1
|
Ghosh A, Yarranton JT, McCusker JK. Establishing the origin of Marcus-inverted-region behaviour in the excited-state dynamics of cobalt(III) polypyridyl complexes. Nat Chem 2024; 16:1665-1672. [PMID: 38965436 DOI: 10.1038/s41557-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
Growing interest in the use of first-row transition metal complexes in a number of applied contexts-including but not limited to photoredox catalysis and solar energy conversion-underscores the need for a detailed understanding of their photophysical properties. A recent focus on ligand-field photocatalysis using cobalt(III) polypyridyls in particular has unlocked unprecedented excited-state reactivities. Photophysical studies on Co(III) chromophores in general are relatively uncommon, and so here we carry out a systematic study of a series of Co(III) polypyridyl complexes in order to delineate their excited-state dynamics. Compounds with varying ligand-field strengths were prepared and studied using variable-temperature ultrafast transient absorption spectroscopy. Analysis of the data establishes that the ground-state recovery dynamics are operating in the Marcus inverted region, in stark contrast to what is typically observed in other first-row metal complexes. The analysis has further revealed the underlying reasons driving this excited-state behaviour, thereby enabling potential advancements in the targeted use of the Marcus inverted region for a variety of photolytic applications.
Collapse
Affiliation(s)
- Atanu Ghosh
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | | | - James K McCusker
- Department of Chemistry, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Ross AD, Hait D, Scutelnic V, Neumark DM, Head-Gordon M, Leone SR. Measurement of coherent vibrational dynamics with X-ray Transient Absorption Spectroscopy simultaneously at the Carbon K- and Chlorine L 2,3- edges. COMMUNICATIONS PHYSICS 2024; 7:304. [PMID: 39281307 PMCID: PMC11399099 DOI: 10.1038/s42005-024-01794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
X-ray Transient Absorption Spectroscopy (XTAS) is a powerful probe for ultrafast molecular dynamics. The evolution of XTAS signal is controlled by the shapes of potential energy surfaces of the associated core-excited states, which are difficult to directly measure. Here, we study the vibrational dynamics of Raman activated CCl4 with XTAS targeting the C 1s and Cl 2p electrons. The totally symmetric stretching mode leads to concerted elongation or contraction in bond lengths, which in turn induce an experimentally measurable red or blue shift in the X-ray absorption energies associated with inner-shell electron excitations to the valence antibonding levels. The ratios between slopes of different core-excited potential energy surfaces (CEPESs) thereby extracted agree very well with Restricted Open-Shell Kohn-Sham calculations. The other, asymmetric, modes do not measurably contribute to the XTAS signal. The results highlight the ability of XTAS to reveal coherent nuclear dynamics involving < 0.01 Å atomic displacements and also provide direct measurement of forces on CEPESs.
Collapse
Affiliation(s)
- Andrew D Ross
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Present Address: Toptica Photonics, Inc., Pittsford, NY 14534 USA
| | - Diptarka Hait
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Present Address: Department of Chemistry and PULSE Institute, Stanford University, Stanford, CA 94305 USA
| | - Valeriu Scutelnic
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Daniel M Neumark
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Stephen R Leone
- Department of Chemistry, University of California Berkeley, Berkeley, CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Physics, University of California Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
3
|
Jarecki J, Hennecke M, Sidiropoulos T, Schnuerer M, Eisebitt S, Schick D. Ultrafast energy-dispersive soft-x-ray diffraction in the water window with a laser-driven source. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:054303. [PMID: 39398360 PMCID: PMC11470808 DOI: 10.1063/4.0000270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Time-resolved soft-x-ray-diffraction experiments give access to microscopic processes in a broad range of solid-state materials by probing ultrafast dynamics of ordering phenomena. While laboratory-based high-harmonic generation (HHG) light sources provide the required photon energies, their limited photon flux is distributed over a wide spectral range, rendering typical monochromatic diffraction schemes challenging. Here, we present a scheme for energy-dispersive soft-x-ray diffraction with femtosecond temporal resolution and photon energies across the water window from 200 to 600 eV. The experiment utilizes the broadband nature of the HHG emission to efficiently probe large slices in reciprocal space. As a proof-of-concept, we study the laser-induced structural dynamics of a Mo/Si superlattice in an ultrafast, non-resonant soft-x-ray diffraction experiment. We extract the underlying strain dynamics from the measured shift of its first order superlattice Bragg peak in reciprocal space at photon energies around 500 eV via soft-x-ray scattering simulations.
Collapse
Affiliation(s)
- Jasmin Jarecki
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Martin Hennecke
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Themistoklis Sidiropoulos
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - Matthias Schnuerer
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| | | | - Daniel Schick
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany
| |
Collapse
|
4
|
Juranić P, Cirelli C, Mamyrbayev T, Uemura Y, Vila-Comamala J, Lima FA, Bacellar C, Johnson PJM, Prat E, Reiche S, Wach A, Bykova I, Kahraman A, Kabanova V, Milne C, David C. Transient X-Ray Absorption Near Edge Structure Spectroscopy Using Broadband Free-Electron Laser Pulses. SMALL METHODS 2024; 8:e2301328. [PMID: 38441281 DOI: 10.1002/smtd.202301328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/02/2024] [Indexed: 08/18/2024]
Abstract
A new method for time-resolved X-ray absorption near edge structure (XANES) spectroscopy that enables faster data acquisition and requires smaller sample quantities for high-quality data, thus allowing the analysis of more samples in a shorter time is introduced. The method uses large bandwidth free electron laser pulses to measure laser-excited XANES spectra in transmission mode. A beam-splitting grating configuration allows simultaneous measurements of the spectra of the incoming X-ray Free Electron Laser (XFEL) pulses and transmission XANES, which is crucial for compensating the pulse-dependent intensity and spectrum fluctuations due to the self-amplified spontaneous emission operation. The implementation of this new methodology is applied on a liquid solution of ammonium iron(III) oxalate jet and is compared to previous results, showing great improvements in the speed of acquisition and spectral resolution, and the ability to measure a large 2-D spectral-time map quickly.
Collapse
Affiliation(s)
- Pavle Juranić
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Talgat Mamyrbayev
- XRnanotech GmbH, PSI, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Yohei Uemura
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Joan Vila-Comamala
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | | | - Camila Bacellar
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Philip J M Johnson
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Eduard Prat
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Anna Wach
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Iuliia Bykova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Abdullah Kahraman
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Victoria Kabanova
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | | | - Christian David
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
5
|
Ge G, Zhang JR, Wang SY, Wei M, Ji Y, Duan S, Ueda K, Hua W. Mapping Hydrogen Positions along the Proton Transfer Pathway in an Organic Crystal by Computational X-ray Spectra. J Phys Chem Lett 2024; 15:6051-6061. [PMID: 38819966 DOI: 10.1021/acs.jpclett.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Understanding proton transfer (PT) dynamics in condensed phases is crucial in chemistry. We computed a 2D map of N 1s X-ray photoelectron/absorption spectroscopy (XPS/XAS) for an organic donor-acceptor salt crystal against two varying N-H distances to track proton motions. Our results provide a continuous spectroscopic mapping of O-H···N↔O-··· H+-N processes via hydrogen bonds at both nitrogens, demonstrating the sensitivity of N 1s transient XPS/XAS to hydrogen positions and PT. By reducing the O-H length at N1 by only 0.2 Å, we achieved excellent theory-experiment agreement in both XPS and XAS. Our study highlights the challenge in refining proton positions in experimental crystal structures by periodic geometry optimizations and proposes an alternative scaled snapshot protocol as a more effective approach. This work provides valuable insights into X-ray spectra for correlated PT dynamics in complex crystals, benefiting future experimental studies.
