals. While physiological hyperthermia appears to be adaptive, enhancing the efficiency of neural functions, under specific environmental conditions and following exposure to certain psychoactive drugs, brain temperature could exceed its upper limits, resulting in multiple brain abnormalities and life-threatening health complications.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
9
|
Abstract
Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.
Collapse
Affiliation(s)
- T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne Campus, Bundoora, Victoria 3086, Australia;
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
10
|
Park S, Loke G, Fink Y, Anikeeva P. Flexible fiber-based optoelectronics for neural interfaces. Chem Soc Rev 2019; 48:1826-1852. [PMID: 30815657 DOI: 10.1039/c8cs00710a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurological and psychiatric conditions pose an increasing socioeconomic burden on our aging society. Our ability to understand and treat these conditions relies on the development of reliable tools to study the dynamics of the underlying neural circuits. Despite significant progress in approaches and devices to sense and modulate neural activity, further refinement is required on the spatiotemporal resolution, cell-type selectivity, and long-term stability of neural interfaces. Guided by the principles of neural transduction and by the materials properties of the neural tissue, recent advances in neural interrogation approaches rely on flexible and multifunctional devices. Among these approaches, multimaterial fibers have emerged as integrated tools for sensing and delivering of multiple signals to and from the neural tissue. Fiber-based neural probes are produced by thermal drawing process, which is the manufacturing approach used in optical fiber fabrication. This technology allows straightforward incorporation of multiple functional components into microstructured fibers at the level of their macroscale models, preforms, with a wide range of geometries. Here we will introduce the multimaterial fiber technology, its applications in engineering fields, and its adoption for the design of multifunctional and flexible neural interfaces. We will discuss examples of fiber-based neural probes tailored to the electrophysiological recording, optical neuromodulation, and delivery of drugs and genes into the rodent brain and spinal cord, as well as their emerging use for studies of nerve growth and repair.
Collapse
Affiliation(s)
- Seongjun Park
- School of Engineering, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
11
|
Kiyatkin EA. Respiratory depression and brain hypoxia induced by opioid drugs: Morphine, oxycodone, heroin, and fentanyl. Neuropharmacology 2019; 151:219-226. [PMID: 30735692 DOI: 10.1016/j.neuropharm.2019.02.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Opioid drugs are important tools to alleviate pain of different origins, but they have strong addictive potential and their abuse at higher doses often results in serious health complications. Respiratory depression that leads to brain hypoxia is perhaps the most dangerous symptom of acute intoxication with opioids, and it could result in lethality. The development of substrate-specific sensors coupled with amperometry made it possible to directly evaluate physiological and drug-induced fluctuations in brain oxygen levels in awake, freely-moving rats. The goal of this review paper is to consider changes in brain oxygen levels induced by several opioid drugs (heroin, fentanyl, oxycodone, morphine). While some of these drugs are widely used in clinical practice, they all are abused, often at doses exceeding the clinical range and often resulting in serious health complications. First, we consider some basic knowledge regarding brain oxygen, its physiological fluctuations, and mechanisms involved in regulating its entry into brain tissue. Then, we present and discuss data on brain oxygen changes induced by each opioid drug within a wide range of doses, from low, behaviorally relevant, to high, likely to be self-administered by drug users. These data allowed us to compare the effects of these drugs on brain oxygen in terms of their potency, time-course, and their potential danger when used at high doses via rapid-onset administration routes. While most data discussed in this work were obtained in rats, we believe that these data have clear human relevance in addressing the alarming rise in lethality associated with the opioid abuse.
