1
|
Epitachophoresis is a novel versatile total nucleic acid extraction method. Sci Rep 2021; 11:22736. [PMID: 34815497 PMCID: PMC8611068 DOI: 10.1038/s41598-021-02214-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Epitachophoresis is a novel next generation extraction system capable of isolating DNA and RNA simultaneously from clinically relevant samples. Here we build on the versatility of Epitachophoresis by extracting diverse nucleic acids ranging in lengths (20 nt–290 Kbp). The quality of extracted miRNA, mRNA and gDNA was assessed by downstream Next-Generation Sequencing.
Collapse
|
2
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
3
|
Bagchi D, Olvera de la Cruz M. Dynamics of a driven confined polyelectrolyte solution. J Chem Phys 2020; 153:184904. [PMID: 33187440 DOI: 10.1063/5.0027049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The transport of polyelectrolytes confined by oppositely charged surfaces and driven by a constant electric field is of interest in studies of DNA separation according to size. Using molecular dynamics simulations that include the surface polarization effect, we find that the mobilities of the polyelectrolytes and their counterions change non-monotonically with the confinement surface charge density. For an optimum value of the confinement charge density, efficient separation of polyelectrolytes can be achieved over a wide range of polyelectrolyte charge due to the differential friction imparted by oppositely charged confinement on the polyelectrolyte chains. Furthermore, by altering the placement of the charged confinement counterions, enhanced polyelectrolyte separation can be achieved by utilizing the surface polarization effect due to dielectric mismatch between the media inside and outside the confinement.
Collapse
Affiliation(s)
- Debarshee Bagchi
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
4
|
Somaweera H, Estlack Z, Devadhasan JP, Kim J, Kim J. Characterization and Optimization of Isotachophoresis Parameters for Pacific Blue Succinimidyl Ester Dye on a PDMS Microfluidic Chip. MICROMACHINES 2020; 11:mi11110951. [PMID: 33105673 PMCID: PMC7690402 DOI: 10.3390/mi11110951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/23/2023]
Abstract
Isotachophoresis (ITP) for Pacific Blue (PB) dye using a polydimethylsiloxane (PDMS) microfluidic chip is developed and characterized by determining the types and concentrations of electrolytes, the ITP duration, and the electric field density. Among candidate buffers for the trailing electrolyte (TE) and leading electrolyte (LE), 40 mM borate buffer (pH 9) and 200 mM trisaminomethane hydrochloride (Tris-HCl) (pH 8) were selected to obtain the maximum preconcentration and resolution of the PB bands, respectively. With the selected TE and LE buffers, further optimization was performed to determine the electric field (EF) density and the ITP duration. These ITP parameters showed a 20–170,000 preconcentration ratio from initial PB concentrations of 10 nM–100 fM. Further demonstration was implemented to preconcentrate PB-conjugated lactate dehydrogenase (LDH) using the PDMS microfluidic chip. By utilizing the quenching nature of PB-LDH conjugation, we were able to identify concentrations of LDH as low as 10 ng/mL. This simple PDMS microfluidic chip-based ITP for PB preconcentration enables highly sensitive biological and chemical analyses by coupling with various downstream detection systems.
Collapse
Affiliation(s)
- Himali Somaweera
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (H.S.); (J.P.D.)
| | - Zachary Estlack
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA;
| | | | | | - Jungkyu Kim
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA;
- Correspondence: ; Tel.: +1-(801)-581-6743
| |
Collapse
|
5
|
Qamar AZ, Asefifeyzabadi N, Taki M, Naphade S, Ellerby LM, Shamsi MH. Characterization and application of fluidic properties of trinucleotide repeat sequences by wax-on-plastic microfluidics. J Mater Chem B 2020; 8:743-751. [PMID: 31894829 DOI: 10.1039/c9tb02208b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trinucleotide repeat (TNR) sequences introduce sequence-directed flexibility in the genomic makeup of all living species leading to unique non-canonical structure formation. In humans, the expansions of TNR sequences are responsible for almost 24 neurodegenerative and neuromuscular diseases because their unique structures disrupt cell functions. The biophysical studies of these sequences affect their electrophoretic mobility and spectroscopic signatures. Here, we demonstrate a novel strategy to characterize and discriminate the TNR sequences by monitoring their capillary flow in the absence of an external driving force using wax-on-plastic microchannels. The wax-on-plastic microfluidic system translates the sequence-directed flexibility of TNR into differential flow dynamics. Several variables were used to characterize sequences including concentration, single- vs. double-stranded samples, type of repeat sequence, length of the repeat sequence, presence of mismatches in duplex, and presence of metal ion. All these variables were found to influence the flow velocities of TNR sequences as these factors directly affect the structural flexibility of TNR at the molecular level. An overall trend was observed as the higher flexibility in the TNR structure leads to lower capillary flow. After testing samples derived from relevant cells harboring expanded TNR sequences, it is concluded that this approach may transform into a reagent-free and pump-free biosensing platform to detect microsatellite expansion diseases.
