1
|
Lundahl MN, Greiner MB, Piquette MC, Gannon PM, Kaminsky W, Kovacs JA. Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation. Chem Sci 2024; 15:12710-12720. [PMID: 39148773 PMCID: PMC11325341 DOI: 10.1039/d4sc02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Converting triplet dioxygen into a powerful oxidant is fundamentally important to life. The study reported herein quantitatively examines the formation of a well-characterized, reactive, O2-derived thiolate ligated FeIII-superoxo using low-temperature stopped-flow kinetics. Comparison of the kinetic barriers to the formation of this species via two routes, involving either the addition of (a) O2 to [FeII(S2 Me2N3(Pr,Pr))] (1) or (b) superoxide to [FeIII(S2 Me2N3(Pr,Pr))]+ (3) is shown to provide insight into the mechanism of O2 activation. Route (b) was shown to be significantly slower, and the kinetic barrier 14.9 kJ mol-1 higher than route (a), implying that dioxygen activation involves inner-sphere, as opposed to outer sphere, electron transfer from Fe(ii). H-bond donors and ligand constraints are shown to dramatically influence O2 binding kinetics and reversibility. Dioxygen binds irreversibly to [FeII(S2 Me2N3(Pr,Pr))] (1) in tetrahydrofuran, but reversibly in methanol. Hydrogen bonding decreases the ability of the thiolate sulfur to stabilize the transition state and the FeIII-superoxo, as shown by the 10 kJ mol-1 increase in the kinetic barrier to O2 binding in methanol vs. tetrahydrofuran. Dioxygen release from [FeIII(S2 Me2N3(Pr,Pr))O2] (2) is shown to be 24 kJ mol-1 higher relative to previously reported [FeIII(SMe2N4(tren))(O2)]+ (5), the latter of which contains a more flexible ligand. These kinetic results afford an experimentally determined reaction coordinate that illustrates the influence of H-bonding and ligand constraints on the kinetic barrier to dioxygen activation an essential step in biosynthetic pathways critical to life.
Collapse
Affiliation(s)
- Maike N Lundahl
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Maria B Greiner
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Marc C Piquette
- Department of Chemistry, Tufts University 62 Talbot Avenue Medford Massachusetts 02155 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Julie A Kovacs
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| |
Collapse
|
2
|
Ajaykamal T, Palaniandavar M. Mononuclear nickel(ii)-flavonolate complexes of tetradentate tripodal 4N ligands as structural and functional models for quercetin 2,4-dioxygenase: structures, spectra, redox and dioxygenase activity. RSC Adv 2023; 13:24674-24690. [PMID: 37601601 PMCID: PMC10436029 DOI: 10.1039/d3ra04834a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
Three new nickel(ii)-flavonolate complexes of the type [Ni(L)(fla)](ClO4) 1-3, where L is the tripodal 4N ligand tris(pyrid-2-ylmethyl)amine (tpa, L1) or (pyrid-2-ylmethyl)bis(6-methylpyrid-2-ylmethyl)amine (6-Me2-tpa, L2) or tris(N-Et-benzimidazol-2-ylmethyl)amine (Et-ntb, L3), have been isolated as functional models for Ni(ii)-containing quercetin 2,4-dioxygenase. Single crystal X-ray structures of 1 and 3 reveal that Ni(ii) is involved in π-back bonding with flavonolate (fla-), as evident from enhancement in C[double bond, length as m-dash]O bond length upon coordination [H(fla), 1.232(3); 1, 1.245(7); 3, 1.262(8) Å]. More asymmetric chelation of fla- in 3 than in 1 [Δd = (Ni-Ocarbonyl - Ni-Oenolate): 1, 0.126; 3, 0.182 Å] corresponds to lower π-delocalization in 3 with electron-releasing N-Et substituent. The optimized structures of 1-3 and their geometrical isomers have been computed by DFT methods. The HOMO and LUMO, both localized on Ni(ii)-bound fla-, are highly conjugated bonding π- and antibonding π*-orbitals respectively. They are located higher in energy than the Ni(ii)-based MOs (HOMO-1, dx2-y2; HOMO-2/6, dz2), revealing that the Ni(ii)-bound fla- rather than Ni(ii) would undergo oxidation upon exposure to dioxygen. The results of computational studies, in combination with spectral and electrochemical studies, support the involvement of redox-inactive Ni(ii) in π-back bonding with fla-, tuning the π-delocalization in fla- and hence its activation. Upon exposure to dioxygen, all the flavonolate adducts in DMF solution decompose to produce CO and depside, which then is hydrolyzed to give the corresponding acids at 70 °C. The highest rate of dioxygenase reactivity of 3 (kO2: 3 (29.10 ± 0.16) > 1 (16.67 ± 0.70) > 2 (1.81 ± 0.04 × 10-1 M-1 s-1)), determined by monitoring the disappearance of the LMCT band in the range 440-450 nm, is ascribed to the electron-releasing N-Et substituent on bzim ring, which decreases the π-delocalization in fla- and enhances its activation.