Collapse
Affiliation(s)
- Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institute of Health, DHHS, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
12
|
Fentanyl-Induced Brain Hypoxia Triggers Brain Hyperglycemia and Biphasic Changes in Brain Temperature. Neuropsychopharmacology 2018; 43:810-819. [PMID: 28849778 PMCID: PMC5809788 DOI: 10.1038/npp.2017.181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/20/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022]
Abstract
Fentanyl is a potent synthetic opioid used extensively in humans for general anesthesia and analgesia. Fentanyl has emerged as a recreational drug, often in combination with heroin, and can result in lethality during overdose. Fentanyl is well characterized as an anesthetic, but the basic physiological effects of fentanyl in the brain when taken as a drug of abuse are largely unknown. We used high-speed amperometry in freely moving rats to examine the effects of intravenous fentanyl at doses within the range of possible human intake (3-40 μg/kg) on oxygen and glucose levels in nucleus accumbens (NAc). Fentanyl induced a rapid, dose-dependent decrease in NAc oxygen followed by a more delayed and prolonged increase in NAc glucose. Fentanyl induced similar oxygen decreases in the basolateral amygdala, indicating that brain hypoxia could be a generalized phenomenon. We used oxygen recordings in the subcutaneous space to confirm that fentanyl-induced brain hypoxia results from decreases in blood oxygen levels caused by drug-induced respiratory depression. Temperature recordings in the NAc, muscle, and skin showed that fentanyl induces biphasic changes in brain temperature, with an initial decrease that results primarily from peripheral vasodilation, and a subsequent increase driven by metabolic brain activation. The initial vasodilation appears caused by respiratory depression-induced hypoxia and a subsequent rise in CO2 that drives fentanyl-induced increases in NAc glucose. Together, these data suggest that fentanyl-induced respiratory depression triggers brain hypoxia and subsequent hyperglycemia, both of which precede slower changes in brain temperature and metabolic brain activity.
Collapse
|
13
|
|
14
|
Bola RA, Kiyatkin EA. Inflow of oxygen and glucose in brain tissue induced by intravenous norepinephrine: relationships with central metabolic and peripheral vascular responses. J Neurophysiol 2017; 119:499-508. [PMID: 29118201 DOI: 10.1152/jn.00692.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
As an essential part of sympathetic activation that prepares the organism for "fight or flight," peripheral norepinephrine (NE) plays an important role in regulating cardiac activity and the tone of blood vessels, increasing blood flow to the heart and the brain and decreasing blood flow to the organs not as necessary for immediate survival. To assess whether this effect is applicable to the brain, we used high-speed amperometry to measure the changes in nucleus accumbens (NAc) levels of oxygen and glucose induced by intravenous injections of NE in awake freely moving rats. We found that NE at low doses (2-18 μg/kg) induces correlative increases in NAc oxygen and glucose, suggesting local vasodilation and enhanced entry of these substances in brain tissue from the arterial blood. By using temperature recordings from the NAc, temporal muscle, and skin, we show that this central effect is associated with strong skin vasoconstriction and phasic increases in intrabrain heat production, indicative of metabolic neural activation. A tight direct correlation between NE-induced changes in metabolic activity and NAc levels of oxygen and glucose levels suggests that local cerebral vasodilation is triggered via a neurovascular coupling mechanism. Our data suggest that NE, by changing vascular tone and cardiac activity, triggers a visceral sensory signal that rapidly reaches the central nervous system via sensory nerves and induces neural activation. This neural activation leads to a chain of neurovascular events that promote entry of oxygen and glucose in brain tissue, thus preventing any possible metabolic deficit during functional activation. NEW & NOTEWORTHY Using high-speed amperometry and thermorecording in freely moving rats, we demonstrate that intravenous norepinephrine at physiological doses induces rapid correlative increases in nucleus accumbens oxygen and glucose levels coupled with increased intrabrain heat production. Although norepinephrine cannot cross the blood-brain barrier, by changing cardiac activity and vascular tone, it creates a sensory signal that reaches the central nervous system via sensory nerves, induces neural activation, and triggers a chain of neurovascular events that promotes intrabrain entry of oxygen and glucose.