Collapse
Affiliation(s)
- Ahmad Zaman Qamar
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| | - Narges Asefifeyzabadi
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| | - Motahareh Taki
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| | - Swati Naphade
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Mohtashim Hassan Shamsi
- Department of Chemistry & Biochemistry, Southern Illinois University at Carbondale, 1245 Lincoln Dr, Carbondale, IL 62901, USA.
| |
Collapse
|
6
|
He L, Martins P, Huguenin J, Van TNN, Manso T, Galindo T, Gregoire F, Catherinot L, Molina F, Espeut J. Simple, sensitive and robust chicken specific sexing assays, compliant with large scale analysis. PLoS One 2019; 14:e0213033. [PMID: 30822330 PMCID: PMC6396912 DOI: 10.1371/journal.pone.0213033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Chicken meat and eggs are important sources of food for the world population. The significant increase in food demand has pushed the food industry toward a rapid non-expensive production which in turn raises ethical issues. How chicken are cultivated and processed in food industry is no longer acceptable. Ethical and economical concerns emerging from chicken culling need to be solved in the near future. Indeed, in egg production industry, male chicken are killed at the age of 1-day post-hatching since they are not egg producers. A number of laboratory all over the world are looking for innovative non-invasive sexing methods to determine the sex of chicken in the early stages of the development before hatching. It will allow males' chicken elimination before the pain-feeling stages. In order to evaluate the efficiency of these methods, the scientific community need a reliable, easy to use and cost-effective in-ovo invasive sexing method. In this report, we developed two new invasive assays based on PCR and Q-PCR techniques respectively, which fulfil the above mentioned requirements. In the same line with other groups, we exploited the differences betweed males (ZZ) and females (ZW) chicken sexual chromosomes. We identified two genes, SWIM and Xho-I, on chromosome W and DMRT gene on chromosome Z allowing a clear discrimination between the two sexes using PCR and qPCR respectively. These two new genomic markers and their corresponding methods not only increase the accuracy but also reduce time and cost of the test compared to previously developed sexing methods. Depending on the technology available in the lab, one can choose between the two techniques requiring different machines and expertise.
Collapse
Affiliation(s)
- Liyan He
- Sys2diag, UMR9005 CNRS/Alcediag, Montpellier, France
| | | | | | | | - Taciana Manso
- Sys2diag, UMR9005 CNRS/Alcediag, Montpellier, France
| | | | | | | | - Franck Molina
- Sys2diag, UMR9005 CNRS/Alcediag, Montpellier, France
- * E-mail: (JE); (FM)
| | - Julien Espeut
- Sys2diag, UMR9005 CNRS/Alcediag, Montpellier, France
- * E-mail: (JE); (FM)
| |
Collapse
|
7
|
Zhang M, Ngampeerapong C, Redin D, Ahmadian A, Sychugov I, Linnros J. Thermophoresis-Controlled Size-Dependent DNA Translocation through an Array of Nanopores. ACS NANO 2018; 12:4574-4582. [PMID: 29648793 DOI: 10.1021/acsnano.8b00961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Large arrays of nanopores can be used for high-throughput biomolecule translocation with applications toward size discrimination and sorting at the single-molecule level. In this paper, we propose to discriminate DNA length by the capture rate of the molecules to an array of relatively large nanopores (50-130 nm) by introducing a thermal gradient by laser illumination in front of the pores balancing the force from an external electric field. Nanopore arrays defined by photolithography were batch processed using standard silicon technology in combination with electrochemical etching. Parallel translocation of single, fluorophore-labeled dsDNA strands is recorded by imaging the array with a fast CMOS camera. The experimental data show that the capture rates of DNA molecules decrease with increasing DNA length due to the thermophoretic effect of the molecules. It is shown that the translocation can be completely turned off for the longer molecule using an appropriate bias, thus allowing a size discrimination of the DNA translocation through the nanopores. A derived analytical model correctly predicts the observed capture rate. Our results demonstrate that by combining a thermal and a potential gradient at the nanopores, such large nanopore arrays can potentially be used as a low-cost, high-throughput platform for molecule sensing and sorting.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| | - Chonmanart Ngampeerapong
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| | - David Redin
- School of Biotechnology, Division of Gene Technology, Science for Life Laboratory , KTH Royal Institute of Technology , SE-171 65 , Solna , Sweden
| | - Afshin Ahmadian
- School of Biotechnology, Division of Gene Technology, Science for Life Laboratory , KTH Royal Institute of Technology , SE-171 65 , Solna , Sweden
| | - Ilya Sychugov
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| | - Jan Linnros
- Department of Applied Physics , KTH Royal Institute of Technology , Electrum 229 , 164 40 Kista , Sweden
| |
Collapse
|
8
|
Borghei YS, Hosseini M, Ganjali MR, Hosseinkhani S. A novel BRCA1 gene deletion detection in human breast carcinoma MCF-7 cells through FRET between quantum dots and silver nanoclusters. J Pharm Biomed Anal 2018; 152:81-88. [DOI: 10.1016/j.jpba.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/31/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023]
|
9
|
Revealing cooperative binding of polycationic cyclodextrins with DNA oligomers by capillary electrophoresis coupled to mass spectrometry. Anal Chim Acta 2018; 1002:70-81. [DOI: 10.1016/j.aca.2017.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 11/23/2022]
|
10
|
Zou T, Kizaki S, Sugiyama H. Investigating Nucleosome Accessibility for MNase, FeII
Peplomycin, and Duocarmycin B2
by Using Capillary Electrophoresis. Chembiochem 2018; 19:664-668. [DOI: 10.1002/cbic.201700643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Zou
- Department of Science; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Seiichiro Kizaki
- Department of Science; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Science; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida Ushinomiya-cho Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
11
|
Suzuki N, Miyabe K. Evaluation of Migration Time and Variance for Accurate Kinetic Studies Based on Affinity Capillary Electrophoresis. Anal Chem 2017; 89:10487-10495. [DOI: 10.1021/acs.analchem.7b02598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nozomu Suzuki
- Department of Chemistry,
College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Kanji Miyabe
- Department of Chemistry,
College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
12
|
|
13
|
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials. Electrophoresis 2017; 38:2389-2404. [DOI: 10.1002/elps.201700097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
14
|
Jarvas G, Kerekgyarto M, Guttman A. On the electromigration of charged fluorophore-labeled oligosaccharides in polyethylene oxide solutions. Electrophoresis 2016; 37:2347-51. [PMID: 27159236 DOI: 10.1002/elps.201600183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 11/10/2022]
Abstract
The separation mechanism of charged fluorophore (aminopyrenetrisulfonate)-labeled maltooligosaccharides with α1-4 linkages was studied in polyethylene oxide (PEO) solutions (MW 300 000 Da) with special interest to possible analyte and/or network deformations as well as potential solute-matrix interactions. The electrophoretic mobilities of the 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were found proportional with their MW(-2/3) . The Arrhenius function was used to determine the activation energy needed by the labeled sugars to migrate through the separation media. With increasing solute size, the activation energy (Ea ) values decreased in polymer concentrations above the entanglement threshold of the PEO, while showed apparently independent function at the entanglement threshold. The observed phenomenon was considered as a result of solute-matrix interaction, which could be alleviated by the addition of an organic modifier to the BGE.