Collapse
Affiliation(s)
- Tamilarasan Ajaykamal
- Department of Chemistry, Bharathidasan University Tiruchirapalli 620 024 Tamil Nadu India +91-431-2407043 +91-431-2407125
| | - Mallayan Palaniandavar
- Department of Chemistry, Bharathidasan University Tiruchirapalli 620 024 Tamil Nadu India +91-431-2407043 +91-431-2407125
| |
Collapse
|
3
|
Zhou B, Gabbaï FP. Four-Electron Reduction of O 2 Using Distibines in the Presence of ortho-Quinones. J Am Chem Soc 2023; 145:13758-13767. [PMID: 37306561 PMCID: PMC10863049 DOI: 10.1021/jacs.3c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 06/13/2023]
Abstract
This study, which aims to identify atypical platforms for the reduction of dioxygen, describes the reaction of O2 with two distibines, namely, 4,5-bis(diphenylstibino)-2,7-di-tert-butyl-9,9-dimethylxanthene and 4,5-bis(diphenylstibino)-2,7-di-tert-butyl-9,9-dimethyldihydroacridine, in the presence of an ortho-quinone such as phenanthraquinone. The reaction proceeds by oxidation of the two antimony atoms to the + V state in concert with reductive cleavage of the O2 molecule. As confirmed by 18O labeling experiments, the two resulting oxo units combine with the ortho-quinone to form an α,α,β,β-tetraolate ligand that bridges the two antimony(V) centers. This process, which has been studied both experimentally and computationally, involves the formation of asymmetric, mixed-valent derivatives featuring a stibine as well as a catecholatostiborane formed by oxidative addition of the quinone to only one of the antimony centers. Under aerobic conditions, the catecholatostiborane moiety reacts with O2 to form a semiquinone/peroxoantimony intermediate, as supported by NMR spectroscopy in the case of the dimethyldihydroacridine derivative. These intermediates swiftly evolve into the symmetrical bis(antimony(V)) α,α,β,β-tetraolate complexes via low barrier processes. Finally, the controlled protonolysis and reduction of the bis(antimony(V)) α,α,β,β-tetraolate complex based on the 9,9-dimethylxanthene platform have been investigated and shown to regenerate the starting distibine and the ortho-quinone. More importantly, these last reactions also produce two equivalents of water as the product of O2 reduction.