Collapse
Affiliation(s)
- Guoyan Ge
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Jun-Rong Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Sheng-Yu Wang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Minrui Wei
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Kiyoshi Ueda
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, School of Physics, Nanjing University of Science and Technology, 210094 Nanjing, China
| |
Collapse
|
6
|
Cai M, Sun S, Bao J. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis. Chemphyschem 2024; 25:e202300939. [PMID: 38374799 DOI: 10.1002/cphc.202300939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance. There is a knotty problem to rational designing high-performance photocatalyst, which largely depends on an in-depth insight into their structure-activity relationships and complex photocatalytic reaction mechanisms. Synchrotron radiation based X-ray absorption spectroscopy (XAS) is an important characterization method for photocatlayst to offer the element-specific key geometric and electronic structural information at the atomic level, on this basis, time-resolved XAS technique has a huge impact on mechanistic understanding of photochemical reaction owing to their powerful ability to probe, in real-time, the electronic and geometric structures evolution within photocatalysis reactions. This review will focus on the fundamentals of XAS and their applications in photocatalysis. The detailed applications obtained from XAS is described through the following aspects: 1) identifying local structure of photocatalyst; 2) uncovering in situ structure and chemical state evolution during photocatalysis; 3) revealing the photoexcited process. We will provide an in depth understanding on how the XAS method can guide the rational design of highly efficient photocatalyst. Finally, a systematic summary of XAS and related significance is made and the research perspectives are suggested.
Collapse
Affiliation(s)
- Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
7
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Mayer D, Lever F, Gühr M. Time-resolved x-ray spectroscopy of nucleobases and their thionated analogs. Photochem Photobiol 2024; 100:275-290. [PMID: 38174615 DOI: 10.1111/php.13903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The photoinduced relaxation dynamics of nucleobases and their thionated analogs have been investigated extensively over the past decades motivated by their crucial role in organisms and their application in medical and biochemical research and treatment. Most of these studies focused on the spectroscopy of valence electrons and fragmentation. The advent of ultrashort x-ray laser sources such as free-electron lasers, however, opens new opportunities for studying the ultrafast molecular relaxation dynamics utilizing the site- and element-selectivity of x-rays. In this review, we want to summarize ultrafast experiments on thymine and 2-thiouracil performed at free-electron lasers. We performed time-resolved x-ray absorption spectroscopy at the oxygen K-edge after UV excitation of thymine. In addition, we investigated the excited state dynamics of 2-tUra via x-ray photoelectron spectroscopy at sulfur. For these methods, we show a strong sensitivity to the electronic state or charge distribution, respectively. We also performed time-resolved Auger-Meitner spectroscopy, which shows spectral shifts associated with internuclear distances close to the probed site. We discuss the complementary aspects of time-resolved x-ray spectroscopy techniques compared to optical and UV spectroscopy for the investigation of ultrafast relaxation processes.
Collapse
Affiliation(s)
- Dennis Mayer
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Fabiano Lever
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Markus Gühr
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Institute of Physical Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Hait D, Martínez TJ. Predicting the X-ray Absorption Spectrum of Ozone with Single Configuration State Functions. J Chem Theory Comput 2024; 20:873-881. [PMID: 38175153 DOI: 10.1021/acs.jctc.3c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
X-ray absorption spectra (XAS) of biradicaloid species are often thought to represent a challenge to theoretical methods. This has led to the testing of recently developed multireference techniques on the XAS of ozone, but reproduction of the experimental spectral profile has proven difficult. We utilize a minimal model consisting of a single configuration state function (CSF) per excited state to model core-level excitations of ozone, with the orbitals of each CSF optimized using the restricted open-shell Kohn-Sham (ROKS) method. This protocol leads to semiquantitative agreement with experimental XAS. In fact, we find that low-lying core-hole excited states in biradicaloids can be approximated with individual CSFs, despite the presence of multireference character in the ground state. We also report that the 1s → π* and 1s → σ* transitions have quite distinct widths for O3. This reveals the importance of sampling over a representative range of geometries from the vibrational ground state for properly assessing the accuracy of electronic structure methods against experiments instead of the popular procedure of uniformly broadening stick spectra at the equilibrium geometry.
Collapse
Affiliation(s)
- Diptarka Hait
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
| | - Todd J Martínez
- Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
10
|
Garratt D, Matthews M, Marangos J. Toward ultrafast soft x-ray spectroscopy of organic photovoltaic devices. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:010901. [PMID: 38250136 PMCID: PMC10799687 DOI: 10.1063/4.0000214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Novel ultrafast x-ray sources based on high harmonic generation and at x-ray free electron lasers are opening up new opportunities to resolve complex ultrafast processes in condensed phase systems with exceptional temporal resolution and atomic site specificity. In this perspective, we present techniques for resolving charge localization, transfer, and separation processes in organic semiconductors and organic photovoltaic devices with time-resolved soft x-ray spectroscopy. We review recent results in ultrafast soft x-ray spectroscopy of these systems and discuss routes to overcome the technical challenges in performing time-resolved x-ray experiments on photosensitive materials with poor thermal conductivity and low pump intensity thresholds for nonlinear effects.
Collapse
|
11
|
Janoš J, Slavíček P. What Controls the Quality of Photodynamical Simulations? Electronic Structure Versus Nonadiabatic Algorithm. J Chem Theory Comput 2023; 19:8273-8284. [PMID: 37939301 PMCID: PMC10688183 DOI: 10.1021/acs.jctc.3c00908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
The field of nonadiabatic dynamics has matured over the last decade with a range of algorithms and electronic structure methods available at the moment. While the community currently focuses more on developing and benchmarking new nonadiabatic dynamics algorithms, the underlying electronic structure controls the outcome of nonadiabatic simulations. Yet, the electronic-structure sensitivity analysis is typically neglected. In this work, we present a sensitivity analysis of the nonadiabatic dynamics of cyclopropanone to electronic structure methods and nonadiabatic dynamics algorithms. In particular, we compare wave function-based CASSCF, FOMO-CASCI, MS- and XMS-CASPT2, density-functional REKS, and semiempirical MRCI-OM3 electronic structure methods with the Landau-Zener surface hopping, fewest switches surface hopping, and ab initio multiple spawning with informed stochastic selection algorithms. The results clearly demonstrate that the electronic structure choice significantly influences the accuracy of nonadiabatic dynamics for cyclopropanone even when the potential energy surfaces exhibit qualitative and quantitative similarities. Thus, selecting the electronic structure solely on the basis of the mapping of potential energy surfaces can be misleading. Conversely, we observe no discernible differences in the performance of the nonadiabatic dynamics algorithms across the various methods. Based on the above results, we discuss the present-day practice in computational photodynamics.