Collapse
Affiliation(s)
- Gabor Jarvas
- Horváth Csaba Laboratory of Bioseparation Sciences, Regional Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary.,MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | - Marta Kerekgyarto
- Horváth Csaba Laboratory of Bioseparation Sciences, Regional Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - András Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, Regional Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary. .,MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary.
| |
Collapse
|
15
|
Wang M, He B, Lu L, Leung CH, Mergny JL, Ma DL. Label-free luminescent detection of LMP1 gene deletion using an intermolecular G-quadruplex-based switch-on probe. Biosens Bioelectron 2015; 70:338-44. [DOI: 10.1016/j.bios.2015.03.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/14/2015] [Accepted: 03/20/2015] [Indexed: 12/27/2022]
|
16
|
Klepárník K, Datinská V, Voráčová I, Lišková M. Analysis of quantum dots and their conjugates by capillary electrophoresis with detection of laser-induced luminescence. Methods Mol Biol 2015; 1199:33-54. [PMID: 25103798 DOI: 10.1007/978-1-4939-1280-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In many bioanalytical applications, important molecules such as DNA, proteins, and antibodies are routinely conjugated with fluorescent tags to reach an extraordinary sensitivity of analyses. Semiconductor nanoparticles, quantum dots, have already proved to be suitable components of highly luminescent tags, probes, and sensors with a broad applicability in analytical chemistry. Quantum dots provide high extinction coefficients together with a wide range of excitation wavelengths, size- and composition-tunable emissions, narrow and symmetric emission spectra, good quantum yields, relatively long size-dependent luminescence lifetime, and practically no photobleaching. Most of these properties are superior when compared with conventional organic fluorescent dyes. In this chapter, optimized procedures for the preparation of water-dispersed cadmium telluride (CdTe) quantum dots, conjugating reactions with antibodies, DNA, and macrocycles as well as their analyses by capillary electrophoresis are described. The potential of capillary electrophoresis for fast analyses of nanoparticles, their conjugates with antibodies, and immunocomplexes with targeted antigens is demonstrated on examples.
Collapse
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic,
| | | | | | | |
Collapse
|
17
|
Durney BC, Bachert BA, Sloane HS, Lukomski S, Landers JP, Holland LA. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking. Anal Chim Acta 2015; 880:136-44. [PMID: 26092346 DOI: 10.1016/j.aca.2015.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023]
Abstract
Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix of low viscosity. DNA sample stacking is facilitated with longer injection times without sacrificing separation efficiency.
Collapse
Affiliation(s)
- Brandon C Durney
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, United States
| | - Hillary S Sloane
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506, United States
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Mechanical Engineering, University of Virginia, Charlottesville, VA 22904, United States; Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA 22904, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
18
|
Maffeo C, Yoo J, Comer J, Wells DB, Luan B, Aksimentiev A. Close encounters with DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:413101. [PMID: 25238560 PMCID: PMC4207370 DOI: 10.1088/0953-8984/26/41/413101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.
Collapse
Affiliation(s)
- C Maffeo
- Department of Physics, University of Illinois, Urbana, IL, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ultrasensitive determination of DNA sequences by flow injection chemiluminescence using silver ions as labels. Anal Chim Acta 2014; 848:67-73. [DOI: 10.1016/j.aca.2014.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/04/2023]
|
20
|
Qiu W, Xu H, Takalkar S, Gurung AS, Liu B, Zheng Y, Guo Z, Baloda M, Baryeh K, Liu G. Carbon nanotube-based lateral flow biosensor for sensitive and rapid detection of DNA sequence. Biosens Bioelectron 2014; 64:367-72. [PMID: 25262062 DOI: 10.1016/j.bios.2014.09.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/04/2014] [Accepted: 09/14/2014] [Indexed: 01/31/2023]
Abstract
In this article, we describe a carbon nanotube (CNT)-based lateral flow biosensor (LFB) for rapid and sensitive detection of DNA sequence. Amine-modified DNA detection probe was covalently immobilized on the shortened multi-walled carbon nanotubes (MWCNTs) via diimide-activated amidation between the carboxyl groups on the CNT surface and amine groups on the detection DNA probes. Sandwich-type DNA hybridization reactions were performed on the LFB and the captured MWCNTs on test zone and control zone of LFB produced the characteristic black bands, enabling visual detection of DNA sequences. Combining the advantages of lateral flow chromatographic separation with unique physical properties of MWCNT (large surface area), the optimized LFB was capable of detecting of 0.1 nM target DNA without instrumentation. Quantitative detection could be realized by recording the intensity of the test line with the Image J software, and the detection limit of 40 pM was obtained. This detection limit is 12.5 times lower than that of gold nanoparticle (GNP)-based LFB (0.5 nM, Mao et al. Anal. Chem. 2009, 81, 1660-1668). Another important feature is that the preparation of MWCNT-DNA conjugates was robust and the use of MWCNT labels avoided the aggregation of conjugates and tedious preparation time, which were often met in the traditional GNP-based nucleic acid LFB. The applications of MWCNT-based LFB can be extended to visually detect protein biomarkers using MWCNT-antibody conjugates. The MWCNT-based LFB thus open a new door to prepare a new generation of LFB, and shows great promise for in-field and point-of-care diagnosis of genetic diseases and for the detection of infectious agents.