Collapse
Affiliation(s)
- Benyu Zhou
- Texas A&M University, Department of Chemistry, College
Station, Texas 77843, United States
| | - François P. Gabbaï
- Texas A&M University, Department of Chemistry, College
Station, Texas 77843, United States
| |
Collapse
|
4
|
Jeong D, Selverstone Valentine J, Cho J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Jeong D, Kim H, Cho J. Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C-H Bond Activation. J Am Chem Soc 2023; 145:888-897. [PMID: 36598425 DOI: 10.1021/jacs.2c09274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The oxidation of aldehyde is one of the fundamental reactions in the biological system. Various synthetic procedures and catalysts have been developed to convert aldehydes into corresponding carboxylic acids efficiently under ambient conditions. In this work, we report the oxidation of aldehydes by a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1), with kinetic and mechanistic studies in detail. The reaction of 1 with aldehydes resulted in the formation of corresponding carboxylic acids via a pre-equilibrium state. Hammett plot and reaction rates of 1 with 1°-, 2°-, and 3°-aldehydes revealed the electrophilicity of 1 in the aldehyde oxidation. A kinetic isotope effect experiment and reactivity of 1 toward cyclohexanecarboxaldehyde (CCA) analogues indicate that the reaction of 1 with aldehyde occurs through the rate-determining C-H bond activation at the formyl group. The reaction rate of 1 with CCA is correlated to the bond dissociation energy of the formyl group plotting a linear correlation with other aliphatic C-H bonds. Density functional theory calculations found that 1 electrostatically interacts with CCA at the pre-equilibrium state in which the C-H bond activation of the formyl group is performed as the most feasible pathway. Surprisingly, the rate-determining step is characterized as hydride transfer from CCA to 1, affording an (oxo)methylium intermediate. At the fundamental level, it is revealed that the hydride transfer is composed of H atom abstraction followed by a fast electron transfer. Catalytic reactions of aldehydes by 1 are also presented with a broad substrate scope. This novel mechanistic study gives better insights into the metal oxygen chemistry and would be prominently valuable for development of transition metal catalysts.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Hyokyung Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea.,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
6
|
Emamian S, Ireland KA, Purohit V, McWhorter KL, Maximova O, Allen W, Jensen S, Casa DM, Pushkar Y, Davis KM. X-ray Emission Spectroscopy of Single Protein Crystals Yields Insights into Heme Enzyme Intermediates. J Phys Chem Lett 2023; 14:41-48. [PMID: 36566390 PMCID: PMC9990082 DOI: 10.1021/acs.jpclett.2c03018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kβ emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.
Collapse
Affiliation(s)
- Sahand Emamian
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | | | - Vatsal Purohit
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | - Olga Maximova
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Winter Allen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Scott Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Diego M. Casa
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
7
|
Liu X, Huang J, Tao L, Yu H, Zhou X, Xue C, Han Q, Zou W, Ji H. Oxygen Atom Transfer Mechanism for
Vanadium‐Oxo
Porphyrin Complexes Mediated Aerobic Olefin Epoxidation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao‐Hui Liu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Jia‐Ying Huang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Lei‐Ming Tao
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
| | - Hai‐Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Xian‐Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Qi Han
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Wen Zou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat‐sen University Zhuhai Guangdong 519082 China
| | - Hong‐Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat‐sen University Guangzhou Guangdong 510275 China
- School of Chemical Engineering Guangdong University of Petrochemical Technology Maoming Guangdong 525000 China
| |
Collapse
|
8
|
Rebilly JN, Herrero C, Sénéchal-David K, Guillot R, Inceoglu T, Maisonneuve H, Banse F. Second-sphere effects on H 2O 2 activation by non-heme Fe II complexes: role of a phenol group in the [H 2O 2]-dependent accumulation of Fe IVO vs. Fe IIIOOH. Chem Sci 2021; 12:15691-15699. [PMID: 35003600 PMCID: PMC8653992 DOI: 10.1039/d1sc03303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Redox metalloenzymes achieve very selective oxidation reactions under mild conditions using O2 or H2O2 as oxidants and release harmless side-products like water. Their oxidation selectivity is intrinsically linked to the control of the oxidizing species generated during the catalytic cycle. To do so, a second coordination sphere is used in order to create a pull effect during the activation of O2 or H2O2, thus ensuring a heterolytic O-O bond cleavage. Herein, we report the synthesis and study of a new non-heme FeII complex bearing a pentaazadentate first coordination sphere and a pendant phenol group. Its reaction with H2O2 generates the classical FeIIIOOH species at high H2O2 loading. But at low H2O2 concentrations, an FeIVO species is generated instead. The formation of the latter is directly related to the presence of the 2nd sphere phenol group. Kinetic, variable temperature and labelling studies support the involvement of the attached phenol as a second coordination sphere moiety (weak acid) during H2O2 activation. Our results suggest a direct FeII → FeIVO conversion directed by the 2nd sphere phenol via the protonation of the distal O atom of the FeII/H2O2 adduct leading to a heterolytic O-O bond cleavage.