Collapse
Affiliation(s)
- R Aaron Bola
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
15
|
Sriwichai S, Janmanee R, Phanichphant S, Shinbo K, Kato K, Kaneko F, Yamamoto T, Baba A. Development of an electrochemical‐surface plasmon dual biosensor based on carboxylated conducting polymer thin films. J Appl Polym Sci 2017. [DOI: 10.1002/app.45641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saengrawee Sriwichai
- Department of Chemistry, Faculty of ScienceChiang Mai UniversityChiang Mai50200 Thailand
- Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang Mai50200 Thailand
| | - Rapiphun Janmanee
- Department of Chemistry, Faculty of Science and TechnologyPibulsongkram Rajabhat UniversityPhitsanulok65000 Thailand
| | - Sukon Phanichphant
- Materials Science Research Center, Faculty of ScienceChiang Mai UniversityChiang Mai50200 Thailand
| | - Kazunari Shinbo
- Graduate School of Science and Technology and Center for Transdisciplinary ResearchNiigata UniversityNiigata950‐2181 Japan
| | - Keizo Kato
- Graduate School of Science and Technology and Center for Transdisciplinary ResearchNiigata UniversityNiigata950‐2181 Japan
| | - Futao Kaneko
- Graduate School of Science and Technology and Center for Transdisciplinary ResearchNiigata UniversityNiigata950‐2181 Japan
| | - Tadashi Yamamoto
- COI‐s Biofluid Biomarker Center, Institute for Research Collaboration and Promotion, Niigata UniversityNiigata950‐2181 Japan
| | - Akira Baba
- Graduate School of Science and Technology and Center for Transdisciplinary ResearchNiigata UniversityNiigata950‐2181 Japan
| |
Collapse
|
16
|
Solis E, Cameron-Burr KT, Kiyatkin EA. Rapid Physiological Fluctuations in Nucleus Accumbens Oxygen Levels Induced by Arousing Stimuli: Relationships with Changes in Brain Glucose and Metabolic Neural Activation. Front Integr Neurosci 2017; 11:9. [PMID: 28484378 PMCID: PMC5401908 DOI: 10.3389/fnint.2017.00009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
Proper entry of oxygen from arterial blood into the brain is essential for maintaining brain metabolism under normal conditions and during functional neural activation. However, little is known about physiological fluctuations in brain oxygen and their underlying mechanisms. To address this issue, we employed high-speed amperometry with platinum oxygen sensors in freely moving male rats. Recordings were conducted in the nucleus accumbens (NAc), a critical structure for sensorimotor integration. Rats were exposed to arousing stimuli of different nature (brief auditory tone, a 1-min novel object presentation, a 3-min social interaction with a conspecific, and a 3-min tail-pinch). We found that all arousing stimuli increased NAc oxygen levels. Increases were rapid (4–10-s onset latencies), modest in magnitude (1–3 μM or 5%–15% over baseline) and duration (5–20 min), and generally correlated with the arousing potential of each stimulus. Two strategies were used to determine the mechanisms underlying the observed increases in NAc oxygen levels. First, we showed that NAc oxygen levels phasically increase following intra-NAc microinjections of glutamate (GLU) that excite accumbal neurons. Therefore, local neural activation with subsequent local vasodilation is involved in mediating physiological increases in NAc oxygen induced by arousing stimuli. Second, by employing oxygen monitoring in the subcutaneous space, a highly-vascularized area with no metabolic activity, we determined that physiological increases in NAc oxygen also depend on the rise in blood oxygen levels caused by respiratory activation. Due to the co-existence of different mechanisms governing oxygen entry into brain tissue, NAc oxygen responses differ from fluctuations in NAc glucose, which, within a normal behavioral continuum, are regulated exclusively by neuro-vascular coupling due to glucose’s highly stable levels in the blood. Finally, we discuss the relationships between physiological fluctuations in NAc oxygen, glucose and metabolic brain activation assessed by intra-brain heat production.
Collapse
Affiliation(s)
- Ernesto Solis
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, Department of Health and Human Services, National Institutes of HealthBaltimore, MD, USA
| | - Keaton T Cameron-Burr
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, Department of Health and Human Services, National Institutes of HealthBaltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, Department of Health and Human Services, National Institutes of HealthBaltimore, MD, USA
| |
Collapse
|
17
|
Solis E, Bola RA, Fasulo BJ, Kiyatkin EA. Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation. ACS Chem Neurosci 2017; 8:265-271. [PMID: 27736094 DOI: 10.1021/acschemneuro.6b00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.
Collapse
Affiliation(s)
- Ernesto Solis
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - R. Aaron Bola
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Bradley J. Fasulo
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Eugene A. Kiyatkin
- In-Vivo Electrophysiology
Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse
− Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
18
|
Wakabayashi KT, Spekterman L, Kiyatkin EA. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain. Eur J Neurosci 2016; 43:1422-30. [PMID: 26613356 PMCID: PMC4884167 DOI: 10.1111/ejn.13137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose.
Collapse
Affiliation(s)
- Ken T. Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Laurence Spekterman
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | - Eugene A. Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| |
Collapse
|
19
|
Bola RA, Kiyatkin EA. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation. Front Physiol 2016; 7:39. [PMID: 26913008 PMCID: PMC4753326 DOI: 10.3389/fphys.2016.00039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022] Open
Abstract
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels.