Collapse
Affiliation(s)
- Wanwei Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Hui Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Sunitha Takalkar
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Anant S Gurung
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Meenu Baloda
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Kwaku Baryeh
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States
| | - Guodong Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58105, United States.
| |
Collapse
|
21
|
Tan L, Zheng X, Chen L, Wang Y. Quality testing of human albumin by capillary electrophoresis using thermally cross-linked poly(vinyl pyrrolidone)-coated fused-silica capillary. J Sep Sci 2014; 37:2974-82. [DOI: 10.1002/jssc.201400463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Lin Tan
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| | - Xiajun Zheng
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| | - Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei P.R. China
| |
Collapse
|
22
|
Gahoual R, Busnel JM, Beck A, François YN, Leize-Wagner E. Full Antibody Primary Structure and Microvariant Characterization in a Single Injection Using Transient Isotachophoresis and Sheathless Capillary Electrophoresis–Tandem Mass Spectrometry. Anal Chem 2014; 86:9074-81. [DOI: 10.1021/ac502378e] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rabah Gahoual
- Laboratoire
de Spectrométrie de Masse des Interactions et des Systèmes
(LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| | | | - Alain Beck
- Centre d’immunologie
Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- Laboratoire
de Spectrométrie de Masse des Interactions et des Systèmes
(LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- Laboratoire
de Spectrométrie de Masse des Interactions et des Systèmes
(LSMIS), UDS-CNRS UMR 7140, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
23
|
Allan KE, Lenehan CE, Khodakov DA, Ellis AV. Rapid separation of synthetic oligonucleotides on polymer modified capillary surfaces using short-end injection capillary electrophoresis in free solution. Analyst 2014; 138:6954-61. [PMID: 24087827 DOI: 10.1039/c3an01422c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we use short-end electrokinetic injection capillary electrophoresis (CE) to investigate the free solution mobility of short strands of double-stranded oligonucleotides (dsODNs) on polymer modified capillaries. Single base pair (bp) resolution (Rs) of dsODNs ranging from 16-20 bp was achieved in free solution on an 8 cm capillary dynamically coated with poly(ethylpyrrolidine methacrylate-co-methyl methacrylate) (PEPyM-co-PMMA) random copolymer. Interestingly, separation of a dsODN mixture containing two 16 bp strands of different sequences resulted in partial resolution (0.52) implying that the free solution mobility of dsODNs was sequence dependent. The single bp resolution achieved for the complementary sequence strands (the sequence of all strands in the mixtures contained the same 16 bp sequence) was improved by up to 37% for separation of dsODNs containing non-complementary sequences. The 16 bp peak was not additive within each mixture, indicating the presence of ODN-ODN interactions. Investigation of these interactions (and ODN-buffer interactions) showed that they can be influenced by the ionic strength and conductivity of the background electrolyte (BGE). Increasing the ionic strength reduced the ODN-ODN interactions and improved the resolution, whereas, increasing the conductivity reduced ODN-buffer interactions, increasing the mobility, at the consequence of promoting ODN-ODN interactions, and hence decreasing the resolution.
Collapse
Affiliation(s)
- Kerrilee E Allan
- Flinders Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | | | | | | |
Collapse
|
24
|
Zheng L, Li X, Liu P, Wu G, Lu X, Liu X. Simultaneous detection of multiple DNA targets based on encoding metal ions. Biosens Bioelectron 2014; 52:354-9. [DOI: 10.1016/j.bios.2013.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/07/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|
25
|
Durney BC, Lounsbury JA, Poe BL, Landers JP, Holland LA. A thermally responsive phospholipid pseudogel: tunable DNA sieving with capillary electrophoresis. Anal Chem 2013; 85:6617-25. [PMID: 23750918 DOI: 10.1021/ac303745g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an aqueous solution the phospholipids dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble to form thermo-responsive non-Newtonian fluids (i.e., pseudogels) in which small temperature changes of 5-6 °C decrease viscosity dramatically. This characteristic is useful for sieving-based electrophoretic separations (e.g., of DNA), as the high viscosity of linear sieving additives, such as linear polyacrylamide or polyethylene oxide, hinders the introduction and replacement of the sieving agent in microscale channels. Advantages of utilizing phospholipid pseudogels for sieving are the ease with which they are introduced into the separation channel and the potential to implement gradient separations. Capillary electrophoresis separations of DNA are achieved with separation efficiencies ranging from 400,000 to 7,000,000 theoretical plates in a 25 μm i.d. fused silica capillary. Assessment of the phospholipid pseudogel with a Ferguson plot yields an apparent pore size of ~31 nm. Under isothermal conditions, Ogston sieving is achieved for DNA fragments smaller than 500 base pairs, whereas reptation-based transport occurs for DNA fragments larger than 500 base pairs. Nearly single base resolution of short tandem repeats relevant to human identification is accomplished with 30 min separations using traditional capillary electrophoresis instrumentation. Applications that do not require single base resolution are completed with faster separation times. This is demonstrated for a multiplex assay of biallelic single nucleotide polymorphisms relevant to warfarin sensitivity. The thermo-responsive pseudogel preparation described here provides a new innovation to sieving-based capillary separations.