Collapse
Affiliation(s)
- Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic
| |
Collapse
|
12
|
Reinhard M, Skoien D, Spies JA, Garcia-Esparza AT, Matson BD, Corbett J, Tian K, Safranek J, Granados E, Strader M, Gaffney KJ, Alonso-Mori R, Kroll T, Sokaras D. Solution phase high repetition rate laser pump x-ray probe picosecond hard x-ray spectroscopy at the Stanford Synchrotron Radiation Lightsource. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:054304. [PMID: 37901682 PMCID: PMC10613086 DOI: 10.1063/4.0000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 10/31/2023]
Abstract
We present a dedicated end-station for solution phase high repetition rate (MHz) picosecond hard x-ray spectroscopy at beamline 15-2 of the Stanford Synchrotron Radiation Lightsource. A high-power ultrafast ytterbium-doped fiber laser is used to photoexcite the samples at a repetition rate of 640 kHz, while the data acquisition operates at the 1.28 MHz repetition rate of the storage ring recording data in an alternating on-off mode. The time-resolved x-ray measurements are enabled via gating the x-ray detectors with the 20 mA/70 ps camshaft bunch of SPEAR3, a mode available during the routine operations of the Stanford Synchrotron Radiation Lightsource. As a benchmark study, aiming to demonstrate the advantageous capabilities of this end-station, we have conducted picosecond Fe K-edge x-ray absorption spectroscopy on aqueous [FeII(phen)3]2+, a prototypical spin crossover complex that undergoes light-induced excited spin state trapping forming an electronic excited state with a 0.6-0.7 ns lifetime. In addition, we report transient Fe Kβ main line and valence-to-core x-ray emission spectra, showing a unique detection sensitivity and an excellent agreement with model spectra and density functional theory calculations, respectively. Notably, the achieved signal-to-noise ratio, the overall performance, and the routine availability of the developed end-station have enabled a systematic time-resolved science program using the monochromatic beam at the Stanford Synchrotron Radiation Lightsource.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dean Skoien
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | - Jeff Corbett
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kai Tian
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James Safranek
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Matthew Strader
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Kelly J. Gaffney
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | |
Collapse
|
13
|
Seeger MF, Kammerer D, Blöchl J, Neuhaus M, Pervak V, Nubbemeyer T, Kling MF. 49 W carrier-envelope-phase-stable few-cycle 2.1 µm OPCPA at 10 kHz. OPTICS EXPRESS 2023; 31:24821-24834. [PMID: 37475300 DOI: 10.1364/oe.493326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
We demonstrate a mid-infrared optical parametric chirped pulse amplifier (OPCPA), delivering 2.1 µm center wavelength pulses with 20 fs duration and 4.9 mJ energy at 10 kHz repetition rate. This self-seeded system is based on a kW-class Yb:YAG thin-disk amplifier driving a CEP stable short-wavelength-infrared (SWIR) generation and three consecutive OPCPA stages. Our SWIR source achieves an average power of 49 W, while still maintaining excellent phase and average power stability with sub-100 mrad carrier-envelope-phase-noise and 0.8% average power fluctuations. These parameters enable the OPCPA setup to drive attosecond pump probe spectroscopy experiments with photon energies in the water window.
Collapse
|
14
|
Janesko BG. Core-Projected Hybrids Fix Systematic Errors in Time-Dependent Density Functional Theory Predicted Core-Electron Excitations. J Chem Theory Comput 2023. [PMID: 37437304 DOI: 10.1021/acs.jctc.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Linear response time-dependent density functional theory (TDDFT) is widely applied to valence, Rydberg, and charge-transfer excitations but, in its current form, makes large errors for core-electron excitations. This work demonstrates that the admixture of nonlocal exact exchange in atomic core regions significantly improves TDDFT-predicted core excitations. Exact exchange admixture is accomplished using projected hybrid density functional theory [ J. Chem. Theory Comput. 2023, 19, 837-847]. Scalar relativistic TDDFT calculations using core-projected B3LYP accurately model core excitations of second-period elements C-F and third-period elements Si-Cl, without sacrificing performance for the relative shifts of core excitation energies. Predicted K-edge X-ray near absorption edge structure (XANES) of a series of sulfur standards highlight the value of this approach. Core-projected hybrids appear to be a practical solution to TDDFT's limitations for core excitations, in the way that long-range-corrected hybrids are a practical solution to TDDFT's limitations for Rydberg and charge-transfer excitations.
Collapse
Affiliation(s)
- Benjamin G Janesko
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, Texas 76129, United States
| |
Collapse
|
15
|
Ash R, Abhari Z, Candela R, Welke N, Murawski J, Gardezi SM, Venkatasubramanian N, Munawar M, Siewert F, Sokolov A, LaDuca Z, Kawasaki J, Bergmann U. X-FAST: A versatile, high-throughput, and user-friendly XUV femtosecond absorption spectroscopy tabletop instrument. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:073004. [PMID: 37462459 DOI: 10.1063/5.0146137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/25/2023] [Indexed: 07/21/2023]
Abstract
We present the X-FAST (XUV Femtosecond Absorption Spectroscopy Tabletop) instrument at the University of Wisconsin-Madison. The instrument produces femtosecond extreme ultraviolet photon pulses via high-harmonic generation in the range of 40-72 eV, as well as optical pump pulses for transient-absorption experiments. The system implements a gas-cooled sample cell that enables studying the dynamics of thermally sensitive thin-film samples. This paper provides potential users with specifications of the optical, vacuum, data acquisition, and sample cooling systems of the X-FAST instrument, along with performance metrics and data of an ultrafast laser-induced phase transition in a Ni2MnGa Heusler thin film.
Collapse
Affiliation(s)
- Ryan Ash
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Zain Abhari
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Roberta Candela
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Noah Welke
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Jake Murawski
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - S Minhal Gardezi
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | | | - Muneeza Munawar
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| | - Frank Siewert
- Helmholtz Zentrum Berlin für Materialien und Energie, Department of Optics and Beamlines, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Andrey Sokolov
- Helmholtz Zentrum Berlin für Materialien und Energie, Department of Optics and Beamlines, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Zachary LaDuca
- Department of Materials Science and Engineering, University of Wisconsin Madison, 1509 University Ave., Madison, Wisconsin 53706, USA
| | - Jason Kawasaki
- Department of Materials Science and Engineering, University of Wisconsin Madison, 1509 University Ave., Madison, Wisconsin 53706, USA
| | - Uwe Bergmann
- Department of Physics, University of Wisconsin Madison, 1150 University Ave., Madison, Wisconsin 53706, USA
| |
Collapse
|
16
|
Schnack-Petersen AK, Pápai M, Coriani S, Møller KB. A theoretical study of the time-resolved x-ray absorption spectrum of the photoionized BT-1T cation. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034102. [PMID: 37250952 PMCID: PMC10224778 DOI: 10.1063/4.0000183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
The time-resolved x-ray absorption spectrum of the BT-1T cation (BT-1T+) is theoretically simulated in order to investigate the charge transfer reaction of the system. We employ both trajectory surface hopping and quantum dynamics to simulate the structural evolution over time and the changes in the state populations. To compute the static x-ray absorption spectra (XAS) of the ground and excited states, we apply both the time-dependent density functional theory and the coupled cluster singles and doubles method. The results obtained are in good agreement between the methods. It is, furthermore, found that the small structural changes that occur during the reaction have little effect on the static XAS. Hence, the tr-XAS can be computed based on the state populations determined from a nuclear dynamics simulation and one set of static XAS calculations, utilizing the ground state optimized geometry. This approach can save considerable computational resources, as the static spectra need not to be calculated for all geometries. As BT-1T is a relatively rigid molecule, the outlined approach should only be considered when investigating non-radiative decay processes in the vicinity of the Franck-Condon point.