Collapse
Affiliation(s)
- Jean-Noël Rebilly
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Christian Herrero
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Katell Sénéchal-David
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Régis Guillot
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Tanya Inceoglu
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Hélène Maisonneuve
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| | - Frédéric Banse
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) 91405 Orsay Cedex France
| |
Collapse
|
9
|
‘Oxygen-Consuming Complexes’–Catalytic Effects of Iron–Salen Complexes with Dioxygen. Catalysts 2021. [DOI: 10.3390/catal11121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[(salen)FeIII]+MeCN complex is a useful catalyst for cyclohexene oxidation with dioxygen. As the main products, ketone and alcohol are formed. In acetonitrile, [(salen)FeII]MeCN is rapidly oxidized by dioxygen, forming iron(III) species. Voltammetric electroreduction of the [(salen)FeIII]+MeCN complex in the presence of dioxygen causes the increase in current observed, which indicates the existence of a catalytic effect. Further transformations of the oxygen-activated iron(III) salen complex generate an effective catalyst. Based on the catalytic and electrochemical results, as well as DFT calculations, possible forms of active species in c-C6H10 oxidation have been proposed.
Collapse
|
10
|
Brückmann T, Becker J, Würtele C, Seuffert MT, Heuler D, Müller-Buschbaum K, Weiß M, Schindler S. Characterization of copper complexes with derivatives of the ligand (2-aminoethyl)bis(2-pyridylmethyl)amine (uns-penp) and their reactivity towards oxygen. J Inorg Biochem 2021; 223:111544. [PMID: 34333248 DOI: 10.1016/j.jinorgbio.2021.111544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
A series of copper(I) complexes with ligands derived from the tripodal ligand (2-aminoethyl)bis(2-pyridylmethyl)amine (uns-penp) have been structurally characterized and their redox chemistry analyzed by cyclic voltammetry. While the redox potentials of most of the complexes were similar their reactivity towards dioxygen was quite different. While the complex with a ferrocene derived ligand of uns-penp reacted in solution at low temperatures in a two-step reaction from the preliminary formed mononuclear end-on superoxido complex to a quite stable dinuclear peroxido complex it did not react with dioxygen in the solid state. Other complexes also did not react with dioxygen in the solid state while some showed a reversible formation to a green compound, indicating formation of an end-on superoxido complex that unfortunately so far could not be characterized. In contrast, copper complexes with the Me2uns-penp and Et-iProp-uns-penp formed dinuclear peroxido complexes in a solid-state reaction. While the reaction of dioxygen with the [Cu(Me2uns-penp]BPh4 was quite slow an instant reaction took place for [Cu(Et-iProp-uns-penp]BPh. Very unusual, it turned out that crystals of the copper(I) complex that could be structurally characterized still were crystalline when reacted with dioxygen. Therefore, it was possible to solve the structure of the corresponding dinuclear peroxido complex directly from the same batch of crystals. The crystalline structures of the copper(I) and copper(II) complex revealed that the reason for this is the fact, that the copper(I) complex is kind of preorganized for the uptake of dioxygen and does not really change in its overall structure when being oxidized.
Collapse
Affiliation(s)
- Tim Brückmann
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Jonathan Becker
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Christian Würtele
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Marcel Thomas Seuffert
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Dominik Heuler
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Klaus Müller-Buschbaum
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Morten Weiß
- Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Siegfried Schindler
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany.
| |
Collapse
|
11
|
Stöhr F, Kulhanek N, Becker J, Göttlich R, Schindler S. Reactivity of Copper(I) Complexes Containing Ligands Derived from (1
S
,3
R
)‐Camphoric Acid with Dioxygen. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fabian Stöhr
- Institute for Inorganic and Analytical Chemistry Justus-Liebig-University Gießen Heinrich-Buff-Ring 17 35392 Gießen Germany
- Institute for Organic Chemistry Justus-Liebig-University Gießen Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Niclas Kulhanek
- Institute for Organic Chemistry Justus-Liebig-University Gießen Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Jonathan Becker
- Institute for Inorganic and Analytical Chemistry Justus-Liebig-University Gießen Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Richard Göttlich
- Institute for Organic Chemistry Justus-Liebig-University Gießen Heinrich-Buff-Ring 17 35392 Gießen Germany
| | - Siegfried Schindler
- Institute for Inorganic and Analytical Chemistry Justus-Liebig-University Gießen Heinrich-Buff-Ring 17 35392 Gießen Germany
| |
Collapse
|
12
|
Jeong D, Cho J. Hydride-Transfer Reaction to a Mononuclear Manganese(III) Iodosylarene Complex. Inorg Chem 2021; 60:7612-7616. [PMID: 33978417 DOI: 10.1021/acs.inorgchem.1c00562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal iodosylarene species have received interest because of their potential oxidative power as a catalyst. We present the first example of hydride-transfer reactions to a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1; TBDAP = N,N-di-tert-butyl-2,11-diaza[3.3](2,6)pyridinophane), with dihydronicotinamide adenine dinucleotide (NADH) analogues. Kinetic studies show that hydride-transfer from the NADH analogues to 1 occurs via a proton-coupled electron transfer, followed by a rapid electron transfer.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea
| |
Collapse
|
13
|
Kerbib W, Singh S, Nautiyal D, Kumar A, Kumar S. Ni(II) complexes of tripodal N4 ligands as catalysts for alkane hydroxylation and O-arylation of phenol: Structural and reactivity effects induced by fluoro substitution. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Prakash O, Chábera P, Rosemann NW, Huang P, Häggström L, Ericsson T, Strand D, Persson P, Bendix J, Lomoth R, Wärnmark K. A Stable Homoleptic Organometallic Iron(IV) Complex. Chemistry 2020; 26:12728-12732. [PMID: 32369645 PMCID: PMC7590184 DOI: 10.1002/chem.202002158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 11/08/2022]
Abstract
A homoleptic organometallic FeIV complex that is stable in both solution and in the solid state at ambient conditions has been synthesized and isolated as [Fe(phtmeimb)2 ](PF6 )2 (phtmeimb=[phenyl(tris(3-methylimidazolin-2-ylidene))borate]- ). This FeIV N-heterocyclic carbene (NHC) complex was characterized by 1 H NMR, HR-MS, elemental analysis, scXRD analysis, electrochemistry, Mößbauer spectroscopy, and magnetic susceptibility. The two latter techniques unequivocally demonstrate that [Fe(phtmeimb)2 ](PF6 )2 is a triplet FeIV low-spin S=1 complex in the ground state, in agreement with quantum chemical calculations. The electronic absorption spectrum of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile shows an intense absorption band in the red and near IR, due to LMCT (ligand-to-metal charge transfer) excitation. For the first time the excited state dynamics of a FeIV complex was studied and revealed a ≈0.8 ps lifetime of the 3 LMCT excited state of [Fe(phtmeimb)2 ](PF6 )2 in acetonitrile.
Collapse
Affiliation(s)
- Om Prakash
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Pavel Chábera
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Nils W Rosemann
- Division of Chemical Physics, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Ping Huang
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Lennart Häggström
- Department of Physics, Ångström Laboratory, Uppsala University, Box 528, Uppsala, 751 21, Sweden
| | - Tore Ericsson
- Department of Physics, Ångström Laboratory, Uppsala University, Box 528, Uppsala, 751 21, Sweden
| | - Daniel Strand
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Reiner Lomoth
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, Uppsala, 75120, Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, Lund, 22100, Sweden
| |
Collapse
|
15
|
Stojičkov M, Sturm S, Čobeljić B, Pevec A, Jevtović M, Scheitler A, Radanović D, Senft L, Turel I, Andjelković K, Miehlich M, Meyer K, Ivanović‐Burmazović I. Cobalt(II), Zinc(II), Iron(III), and Copper(II) Complexes Bearing Positively Charged Quaternary Ammonium Functionalities: Synthesis, Characterization, Electrochemical Behavior, and SOD Activity. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marko Stojičkov
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Sabrina Sturm
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Božidar Čobeljić
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Andrej Pevec
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Mima Jevtović
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Dušanka Radanović
- Institute of Chemistry Technology and Metallurgy University of Belgrade Njegoševa 12, P.O. Box 815 11000 Belgrade Serbia
| | - Laura Senft
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Katarina Andjelković
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Matthias Miehlich
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
- Department Chemie Ludwigs‐Maximilians‐Universität Butenandtstraße 5‐13 81377 München Germany
| |
Collapse
|
16
|
Agarwalla US. Catalytic oxyfunctionalization of saturated hydrocarbons by non-heme oxo-bridged diiron(III) complexes: role of acetic acid on oxidation reaction. TRANSIT METAL CHEM 2020. [DOI: 10.1007/s11243-020-00412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
18
|
Artificial oxygen carriers and red blood cell substitutes: A historic overview and recent developments toward military and clinical relevance. J Trauma Acute Care Surg 2020; 87:S48-S58. [PMID: 31246907 DOI: 10.1097/ta.0000000000002250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Packed red blood cells are a critical component in the resuscitation of hemorrhagic shock. The availability of donor-derived blood products, however, suffers from issues of supply, immunogenicity, and pathogenic contamination. Deployment in remote or austere environments, such as the battlefield, is further hindered by the inherent perishability of blood products. To address the significant limitations of allogenic packed red blood cells and the urgent medical need for better resuscitative therapies for both combat casualties and civilians, there has been significant research invested in developing safe, effective, and field deployable artificial oxygen carriers. This article provides a comprehensive review of the most important technologies in the field of artificial oxygen carriers including cell-free and encapsulated hemoglobin-based oxygen carriers, perfluorocarbon emulsions, natural hemoglobin alternatives, as well as other novel technologies. Their development status, clinical, and military relevance are discussed. LEVEL OF EVIDENCE: Systematic review.