Collapse
Affiliation(s)
- Brandon C Durney
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | | | | | | | | |
Collapse
|
26
|
Zhang H, Song J, Ren H, Xu Z, Wang X, Shan L, Fang J. Detection of low-abundance KRAS mutations in colorectal cancer using microfluidic capillary electrophoresis-based restriction fragment length polymorphism method with optimized assay conditions. PLoS One 2013; 8:e54510. [PMID: 23355875 PMCID: PMC3552804 DOI: 10.1371/journal.pone.0054510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/12/2012] [Indexed: 01/04/2023] Open
Abstract
Constitutively active KRAS mutations have been found to be involved in various processes of cancer development, and render tumor cells resistant to EGFR-targeted therapies. Mutation detection methods with higher sensitivity will increase the possibility of choosing the correct individual therapy. Here, we established a highly sensitive and efficient microfluidic capillary electrophoresis-based restriction fragment length polymorphism (µCE-based RFLP) platform for low-abundance KRAS genotyping with the combination of µCE and RFLP techniques. By using our self-built sensitive laser induced fluorescence (LIF) detector and a new DNA intercalating dye YOYO-1, the separation conditions of µCE for ΦX174 HaeIII DNA marker were first optimized. Then, a Mav I digested 107-bp KRAS gene fragment was directly introduced into the microfluidic device and analyzed by µCE, in which field amplified sample stacking (FASS) technique was employed to obtain the enrichment of the RFLP digestion products and extremely improved the sensitivity. The accurate analysis of KRAS statuses in HT29, LS174T, CCL187, SW480, Clone A, and CX-1 colorectal cancer (CRC) cell lines by µCE-based RFLP were achieved in 5 min with picoliter-scale sample consumption, and as low as 0.01% of mutant KRAS could be identified from a large excess of wild-type genomic DNA (gDNA). In 98 paraffin-embedded CRC tissues, KRAS codon 12 mutations were discovered in 28 (28.6%), significantly higher than that obtained by direct sequencing (13, 13.3%). Clone sequencing confirmed these results and showed this system could detect at least 0.4% of the mutant KRAS in CRC tissue slides. Compared with direct sequencing, the new finding of the µCE-based RFLP platform was that KRAS mutations in codon 12 were correlated with the patient's age. In conclusion, we established a sensitive, fast, and cost-effective screening method for KRAS mutations, and successfully detected low-abundance KRAS mutations in clinical samples, which will allow provision of more precise individualized cancer therapy.
Collapse
Affiliation(s)
- Huidan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Bahga SS, Santiago JG. Coupling isotachophoresis and capillary electrophoresis: a review and comparison of methods. Analyst 2013; 138:735-54. [DOI: 10.1039/c2an36150g] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Nguyen TV, Chen JK, Murray V. Bleomycin DNA damage: Anomalous mobility of 3'-phosphoglycolate termini in an automated capillary DNA sequencer. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 913-914:113-22. [PMID: 23277328 DOI: 10.1016/j.jchromb.2012.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 01/22/2023]
Abstract
An automated capillary DNA sequencer with laser-induced fluorescence detection can be utilised for DNA fragment analysis. The precise mobilities of DNA fragments with different chemical termini are especially important in the determination of the sequence specificity of DNA damaging agents. The aim of this study was to examine the electrophoretic mobility profile of DNA fragments with different 3'-termini. The nature of the 3'-teminal residue was found to have a major effect on the electrophoretic mobility of the DNA fragment, especially for 3'-phosphoglycolate termini that migrated anomalously by 3-6 nucleotides. Using the automated capillary sequencer, the electrophoretic mobilities of DNA fragments with different 3'-termini including 3'-hydrogen, 3'-hydroxyl, 3'-phosphate, and 3'-phosphoglycolate were extensively quantified and compared relative to each other. The 3'-hydrogen termini were generated by dideoxy sequencing; 3'-hydroxyl ends by minus sequencing; 3'-phosphate by Maxam-Gilbert chemical sequencing; and 3'-phosphoglycolate by bleomycin cleavage. The mobilities of these DNA fragments with different 3'-termini were found to be: (slowest) 3'-hydroxyl<3'-hydrogen<3'-phosphate<3'-phosphoglycolate (fastest); with average relative mobilities of 0.00<0.12<0.63<4.42 nucleotides, respectively. The possible causes of the unusual electrophoretic mobility of the 3'-phosphoglycolate termini were discussed.
Collapse
Affiliation(s)
- Trung V Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
29
|
Manage DP, Elliott DG, Backhouse CJ. Millimeter scale separation of DNA with a replaceable polymer matrix. Electrophoresis 2012; 33:3213-21. [PMID: 23027089 DOI: 10.1002/elps.201200188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/16/2022]
Abstract
Electrophoresis is a powerful method that has seen a wide range of applications, often in automated genetic diagnostic instruments that require the use of a replaceable sieving matrix. The power and simplicity of electrophoresis as an analysis technique would be ideal for highly integrated and low-cost analysis systems if the method could be implemented in microfluidics on the scale of several mm. We demonstrate the electrophoretic analysis of DNA with separation lengths as small as 2 mm and with a resolution adequate for the analysis of PCR products, i.e. resolutions of 10-20 base pairs. Such small-scale separations enable analysis systems consisting of microfluidics and microelectronics integrated into a single inexpensive package, thereby overcoming a key challenge facing the development of the lab on chip technologies.