Collapse
Affiliation(s)
| | | | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Klaus Braagaard Møller
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Nam Y, Song H, Freixas VM, Keefer D, Fernandez-Alberti S, Lee JY, Garavelli M, Tretiak S, Mukamel S. Monitoring vibronic coherences and molecular aromaticity in photoexcited cyclooctatetraene with an X-ray probe: a simulation study. Chem Sci 2023; 14:2971-2982. [PMID: 36937575 PMCID: PMC10016608 DOI: 10.1039/d2sc04335a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari,", Universita' degli Studi di Bologna I-40136 Bologna Italy
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Shaul Mukamel
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| |
Collapse
|
18
|
Moitra T, Konecny L, Kadek M, Rubio A, Repisky M. Accurate Relativistic Real-Time Time-Dependent Density Functional Theory for Valence and Core Attosecond Transient Absorption Spectroscopy. J Phys Chem Lett 2023; 14:1714-1724. [PMID: 36757216 PMCID: PMC9940299 DOI: 10.1021/acs.jpclett.2c03599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
First principles theoretical modeling of out-of-equilibrium processes observed in attosecond pump-probe transient absorption spectroscopy (TAS) triggering pure electron dynamics remains a challenging task, especially for heavy elements and/or core excitations containing fingerprints of scalar and spin-orbit relativistic effects. To address this, we formulate a methodology for simulating TAS within the relativistic real-time, time-dependent density functional theory (RT-TDDFT) framework, for both the valence and core energy regimes. Especially for TAS, full four-component (4c) RT simulations are feasible but computationally demanding. Therefore, in addition to the 4c approach, we also introduce the atomic mean-field exact two-component (amfX2C) Hamiltonian accounting for one- and two-electron picture-change corrections within RT-TDDFT. amfX2C preserves the accuracy of the parent 4c method at a fraction of its computational cost. Finally, we apply the methodology to study valence and near-L2,3-edge TAS processes of experimentally relevant systems and provide additional physical insights using relativistic nonequilibrium response theory.
Collapse
Affiliation(s)
- Torsha Moitra
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Lukas Konecny
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marius Kadek
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Algorithmiq
Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York New York 10010, United States
- Nano-Bio
Spectroscopy Group, Departamento de Física de Materiales, Universidad del País Vasco, 20018 San Sebastian, Spain
| | - Michal Repisky
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Department
of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, 84104 Bratislava, Slovakia
| |
Collapse
|
19
|
Das S, Samanta K. Recent Advances in the Study of Negative-Ion Resonances Using Multiconfigurational Propagator and a Complex Absorbing Potential. Chemphyschem 2023; 24:e202200546. [PMID: 36223261 DOI: 10.1002/cphc.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Indexed: 02/03/2023]
Abstract
The transient resonances are a challenge to bound state quantum mechanics. These states lie in the continuum part of the spectrum of the Hamiltonian. For this, one has to treat a continuum problem due to electron-molecule scattering and the many-electron correlation problem simultaneously. Moreover, the description of a resonance requires a wavefunction that bridges the part that resembles a bound state with another that resembles a continuum state such that the continuity of the wavefunction and its first derivative with respect to the distance between the incoming projectile and the target is maintained. A review of the recent advances in the theoretical investigation of the negative-ion resonances (NIR) is presented. The NIRs are ubiquitous in nature. They result from the scattering of electrons off of an atomic or molecular target. They are important for numerous chemical processes in upper atmosphere, space and even biological systems. A contextual background of the existing theoretical methods as well as the newly-developed multiconfigurational propagator tools based on a complex absorbing potential are discussed.
Collapse
Affiliation(s)
- Subhasish Das
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Kansapada, Argul, 752050, India
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Kansapada, Argul, 752050, India
| |
Collapse
|
20
|
Das S, Samanta K. Investigation of electron-induced scattering resonances using a multiconfigurational polarization propagator and a complex absorbing potential. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Gayvert JR, Bravaya KB. Application of Box and Voronoi CAPs for Metastable Electronic States in Molecular Clusters. J Phys Chem A 2022; 126:5070-5078. [PMID: 35881428 DOI: 10.1021/acs.jpca.2c04892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complex absorbing potential (CAP) approach offers a practical tool for characterization of energies and lifetimes of metastable electronic states, such as temporary anions and core ionized states. Here, we present an implementation of the smooth Voronoi CAP combined with the equation-of-motion coupled cluster with single and double substitutions method for metastable states. The performances of the smooth Voronoi CAP and box CAP are compared for different classes of systems: resonances in isolated molecules and localized and delocalized resonances in molecular clusters. The benchmark calculations show that the Voronoi CAP is generally more robust when applied to molecular clusters, but box CAPs are equally reliable for localized resonances or in the cases when the resonance does not exhibit significant electron density delocalization into the intramolecular region. As such, the choice of the CAP shape and onset should be guided by the character of the metastable states.
Collapse
Affiliation(s)
- James R Gayvert
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
22
|
A chronological review of photochemical reactions of ferrioxalate at the molecular level: New insights into an old story. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Filus Z, Ye P, Csizmadia T, Grósz T, Gulyás Oldal L, De Marco M, Füle M, Kahaly S, Varjú K, Major B. Liquid-cooled modular gas cell system for high-order harmonic generation using high average power laser systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:073002. [PMID: 35922325 DOI: 10.1063/5.0097788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
We present the design and implementation of a new, modular gas target suitable for high-order harmonic generation using high average power lasers. To ensure thermal stability in this high heat load environment, we implement an appropriate liquid cooling system. The system can be used in multiple-cell configurations, allowing us to control the cell length and aperture size. The cell design was optimized with heat and flow simulations for thermal characteristics, vacuum compatibility, and generation medium properties. Finally, the cell system was experimentally validated by conducting high-order harmonic generation measurements using the 100 kHz high average power HR-1 laser system at the Extreme Light Infrastructure Attosecond Light Pulse Source (ELI ALPS) facility. Such a robust, versatile, and stackable gas cell arrangement can easily be adapted to different experimental geometries in both table-top laboratory systems and user-oriented facilities, such as ELI ALPS.
Collapse
Affiliation(s)
- Zoltán Filus
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Peng Ye
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Tamás Csizmadia
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Tímea Grósz
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Lénárd Gulyás Oldal
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Massimo De Marco
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Miklós Füle
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Subhendu Kahaly
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Katalin Varjú
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| | - Balázs Major
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, Szeged H-6728, Hungary
| |
Collapse
|
24
|
Wan G, Zhang G, Chen JZ, Toney MF, Miller JT, Tassone CJ. Reaction-Mediated Transformation of Working Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gang Wan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Johnny Zhu Chen
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael F. Toney
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
25
|
Kas JJ, Vila FD, Tan TS, Rehr JJ. Ab initio calculation of X-ray and related core-level spectroscopies: Green's function approaches. Phys Chem Chem Phys 2022; 24:13461-13473. [PMID: 35616020 DOI: 10.1039/d2cp01167k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-Ray and related spectroscopies are powerful probes of atomic, vibrational, and electronic structure. In order to unlock the full potential of such experimental techniques, accurate and efficient theoretical and computational approaches are essential. Here we review the status of a variety of first-principles and nearly first principles techniques for X-ray spectroscopies such as X-ray absorption, X-ray emission, and X-ray photoemission, with a focus on Green's function based methods. In particular, we describe the current state of multiple scattering Green's function techniques available in the FEFF10 code and cumulant Green's function techniques for including the effects of many-body electronic excitations. Illustrative examples are shown for a variety of materials and compared with other theoretical and experimental results.