Collapse
Affiliation(s)
- R Aaron Bola
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
20
|
Wakabayashi KT, Ren SE, Kiyatkin EA. Methylenedioxypyrovalerone (MDPV) mimics cocaine in its physiological and behavioral effects but induces distinct changes in NAc glucose. Front Neurosci 2015; 9:324. [PMID: 26441499 PMCID: PMC4584974 DOI: 10.3389/fnins.2015.00324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/31/2015] [Indexed: 11/17/2022] Open
Abstract
Methylenedioxypyrovalerone (MDPV) is generally considered to be a more potent cocaine-like psychostimulant, as it shares a similar pharmacological profile with cocaine and induces similar physiological and locomotor responses. Recently, we showed that intravenous cocaine induces rapid rise in nucleus accumbens (NAc) glucose and established its relation to neural activation triggered by the peripheral drug actions. This study was conducted to find out whether MDPV, at a behaviorally equivalent dose, shares a similar pattern of NAc glucose dynamics. Using enzyme-based glucose sensors coupled with amperometery in freely moving rats, we found that MDPV tonically decreases NAc glucose levels, a response that is opposite to what we previously observed with cocaine. By analyzing Skin-Muscle temperature differentials, a valid measure of skin vascular tone, we found that MDPV induces vasoconstriction; a similar effect at the level of cerebral vessels could be responsible for the MDPV-induced decrease in NAc glucose. While cocaine also induced comparable, if not slightly stronger peripheral vasoconstriction, this effect was overpowered by local neural activity-induced vasodilation, resulting in rapid surge in NAc glucose. These results imply that cocaine-users may be more susceptible to addiction than MDPV-users due to the presence of an interoceptive signal (i.e., sensory cue), which may result in earlier and more direct reward detection. Additionally, while health complications arising from acute cocaine use are typically cardiovascular related, MDPV may be more dangerous to the brain due to uncompensated cerebral vasoconstriction.
Collapse
Affiliation(s)
- Ken T Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| | - Suelynn E Ren
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, Department of Health and Human Services, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
21
|
Wakabayashi KT, Kiyatkin EA. Behavior-associated and post-consumption glucose entry into the nucleus accumbens extracellular space during glucose free-drinking in trained rats. Front Behav Neurosci 2015; 9:173. [PMID: 26190984 PMCID: PMC4488749 DOI: 10.3389/fnbeh.2015.00173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/19/2015] [Indexed: 01/27/2023] Open
Abstract
Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc) during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain's extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells.
Collapse
Affiliation(s)
- Ken T Wakabayashi
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| | - Eugene A Kiyatkin
- In-Vivo Electrophysiology Unit, Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health Baltimore, MD, USA
| |
Collapse
|
22
|
Wakabayashi KT, Kiyatkin EA. Central and peripheral contributions to dynamic changes in nucleus accumbens glucose induced by intravenous cocaine. Front Neurosci 2015; 9:42. [PMID: 25729349 PMCID: PMC4325903 DOI: 10.3389/fnins.2015.00042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 12/13/2022] Open
Abstract
The pattern of neural, physiological and behavioral effects induced by cocaine is consistent with metabolic neural activation, yet direct attempts to evaluate central metabolic effects of this drug have produced controversial results. Here, we used enzyme-based glucose sensors coupled with high-speed amperometry in freely moving rats to examine how intravenous cocaine at a behaviorally active dose affects extracellular glucose levels in the nucleus accumbens (NAc), a critical structure within the motivation-reinforcement circuit. In drug-naive rats, cocaine induced a bimodal increase in glucose, with the first, ultra-fast phasic rise appearing during the injection (latency 6–8 s; ~50 μM or ~5% of baseline) followed by a larger, more prolonged tonic elevation (~100 μM or 10% of baseline, peak ~15 min). While the rapid, phasic component of the glucose response remained stable following subsequent cocaine injections, the tonic component progressively decreased. Cocaine-methiodide, cocaine's peripherally acting analog, induced an equally rapid and strong initial glucose rise, indicating cocaine's action on peripheral neural substrates as its cause. However, this analog did not induce increases in either locomotion or tonic glucose, suggesting direct central mediation of these cocaine effects. Under systemic pharmacological blockade of dopamine transmission, both phasic and tonic components of the cocaine-induced glucose response were only slightly reduced, suggesting a significant role of non-dopamine mechanisms in cocaine-induced accumbal glucose influx. Hence, intravenous cocaine induces rapid, strong inflow of glucose into NAc extracellular space by involving both peripheral and central, non-dopamine drug actions, thus preventing a possible deficit resulting from enhanced glucose use by brain cells.
Collapse
Affiliation(s)
- Ken T Wakabayashi
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS Baltimore, MD, USA
| | - Eugene A Kiyatkin
- Behavioral Neuroscience Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, DHHS Baltimore, MD, USA
| |
Collapse
|