Collapse
Affiliation(s)
- Dammika P Manage
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
30
|
Qu X, Wang Y, Shi Z, Fu G, Zeng X, Li X, Chen H. Probe droplet arrays generated in the capillary for microarray analysis. Biosens Bioelectron 2012; 38:342-7. [DOI: 10.1016/j.bios.2012.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 11/16/2022]
|
31
|
Mao R, Bayrak-Toydemir P, Lyon E. Capillary electrophoresis for the detection of Fragile X expanded alleles. Methods Mol Biol 2012; 919:275-85. [PMID: 22976108 DOI: 10.1007/978-1-62703-029-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Capillary electrophoresis is an analytical technique that separates ions based on their electrophoresis mobility with the use of an applied voltage. Capillary electrophoresis is used most predominantly in nuclear acid fragment analysis as well as DNA sequencing because it gives faster results and provides high resolution separation. Here we describe an application using capillary electrophoreses for screening the Fragile X expanded alleles to demonstrate the application.
Collapse
Affiliation(s)
- Rong Mao
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | | | | |
Collapse
|
32
|
Morinha F, Cabral J, Bastos E. Molecular sexing of birds: A comparative review of polymerase chain reaction (PCR)-based methods. Theriogenology 2012; 78:703-14. [DOI: 10.1016/j.theriogenology.2012.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/18/2012] [Accepted: 04/26/2012] [Indexed: 02/08/2023]
|
33
|
Allan KE, Lenehan CE, Khodakov DA, Kobus HJ, Ellis AV. High-performance capillary electrophoretic separation of double-stranded oligonucleotides using a poly-(ethylpyrrolidine methacrylate-co-methylmethacrylate)-coated capillary. Electrophoresis 2012; 33:1205-14. [PMID: 22539324 DOI: 10.1002/elps.201100514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Here we describe a capillary electrophoretic method for the separation of double-stranded oligonucleotides (ds-ODNs) ranging from 16-20 bp with 2 bp resolution using a low concentration of poly(ethylpyrrolidine methacrylate-co-methyl methacrylate) (PEPyM-co-PMMA) copolymer physically adsorbed to a capillary surface. Contrary to traditional DNA separations, we show that the ds-ODN with the highest molecular size eluted first and propose that this phenomena is due to a screening effect by the PEPyM-co-PMMA coating on the smaller ds-ODNs negative charge during elution. Key to the performance of this separation was a sample preparation time of less than 1 h and analysis time of 40 min. Repeatability of intraday migration time for the mixtures was typically < 1% relative standard deviation (n = 3). In addition, we demonstrate that the coating has an acceptable capillary lifetime of over 70 injections.
Collapse
Affiliation(s)
- Kerrilee E Allan
- Flinders Centre for NanoScale Science and Technology, Flinders University, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
34
|
Carbon nanotubes in capillary electrophoresis, capillary electrochromatography and microchip electrophoresis. OPEN CHEM 2012. [DOI: 10.2478/s11532-012-0014-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AbstractCarbon nanotubes are among the plethora of novel nanostructures developed since the 1980s. Nanotubes have attracted considerable interest by the scientific community thanks to their extraordinary physical and chemical properties. Research areas have flourished in recent years and now include the nano-electronic, (bio)sensor and analytical field along with many others. This review covers applications of carbon nanotubes in capillary electrophoresis, capillary electrochromatography and microchip electrophoresis. First, carbon nanotubes and a range of electrophoretic techniques are briefly introduced and key references are mentioned. Next, a comprehensive survey of achievements in the field is presented and critically assessed. The merits and downsides of carbon nanotube addition to the various capillary electrophoretic modes are addressed. The different schemes for fabricating electrochromatographic stationary phases based on carbon nanotubes are discussed. Finally, some future perspectives are offered.
Collapse
|
35
|
Liu X, Li L, Sun J, Yan Y, Shu X, Liu B, Sha W, Feng H, Sun S, Zhu J. A coordination complex system for generic, ultrafast, and sensitive multimode fluorescent staining of biomolecules. Inorg Chem 2012; 51:188-92. [PMID: 22145885 DOI: 10.1021/ic201406b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gel electrophoresis staining methodologies documented thus far are largely utilized in a biomolecule context-dependent manner. We report herein the development of a generic, ultrafast, and sensitive multimode fluorescent system for the efficient identification of DNA, RNA, and proteins. Interaction between a positively charged, planar ligand-based coordination complex with partner biomolecule leads to aggregation-induced fluorescence quenching and allows for the image contrast generation within one minute. Alternatively, successive reactions of the biomolecule-loaded gel with cation and ligand, in either order of sequence, provide an equally effective staining efficacy. Image contrast reversal is accomplished through a facile washing or photobleaching procedure. The versatility in the applicable target species and signal generation modes provides a hint at the design of novel staining structures and potentially enables the high-throughput readout of biomolecules.