Collapse
Affiliation(s)
| | | | - Tun S Tan
- University of Washington, Seattle, USA.
| | | |
Collapse
|
26
|
Biswas S, Baker LR. Extreme Ultraviolet Reflection-Absorption Spectroscopy: Probing Dynamics at Surfaces from a Molecular Perspective. Acc Chem Res 2022; 55:893-903. [PMID: 35238529 DOI: 10.1021/acs.accounts.1c00765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extreme ultraviolet light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this Account, we discuss the development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of X-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well-known that surface dynamics differ significantly from equivalent processes in bulk materials and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces govern the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of ∼3 nm, providing a new window into electronic and structural dynamics at surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUV-RA spectroscopy to study photoinduced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (Fe2O3, Co3O4 NiO, and CuFeO2) as well as photoswitchable magnetic oxide (CoFe2O4). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of Fe2O3 where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (Fe2O3, NiO, Co3O4). The presence of valence band holes probed at the oxygen L1-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO2 in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO2 leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H2 evolution and CO2 reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a photoswitchable ferrimagnet, cobalt ferrite (CoFe2O4). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08544, United States
| | - L. Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Gayvert JR, Bravaya KB. Projected CAP-EOM-CCSD method for electronic resonances. J Chem Phys 2022; 156:094108. [DOI: 10.1063/5.0082739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James R Gayvert
- Boston University Department of Chemistry, United States of America
| | - Ksenia B. Bravaya
- Department of Chemistry, Boston University, United States of America
| |
Collapse
|
28
|
Liekhus-Schmaltz C, Fox ZW, Andersen A, Kjaer KS, Alonso-Mori R, Biasin E, Carlstad J, Chollet M, Gaynor JD, Glownia JM, Hong K, Kroll T, Lee JH, Poulter BI, Reinhard M, Sokaras D, Zhang Y, Doumy G, March AM, Southworth SH, Mukamel S, Cordones AA, Schoenlein RW, Govind N, Khalil M. Femtosecond X-ray Spectroscopy Directly Quantifies Transient Excited-State Mixed Valency. J Phys Chem Lett 2022; 13:378-386. [PMID: 34985900 DOI: 10.1021/acs.jpclett.1c03613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quantifying charge delocalization associated with short-lived photoexcited states of molecular complexes in solution remains experimentally challenging, requiring local element specific femtosecond experimental probes of time-evolving electron transfer. In this study, we quantify the evolving valence hole charge distribution in the photoexcited charge transfer state of a prototypical mixed valence bimetallic iron-ruthenium complex, [(CN)5FeIICNRuIII(NH3)5]-, in water by combining femtosecond X-ray spectroscopy measurements with time-dependent density functional theory calculations of the excited-state dynamics. We estimate the valence hole charge that accumulated at the Fe atom to be 0.6 ± 0.2, resulting from excited-state metal-to-metal charge transfer, on an ∼60 fs time scale. Our combined experimental and computational approach provides a spectroscopic ruler for quantifying excited-state valency in solvated complexes.
Collapse
Affiliation(s)
| | - Zachary W Fox
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kasper S Kjaer
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Julia Carlstad
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - James D Gaynor
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Kiryong Hong
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Marco Reinhard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dimosthenis Sokaras
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yu Zhang
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 94025, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics & Astronomy, University of California, Irvine, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Robert W Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
29
|
Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy. Nat Commun 2022; 13:198. [PMID: 35017539 PMCID: PMC8752854 DOI: 10.1038/s41467-021-27908-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy.
Collapse
|
30
|
Kim Y, Nam D, Ma R, Kim S, Kim MJ, Kim J, Eom I, Lee JH, Kim TK. Development of an experimental apparatus to observe ultrafast phenomena by tender X-ray absorption spectroscopy at PAL-XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:194-201. [PMID: 34985436 PMCID: PMC8733995 DOI: 10.1107/s1600577521011449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Understanding the ultrafast dynamics of molecules is of fundamental importance. Time-resolved X-ray absorption spectroscopy (TR-XAS) is a powerful spectroscopic technique for unveiling the time-dependent structural and electronic information of molecules that has been widely applied in various fields. Herein, the design and technical achievement of a newly developed experimental apparatus for TR-XAS measurements in the tender X-ray range with X-ray free-electron lasers (XFELs) at the Pohang Accelerator Laboratory XFEL (PAL-XFEL) are described. Femtosecond TR-XAS measurements were conducted at the Ru L3-edge of well known photosensitizer tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]2+) in water. The results indicate ultrafast photoinduced electron transfer from the Ru center to the ligand, which demonstrates that the newly designed setup is applicable for monitoring ultrafast reactions in the femtosecond domain.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03772, Republic of Korea
| | - Daewoong Nam
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Rory Ma
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myung-jin Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jinhong Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, POSTECH, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03772, Republic of Korea
| |
Collapse
|
31
|
Serrat C. Resonantly Enhanced Difference-Frequency Generation in the Core X-ray Absorption of Molecules. J Phys Chem A 2021; 125:10706-10710. [PMID: 34910497 PMCID: PMC8724795 DOI: 10.1021/acs.jpca.1c06950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We use real-time time-dependent density functional theory simulations to numerically demonstrate that resonantly enhanced difference-frequency generation (re-DFG) involving intense ultrashort coherent X-ray pulses can selectively excite core states of atoms in molecules. As a model case, we evaluate the spectral selectivity of re-DFG excitation of the oxygen K-edge by illumination of a single gas-phase water molecule with two-color X-ray pulses of different photon energies and durations. The re-DFG excitation is further probed by a small delayed pulse with central photon energy resonant with the oxygen K-edge peak absorption line. Based on these results, we anticipate that highly selective excitation by re-DFG X-ray nonlinear processes might be achieved in more complex molecular systems and bulk materials by using highly penetrating two-color hard X-ray pulses, with extensive applications.