Collapse
Affiliation(s)
- Xingqiang Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
He HZ, Chan DSH, Leung CH, Ma DL. A highly selective G-quadruplex-based luminescent switch-on probe for the detection of gene deletion. Chem Commun (Camb) 2012; 48:9462-4. [DOI: 10.1039/c2cc32253f] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Noblitt SD, Speights RM, Henry CS. Protonated diamines as anion-binding agents and their utility in capillary electrophoresis separations. Electrophoresis 2011; 32:2986-93. [PMID: 22002837 DOI: 10.1002/elps.201100252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/28/2011] [Accepted: 05/28/2011] [Indexed: 11/08/2022]
Abstract
Capillary zone electrophoresis is a proven method for separating small ions because of the inherent charge and differences in mobility of these analytes. Despite its resolving power, CZE can be insufficient for separating ions with similar mobilities. One remedy is to modify mobilities via the addition of background electrolyte complexation agents. However, this approach is not straightforward for inorganic anions, which lack complexation options. To address this shortfall, the diprotonated diamine moiety was investigated for complexation of dianions. Dicationic diamines significantly complexed dianions, and this interaction was not purely electrostatic in nature because affinities varied with dianion identity. Aqueous association constants were measured with affinity capillary electrophoresis (ACE) and found to be similar in magnitude but different in selectivity to those of dianions with magnesium ion. Binding was also investigated for zwitterionic buffers containing the protonated diamine moiety. Zwitterions exhibited binding constants as high as 18 M(-1) (30-mM ionic strength). This work discusses the observed binding constants and their potential usefulness in CZE separations of inorganic anions. Also covered are improvements to ACE methodology and an evaluation of some of the assumptions employed.
Collapse
Affiliation(s)
- Scott D Noblitt
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
38
|
Cheng HL, Chiou SS, Liao YM, Chen YL, Wu SM. Genotyping of single nucleotide polymorphism in γ-glutamyl hydrolase gene by capillary electrophoresis. Electrophoresis 2011; 32:2021-7. [DOI: 10.1002/elps.201000422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/03/2010] [Accepted: 11/16/2010] [Indexed: 12/14/2022]
|
39
|
Zhang H, Wang X, Ma Q, Zhou Z, Fang J. Rapid detection of low-abundance K-ras mutation in stools of colorectal cancer patients using chip-based temperature gradient capillary electrophoresis. J Transl Med 2011; 91:788-98. [PMID: 21242956 DOI: 10.1038/labinvest.2010.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutant K-ras provides an independent negative predictive marker for epidermal growth factor receptor (EGFR)-targeted therapy in colorectal cancers (CRCs). Rapid, sensitive, and cost-effective screening for K-ras status will overarch rational personalized medicine. Stool-based DNA testing offers unique advantages for CRC screening such as noninvasiveness, high specificity, and patient compliance, whereas complicated procedures and the low sensitivity of the present approaches have hampered its application on a wide scale. In this study, a chip-based temperature gradient capillary electrophoresis (TGCE) technique was applied to detect low-abundance K-ras mutations under a pooled experiment and analyze K-ras mutations in 30 paired stool samples and cancer tissues of CRC patients and 15 stool samples of healthy volunteers. The chip-based TGCE results showed that the successful analysis of K-ras status could be achieved within 6 min with an extremely low sample consumption of 14 nl. Detection is sensitive enough to reliably report 0.2% mutant CRC cells in a wild-type background, and 0.5 ng of template DNA was sufficient for chip-based TGCE. Of the 30 stool samples of CRC patients analyzed, 17 (57%) harbored K-ras mutations, and the lowest percentage of the detectable mutant K-ras in stool samples was 2%. The coincidence rate for K-ras mutations between stools and tissues obtained by the chip-based method reached 97% (29/30). One of the 15 stool samples of normal controls carried K-ras mutations, producing a specificity of 93%. Clone sequencing data entirely confirmed the results obtained by chip-based TGCE. The study demonstrates that chip-based TGCE is capable of rapidly screening low-abundance K-ras mutations with high sensitivity, reproducibility, simplicity, and significant savings of time and sample. Application of this method to genotype the K-ras gene in stools would provide a potential means for predicting the effectiveness of EGFR-targeted therapy in CRC patients using noninvasive approaches.
Collapse
Affiliation(s)
- Huidan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
40
|
Han G, Xing Z, Dong Y, Zhang S, Zhang X. One-Step Homogeneous DNA Assay with Single-Nanoparticle Detection. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Han G, Xing Z, Dong Y, Zhang S, Zhang X. One-Step Homogeneous DNA Assay with Single-Nanoparticle Detection. Angew Chem Int Ed Engl 2011; 50:3462-5. [DOI: 10.1002/anie.201006838] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Indexed: 01/29/2023]
|
42
|
Gao F, Cui P, Chen X, Ye Q, Li M, Wang L. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles. Analyst 2011; 136:3973-80. [DOI: 10.1039/c1an15287d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
43
|
Linck L, Resch-Genger U. Identification of efficient fluorophores for the direct labeling of DNA via rolling circle amplification (RCA) polymerase φ29. Eur J Med Chem 2010; 45:5561-6. [DOI: 10.1016/j.ejmech.2010.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
44
|
Molecular dynamics study of solvation effect on diffusivity changes of DNA fragments. J Mol Model 2010; 17:1457-65. [PMID: 20853125 DOI: 10.1007/s00894-010-0840-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 08/30/2010] [Indexed: 11/27/2022]
Abstract
DNA sequence analyzing and base pair separation techniques have attracted much attention, such as denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and capillary electrophoresis. However, details of sequence separation mechanisms in electrophoresis are not clarified enough. Understanding and controlling flow characteristics of DNA are important not only for fundamental research but also for further developments of bio-nano technologies. In the present study, we theoretically discuss the relationship between diffusivity and hydrated structures of DNA fragments in water solvent using molecular dynamics methods. In particular, influence of base pair substitutions on the diffusivity is investigated, focusing on an adenine-thymine (AT) rich B-DNA decamer 5'-dCGTATATATA-3'. Consequently, it is found that water molecules that concentrate on dissociated base pairs form hydrated structures and change the diffusivity of DNA decamers. The diffusion coefficients are affected by the substitution of GC for AT because of the different manner of interactions between the base molecules and water solvent. This result predicts a possibility of base pair separation according to differences in the diffusivity.
Collapse
|
45
|
Zhang Y, Tang Z, Wang J, Wu H, Maham A, Lin Y. Hairpin DNA Switch for Ultrasensitive Spectrophotometric Detection of DNA Hybridization Based on Gold Nanoparticles and Enzyme Signal Amplification. Anal Chem 2010; 82:6440-6. [DOI: 10.1021/ac1006238] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China, and Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Zhiwen Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China, and Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Jun Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China, and Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Hong Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China, and Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Aihui Maham
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China, and Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Yuehe Lin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, People’s Republic of China, and Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
46
|
Klepárník K, Boček P. Electrophoresis today and tomorrow: Helping biologists' dreams come true. Bioessays 2010; 32:218-226. [PMID: 20127703 DOI: 10.1002/bies.200900152] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Intensive research and development of electrophoresis methodology and instrumentation during past decades has resulted in unique methods widely implemented in bioanalysis. While two-dimensional electrophoresis and denaturing polyacrylamide gel electrophoresis in sodium dodecylsulfate are still the most frequently used electrophoretic methods applied to analyses of proteins, new miniaturized capillary and microfluidic versions of electromigrational methods have been developed. High-throughput electrophoretic instruments with hundreds of capillaries for parallel separations and laser-induced fluorescence detection of labeled DNA strands have been of key importance for the scientific and commercial success of the Human Genome Project. Another powerful method, capillary isoelectric focusing with pressurized and pH-driven mobilization, provides efficient separations and on-line sensitive detection of proteins, bacteria and viruses. Electrophoretic microfluidic devices can integrate single-cell injection, cell lysis, separation of its components and fluorescence or mass spectrometry detection. These miniaturized devices also proved the capability of single-molecule detection.
Collapse
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| |
Collapse
|
47
|
Proteomics in clinical chemistry: will it be long? Trends Biotechnol 2010; 28:225-9. [DOI: 10.1016/j.tibtech.2010.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/11/2010] [Accepted: 02/23/2010] [Indexed: 12/11/2022]
|
48
|
Kanayama N, Shibata H, Kimura A, Miyamoto D, Takarada T, Maeda M. RAFT-generated polyacrylamide-DNA block copolymers for single-nucleotide polymorphism genotyping by affinity capillary electrophoresis. Biomacromolecules 2010; 10:805-13. [PMID: 19249847 DOI: 10.1021/bm801301b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Capillary electrophoretic separation of a mixture of 5'-fluorescein isothiocyanate-labeled single-stranded DNA (normal ssDNA) and its single-base-substituted one (mutant ssDNA) was achieved by using a RAFT-generated polyacrylamide-oligodeoxyribonucleotide block copolymer (PAAm-b-ODN) as an affinity polymeric probe. PAAm-b-ODN was synthesized through the Michael addition of thiol-terminated PAAm (PAAm-SH) to 5'-maleimide-modified ODN. PAAm-SH was derived from dithiobenzoate-terminated PAAm prepared via RAFT polymerization. The number-averaged molecular weight (M(n)) and the molecular weight distribution were determined by aqueous size exclusion chromatography. After a capillary tube was filled with the running buffer solution of PAAm-b-ODN, a mixture of normal and mutant ssDNA was subjected to electrophoresis and detected by a laser-induced fluorescent detector. Because the base sequence of PAAm-b-ODN was complementary to part of the mutant ssDNA, including a single-base substitution site, the electrophoretic migration of mutant ssDNA was retarded due to the formation of the equilibrium complex with PAAm-b-ODN. Increasing M(n) of the PAAm segment enhanced this retardation. On the other hand, normal ssDNA was unable to form the complex owing to a single-base mismatch, which was proved by melting curve measurements. The Lineweaver-Burk-type analysis of the mobility of mutant ssDNA revealed that the binding constants for the complexes with different PAAm-b-ODN probes were almost identical to each other. The analysis also demonstrated that the ratio of the hydrodynamic radius of the complex to that of the free mutant ssDNA increased with increasing M(n) of the affinity polymeric probe's PAAm segment. This means that the PAAm segment indirectly provides mutant ssDNA with an additional hydrodynamic friction force via the affinity interaction of the ODN segment. Optimization of the salt concentration of the running buffer and the capillary temperature improved the resolution of the separation. This affinity polymeric probe will be useful for developing a simple and highly reliable single-nucleotide polymorphism genotyping method.
Collapse
Affiliation(s)
- Naoki Kanayama
- Bioengineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Oh E, Hasan MN, Jamshed M, Park SH, Hong HM, Song EJ, Yoo YS. Growing trend of CE at the omics level: The frontier of systems biology. Electrophoresis 2010; 31:74-92. [DOI: 10.1002/elps.200900410] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Li T, Zhang D, Luo W, Lu M, Wang Z, Song Y, Wang H. Metal Cation Mediated-Capillary Electrophoresis of Nucleic Acids. Anal Chem 2009; 82:487-90. [DOI: 10.1021/ac9025708] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Tao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Wenru Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Meiling Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Zhixin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Yuling Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center For Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China
| |
Collapse
|