Collapse
Affiliation(s)
- Carles Serrat
- Department of Physics, Polytechnic University of Catalonia, Colom 11, 08222 Terrassa (Barcelona), Spain
| |
Collapse
|
32
|
Phelan BT, Mara MW, Chen LX. Excited-state structural dynamics of nickel complexes probed by optical and X-ray transient absorption spectroscopies: insights and implications. Chem Commun (Camb) 2021; 57:11904-11921. [PMID: 34695174 DOI: 10.1039/d1cc03875c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excited states of nickel complexes undergo a variety of photochemical processes, such as charge transfer, ligation/deligation, and redox reactions, relevant to solar energy conversion and photocatalysis. The efficiencies of the aforementioned processes are closely coupled to the molecular structures in the ground and excited states. The conventional optical transient absorption spectroscopy has revealed important excited-state pathways and kinetics, but information regarding the metal center, in particular transient structural and electronic properties, remains limited. These deficiencies are addressed by X-ray transient absorption (XTA) spectroscopy, a detailed probe of 3d orbital occupancy, oxidation state and coordination geometry. The examples of excited-state structural dynamics of nickel porphyrin and nickel phthalocyanine have been described from our previous studies with highlights on the unique structural information obtained by XTA spectroscopy. We close by surveying prospective applications of XTA spectroscopy to active areas of Ni-based photocatalysis based on the knowledge gained from our previous studies.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
33
|
Solling TI. Nonstatistical Photoinduced Processes in Gaseous Organic Molecules. ACS OMEGA 2021; 6:29325-29344. [PMID: 34778606 PMCID: PMC8581993 DOI: 10.1021/acsomega.1c04035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Indexed: 05/26/2023]
Abstract
Processes that proceed in femtoseconds are usually referred to as being ultrafast, and they are investigated in experiments that involve laser pulses with femtosecond duration in so-called pump probe schemes, where a light pulse triggers a molecular process and a second light pulse interrogates the temporal evolution of the molecular population. The focus of this review is on the reactivity patterns that arise when energy is not equally distributed on all the available degrees of freedom as a consequence of the very short time scale in play and on how the localization of internal energy in a specific mode can be thought of as directing a process toward (or away from) a certain outcome. The nonstatistical aspects are illustrated with examples from photophysics and photochemistry for a range of organic molecules. The processes are initiated by a variety of nuclear motions that are all governed by the energy gradients in the Franck-Condon region. Essentially, the molecules will start to adapt to the new electronic environment on the excited state to eventually reach the equilibrium structure. It is this structural change that is enabling an ultrafast electronic transition in cases where the nuclear motion leads to a transition point with significant coupling between to electronic states and to ultrafast reaction if there is a coupling to a reactive mode at the transition point between the involved states. With the knowledge of the relation between electronic excitation and equilibrium structure, it is possible to predict how the nuclei move after excitation and often whether an ultrafast (and inherently nonstatistical) electronic transition or even a bond breakage will take place. In addition to the understanding of how nonstatistical photoinduced processes proceed from a given excited state, it has been found that randomization of the energy does not even always take place when the molecule takes part in processes that are normally considered statistical, such as for example nonradiative transitions between excited states. This means that energy can be localized in a specific degree of freedom on a state other than the one that is initially prepared. This is a finding that could kickoff the ultimate dream in applied photochemistry; namely light excitation that leads to the rupture of a specific bond.
Collapse
Affiliation(s)
- Theis I. Solling
- Center for Integrative Petroleum
Research, King Fahd University of Petroleum
& Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
34
|
Cao X, Tan D, Wulan B, Hui KS, Hui KN, Zhang J. In Situ Characterization for Boosting Electrocatalytic Carbon Dioxide Reduction. SMALL METHODS 2021; 5:e2100700. [PMID: 34927933 DOI: 10.1002/smtd.202100700] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/29/2021] [Indexed: 06/14/2023]
Abstract
The electrocatalytic reduction of carbon dioxide into organic fuels and feedstocks is a fascinating method to implement the sustainable carbon cycle. Thus, a rational design of advanced electrocatalysts and a deep understanding of reaction mechanisms are crucial for the complex reactions of carbon dioxide reduction with multiple electron transfer. In situ and operando techniques with real-time monitoring are important to obtain deep insight into the electrocatalytic reaction to reveal the dynamic evolution of electrocatalysts' structure and composition under experimental conditions. In this paper, the reaction pathways for the CO2 reduction reaction (CO2 RR) in the generation of various products (e.g., C1 and C2 ) via the proposed mechanisms are introduced. Moreover, recent advances in the development and applications of in situ and operando characterization techniques, from the basic working principles and in situ cell structure to detailed applications are discussed. Suggestions and future directions of in situ/operando analysis are also addressed.
Collapse
Affiliation(s)
- Xueying Cao
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Dongxing Tan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Bari Wulan
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - K S Hui
- School of Engineering, Faculty of Science, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - K N Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, 999078, P. R. China
| | - Jintao Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
35
|
|
36
|
Kinigstein ED, Jennings G, Kurtz CA, March AM, Zuo X, Chen LX, Attenkofer K, Zhang X. X-ray multi-probe data acquisition: A novel technique for laser pump x-ray transient absorption spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:085109. [PMID: 34470434 DOI: 10.1063/5.0050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
We report the development and implementation of a novel data acquisition (DAQ) technique for synchrotron-based laser pump X-ray Transient Absorption (XTA) spectroscopy, called X-ray Multi-Probe DAQ (XMP DAQ). This technique utilizes high performance analog to digital converters and home-built software to efficiently measure and process the XTA signal from all x-ray pulses between laser excitations. XMP DAQ generates a set of time resolved x-ray absorption spectra at thousands of different pump-probe time delays simultaneously. Two distinct XMP DAQ schemes are deployed to accommodate different synchrotron storage ring filling patterns. Current Integration (CI) DAQ is a quasi-analog technique that implements a fitting procedure to extract the time resolved absorption intensity from the averaged fluorescence detector response. The fitting procedure eliminates issues associated with small drifts in the voltage baseline and greatly enhances the accuracy of the technique. Photon Counting (PC) DAQ is a binary technique that uses a time resolved histogram to calculate the XTA spectrum. While PC DAQ is suited to measure XTA data with closely spaced x-ray pulses (∼10 ns) and a low count rate (<1 detected photon/pulse), CI DAQ works best for widely spaced pulses (tens of ns or greater) with a high count rate (>1 detected photon/pulse). XMP DAQ produces a two-dimensional XTA dataset, enabling efficient quantitative analysis of photophysical and photochemical processes from the sub-nanosecond timescale to 100 μs and longer.
Collapse
Affiliation(s)
- Eli D Kinigstein
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Guy Jennings
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Charles A Kurtz
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Xiaobing Zuo
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Klaus Attenkofer
- Experimental Division, ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Xiaoyi Zhang
- X-ray Sciences Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
37
|
Ferrante C, Principi E, Marini A, Batignani G, Fumero G, Virga A, Foglia L, Mincigrucci R, Simoncig A, Spezzani C, Masciovecchio C, Scopigno T. Non-linear self-driven spectral tuning of Extreme Ultraviolet Femtosecond Pulses in monoatomic materials. LIGHT, SCIENCE & APPLICATIONS 2021; 10:92. [PMID: 33911069 PMCID: PMC8080687 DOI: 10.1038/s41377-021-00531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Self-action nonlinearity is a key aspect - either as a foundational element or a detrimental factor - of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters, and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.
Collapse
Affiliation(s)
- Carino Ferrante
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161, Roma, Italy.
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy.
| | - Emiliano Principi
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Andrea Marini
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Giovanni Batignani
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Giuseppe Fumero
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy
| | - Alessandra Virga
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161, Roma, Italy
| | - Laura Foglia
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Riccardo Mincigrucci
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Alberto Simoncig
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Carlo Spezzani
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Claudio Masciovecchio
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14-km 163.5, 34149, Basovizza, Trieste, Italy
| | - Tullio Scopigno
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
- Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161, Roma, Italy.
- Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy.
| |
Collapse
|
38
|
Filatov M, Lee S, Nakata H, Choi CH. Signatures of Conical Intersection Dynamics in the Time-Resolved Photoelectron Spectrum of Furan: Theoretical Modeling with an Ensemble Density Functional Theory Method. Int J Mol Sci 2021; 22:4276. [PMID: 33924097 PMCID: PMC8074317 DOI: 10.3390/ijms22084276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022] Open
Abstract
The non-adiabatic dynamics of furan excited in the ππ* state (S2 in the Franck-Condon geometry) was studied using non-adiabatic molecular dynamics simulations in connection with an ensemble density functional method. The time-resolved photoelectron spectra were theoretically simulated in a wide range of electron binding energies that covered the valence as well as the core electrons. The dynamics of the decay (rise) of the photoelectron signal were compared with the excited-state population dynamics. It was observed that the photoelectron signal decay parameters at certain electron binding energies displayed a good correlation with the events occurring during the excited-state dynamics. Thus, the time profile of the photoelectron intensity of the K-shell electrons of oxygen (decay constant of 34 ± 3 fs) showed a reasonable correlation with the time of passage through conical intersections with the ground state (47 ± 2 fs). The ground-state recovery constant of the photoelectron signal (121 ± 30 fs) was in good agreement with the theoretically obtained excited-state lifetime (93 ± 9 fs), as well as with the experimentally estimated recovery time constant (ca. 110 fs). Hence, it is proposed to complement the traditional TRPES observations with the trXPS (or trNEXAFS) measurements to obtain more reliable estimates of the most mechanistically important events during the excited-state dynamics.
Collapse
Affiliation(s)
- Michael Filatov
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea
| | - Seunghoon Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA;
| | - Hiroya Nakata
- R & D Center Kagoshima, Kyocera, 1-4 Kokubu Yamashita-cho, Kirishima-shi, Kagoshima 899-4312, Japan;
| | - Cheol-Ho Choi
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
39
|
A self-referenced in-situ arrival time monitor for X-ray free-electron lasers. Sci Rep 2021; 11:3562. [PMID: 33574378 PMCID: PMC7878505 DOI: 10.1038/s41598-021-82597-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pump-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
Collapse
|
40
|
Serrat C. Localized Core Four-Wave Mixing Buildup in the X-ray Spectrum of Chemical Species. J Phys Chem Lett 2021; 12:1093-1097. [PMID: 33471536 DOI: 10.1021/acs.jpclett.0c03270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using the Kohn-Sham density functional theory, we numerically study the four-wave mixing response of a carbon atom model system exposed to a train of femtosecond two color ω-3ω random phase coherent X-ray pulses near the K-edge. The phase-sensitivity cancellation of the 5ω anti-Stokes component previously described in two- and three-level systems in the infrared and optical regions is extended into the X-ray. Resonances with the absorption lines in the XANES and EXAFS regions produce 5ω peak intensities that increase near the phase-sensitivity cancellation frequencies. Based on this effect, we predict that highly selective intense X-ray 5ω photon energies can be achieved in real systems. The high localization of the ω-3ω four-wave mixing nonlinear technique that we address entails a new valuable tool in X-ray spectroscopies of chemical species as it can readily be extended to different photon energies in other atomic absorption edges, with broad applications.
Collapse
Affiliation(s)
- Carles Serrat
- Department of Physics, Polytechnic University of Catalonia, Colom 11, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
41
|
Basumallick S, Sajeev Y, Pal S, Vaval N. Negative Ion Resonance States: The Fock-Space Coupled-Cluster Way. J Phys Chem A 2020; 124:10407-10421. [PMID: 33327725 DOI: 10.1021/acs.jpca.0c09148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The negative ion resonance states, which are electron-molecule metastable compound states, play the most important role in free-electron controlled molecular reactions and low-energy free-electron-induced DNA damage. Their electronic structure is often only poorly described but crucial to an understanding of their reaction dynamics. One of the most important challenges to current electronic structure theory is the computation of negative ion resonance states. As a major step forward, coupled-cluster theories, which are well-known for their ability to produce the best approximate bound state electronic eigen solutions, are upgraded to offer the most accurate and effective approximations for negative ion resonance states. The existing Fock-space coupled-cluster (FSCC) and the equation-of-motion coupled-cluster (EOM-CC) approaches that compute bound states are redesigned for the direct and simultaneous determination of both the kinetic energy of the free electron at which the electron-molecule compound states are resonantly formed and the corresponding autodetachment decay rate of the electron from the metastable compound state. This Feature Article reviews the computation of negative ion resonances using the FSCC approach and, in passing, provides the highlights of the equivalent EOM-CC approach.
Collapse
Affiliation(s)
- Suhita Basumallick
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Y Sajeev
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 094, India
| | - Sourav Pal
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246, West Bengal, India
| | - Nayana Vaval
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
42
|
Jonas A, Dammer K, Stiel H, Kanngiesser B, Sánchez-de-Armas R, Mantouvalou I. Transient Sub-nanosecond Soft X-ray NEXAFS Spectroscopy on Organic Thin Films. Anal Chem 2020; 92:15611-15615. [PMID: 33206514 DOI: 10.1021/acs.analchem.0c03845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate visible pump soft X-ray probe near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements at the carbon K edge on thin molecular films in the laboratory. This opens new opportunities through the use of laboratory equipment for chemical speciation. We investigate the metal-free porphyrin derivative tetra(tert-butyl)porphyrazine as an ideal model system to elucidate electronic properties of tetrapyrroles like chlorophyll or heme. In contrast to measurements in gas or liquid state, the investigation of thin films is of high interest in the field of optoelectronic and photovoltaic devices though challenging due to the low damage thresholds of the samples upon excitation. With a careful pre-characterization using optical techniques, successful measurements were performed using a NEXAFS spectrometer based on a laser-produced plasma source and reflection zone plates with a resolving power of 1000 and a time resolution of 0.5 ns. In combination with density functional theory calculations, first insights into a long-lived excitonic state are gained and discussed.
Collapse
Affiliation(s)
- Adrian Jonas
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Katharina Dammer
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | - Holger Stiel
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Birgit Kanngiesser
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| | | | - Ioanna Mantouvalou
- Berlin Laboratory for Innovative X-ray Technologies (BLiX), D-10623 Berlin, Germany.,Analytical X-ray Physics, TU Berlin, D-10623 Berlin, Germany
| |
Collapse
|
43
|
Morzan UN, Videla PE, Soley MB, Nibbering ETJ, Batista VS. Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X‐Ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Uriel N. Morzan
- Condensed Matter Section The Abdus Salam International Center for Theoretical Physics Strada Costiera 11 34151 Trieste Italy
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
| | - Pablo E. Videla
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Energy Sciences Institute Yale University P.O. Box 27394 West Haven CT 06516-7394 USA
| | - Micheline B. Soley
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
- Yale Quantum Institute Yale University P.O. Box 208334 New Haven CT 06520-8263 USA
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy Max Born Strasse 2A 12489 Berlin Germany
| | - Victor S. Batista
- Department of Chemistry Yale University P.O. Box 208107 New Haven CT 06520-8107 USA
- Energy Sciences Institute Yale University P.O. Box 27394 West Haven CT 06516-7394 USA
| |
Collapse
|
44
|
Morzan UN, Videla PE, Soley MB, Nibbering ETJ, Batista VS. Vibronic Dynamics of Photodissociating ICN from Simulations of Ultrafast X-Ray Absorption Spectroscopy. Angew Chem Int Ed Engl 2020; 59:20044-20048. [PMID: 32691867 PMCID: PMC7693200 DOI: 10.1002/anie.202007192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Ultrafast UV-pump/soft-X-ray-probe spectroscopy is a subject of great interest since it can provide detailed information about dynamical photochemical processes with ultrafast resolution and atomic specificity. Here, we focus on the photodissociation of ICN in the 1 Π1 excited state, with emphasis on the transient response in the soft-X-ray spectral region as described by the ab initio spectral lineshape averaged over the nuclear wavepacket probability density. We find that the carbon K-edge spectral region reveals a rich transient response that provides direct insights into the dynamics of frontier orbitals during the I-CN bond cleavage process. The simulated UV-pump/soft-X-ray-probe spectra exhibit detailed dynamical information, including a time-domain signature for coherent vibration associated with the photogenerated CN fragment.
Collapse
Affiliation(s)
- Uriel N. Morzan
- Condensed Matter SectionThe Abdus Salam International Center for Theoretical PhysicsStrada Costiera 1134151TriesteItaly
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
| | - Pablo E. Videla
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Energy Sciences InstituteYale UniversityP.O. Box 27394West HavenCT06516-7394USA
| | - Micheline B. Soley
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Department of Chemistry and Chemical BiologyHarvard University12 Oxford StreetCambridgeMA02138USA
- Yale Quantum InstituteYale UniversityP.O. Box 208334New HavenCT06520-8263USA
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyMax Born Strasse 2A12489BerlinGermany
| | - Victor S. Batista
- Department of ChemistryYale UniversityP.O. Box 208107New HavenCT06520-8107USA
- Energy Sciences InstituteYale UniversityP.O. Box 27394West HavenCT06516-7394USA
| |
Collapse
|
45
|
Chergui M. Launching Structural Dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:060401. [PMID: 33415180 PMCID: PMC7771997 DOI: 10.1063/4.0000063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
|
46
|
|
47
|
Kanda N, Imahoko T, Yoshida K, Tanabashi A, Amani Eilanlou A, Nabekawa Y, Sumiyoshi T, Kuwata-Gonokami M, Midorikawa K. Opening a new route to multiport coherent XUV sources via intracavity high-order harmonic generation. LIGHT, SCIENCE & APPLICATIONS 2020; 9:168. [PMID: 33042531 PMCID: PMC7511353 DOI: 10.1038/s41377-020-00405-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 05/25/2023]
Abstract
High-order harmonic generation (HHG) is currently utilized for developing compact table-top radiation sources to provide highly coherent extreme ultraviolet (XUV) and soft X-ray pulses; however, the low repetition rate of fundamental lasers, which is typically in the multi-kHz range, restricts the area of application for such HHG-based radiation sources. Here, we demonstrate a novel method for realizing a MHz-repetition-rate coherent XUV light source by utilizing intracavity HHG in a mode-locked oscillator with an Yb:YAG thin disk laser medium and a 100-m-long ring cavity. We have successfully implemented HHG by introducing two different rare gases into two separate foci and picking up each HH beam. Owing to the two different HH beams generated from one cavity, this XUV light source will open a new route to performing a time-resolved measurement with an XUV-pump and XUV-probe scheme at a MHz-repetition rate with a femtosecond resolution.
Collapse
Affiliation(s)
- Natsuki Kanda
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 Japan
- Photon Science Center, The University of Tokyo, Tokyo, 113-8656 Japan
- Intstitute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581 Japan
| | | | | | - Akihiro Tanabashi
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 Japan
| | - A. Amani Eilanlou
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 Japan
| | - Yasuo Nabekawa
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 Japan
| | | | - Makoto Kuwata-Gonokami
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, 113-0033 Japan
- Department of Physics, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Katsumi Midorikawa
- RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 Japan
- Institute for Photon Science and Technology, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
48
|
Fouda AEA, Seitz LC, Hauschild D, Blum M, Yang W, Heske C, Weinhardt L, Besley NA. Observation of Double Excitations in the Resonant Inelastic X-ray Scattering of Nitric Oxide. J Phys Chem Lett 2020; 11:7476-7482. [PMID: 32787301 DOI: 10.1021/acs.jpclett.0c01981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nitrogen K-edge resonant inelastic X-ray scattering (RIXS) map of nitric oxide (NO) has been measured and simulated to provide a detailed analysis of the observed features. High-resolution experimental RIXS maps were collected using an in situ gas flow cell and a high-transmission soft X-ray spectrometer. Accurate descriptions of the ground, excited, and core-excited states are based upon restricted active space self-consistent-field calculations using second order multiconfigurational perturbation theory. The nitrogen K-edge RIXS map of NO shows a range of features that can be assigned to intermediate states arising from 1s → π* and 1s → Rydberg excitations; additional bands are attributed to doubly excited intermediate states comprising 1s → π* and π → π* excitations. These results provide a detailed picture of RIXS for an open-shell molecule and an extensive description of the core-excited electronic structure of NO, an important molecule in many chemical and biological processes.
Collapse
Affiliation(s)
- Adam E A Fouda
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Linsey C Seitz
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dirk Hauschild
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Monika Blum
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Clemens Heske
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Lothar Weinhardt
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-v.-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstrasse 18/20, 76128 Karlsruhe, Germany
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas (UNLV), 4505 Maryland Parkway, Las Vegas, Nevada 89154-4003, United States
| | - Nicholas A Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
49
|
Liu G, Sizhuk AS, Dorfman KE. Selective Elimination of Homogeneous Broadening by Multidimensional Spectroscopy in the Electromagnetically Induced Transparency Regime. J Phys Chem Lett 2020; 11:5504-5509. [PMID: 32539404 DOI: 10.1021/acs.jpclett.0c01481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The key feature of photon echo-based spectroscopies is a selective elimination of the inhomogeneous broadening. Fast homogeneous dephasing typical for large macromolecules makes it difficult to resolve the congested spectra even if the inhomogeneous component is eliminated. We propose a novel two-dimensional spectroscopy in which a series of temporally separated probe pulses are combined with the strong narrowband control pulse. Using electromagnetically induced transparency originating from the interference between the control and probe pulses, we achieve an observation window for molecular response in narrow spectral intervals significantly smaller than the homogeneous dephasing limit.
Collapse
Affiliation(s)
- Guangyu Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Andrii S Sizhuk
- Department of Radiophysics, Kyiv National Taras Shevchenko University, Acad. Glushkova Avenue 4-g, Kyiv, Ukraine 03022
| | - Konstantin E Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
50
|
Lee JW, Kang G, Kim M, Kim M, Park SH, Kwon S, Yang S, Cho BI. Femtosecond soft X-ray absorption spectroscopy of warm dense matter at the PAL-XFEL. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:953-958. [PMID: 33566003 DOI: 10.1107/s160057752000524x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/14/2020] [Indexed: 06/12/2023]
Abstract
Free-electron laser pulse-based X-ray absorption spectroscopy measurements on warm dense copper are presented. The incident X-ray pulse energies were measured with a detector assembly consisting of a photocathode membrane and microchannel plates, and the transmitted energies were measured simultaneously with a photodiode detector. The precision of the absorption measurements was evaluated. For a warm dense copper foil irradiated by an intense femtosecond laser pulse, the enhanced X-ray absorption below the L3-edge, followed by the rapid evolution of highly excited Fermi liquid within a picosecond, were successfully measured. This result demonstrates a unique capability to study femtosecond non-equilibrium electron-hole dynamics in extreme states of matter.
Collapse
Affiliation(s)
- Jong Won Lee
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Gyeongbo Kang
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Minju Kim
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sang Han Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Soonnam Kwon
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seonghyeok Yang
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| | - Byoung Ick Cho
- Department of Physics and Photon Science, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|