Collapse
|
19
|
Wang L, Gennari M, Cantú Reinhard FG, Padamati SK, Philouze C, Flot D, Demeshko S, Browne WR, Meyer F, de Visser SP, Duboc C. O2 Activation by Non-Heme Thiolate-Based Dinuclear Fe Complexes. Inorg Chem 2020; 59:3249-3259. [DOI: 10.1021/acs.inorgchem.9b03633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lianke Wang
- Institutes of Physical Science and Information Technology, Anhui University, 230601 Hefei, Anhui, P. R. China
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Marcello Gennari
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sandeep K. Padamati
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | | | - David Flot
- ESRF European Synchrotron 71, Ave Martyrs Grenoble, 38000 Grenoble, France
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Wesley R. Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| |
Collapse
|
20
|
Singh B, Das RS. Studies on the oxidative degradation of paracetamol by a μ-oxo-diiron(III) complex. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In higher organisms, metalloenzymes like cytochrome P450, containing a Fe(III) metal center, play an active role in metabolism of paracetamol (APAP). Here, we have chosen a mimicking μ-oxo-diiron complex, [Fe(III)2(μ-O)(phen)4(H2O)2]4+(1, phen = 1,10-phenanthroline), to study spectrophotometrically the kinetics of the redox interactions with APAP. In acidic buffer media (pH = 3.4–5.1), APAP quantitatively reduces 1 following first-order reaction kinetics. Each molecule of 1 accepts two electrons from APAP and is reduced to ferroin [Fe(phen)3]2+. On oxidation, APAP produces N-acetyl-p-benzoquinone imine (NAPQI), which on hydrolysis results in a mixture of benzoquinone, quinone oxime, acetamide, and acetic acid. In reaction media due to successive deprotonations, 1 exists in equilibrium with the species [Fe(III)2(μ-O)(phen)4(H2O)(OH)]3+(1a) and [Fe(III)2(μ-O)(phen)4(OH)2]2+(1b) (pKa= 3.71 and 5.28, respectively). The kinetic analyses suggest for an unusual reactivity order as 1 < 1a ≫ 1b. The mechanistic possibilities suggest that although 1 is reduced by concerted electron transfer (ET) – proton transfer (PT) mechanism, 1a and 1b may be reduced by a concerted PT–ET mechanism where a slow proton-abstraction step is followed by a rapid ET process. It seems that the initial activation of the bridging μ-oxo group by a proton-abstraction results in the higher reactivity of 1a.
Collapse
Affiliation(s)
- Bula Singh
- Department of Chemistry, Visva-Bharati, Santiniketan 731235, India
| | - Ranendu Sekhar Das
- Department of Chemistry, Ranaghat College, Nadia, West Bengal 741201, India
| |
Collapse
|
21
|
Walleck S, Glaser T. A Dinucleating Ligand System with Varying Terminal Donors to Mimic Diiron Active Sites. Isr J Chem 2020. [DOI: 10.1002/ijch.201900097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany
| |
Collapse
|
22
|
Will J, Schneider L, Becker J, Becker S, Miska A, Gawlig C, Schindler S. Synthesis and Reactivity of Iron(II) Complexes with a New Tripodal Imine Ligand. Isr J Chem 2020. [DOI: 10.1002/ijch.201900120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Janine Will
- Institute of Inorganic and Analytic Chemistry Justus-Liebig University of Gießen Heinrich-Buff Ring 17 D-35392 Gießen Germany
| | - Lars Schneider
- Institute of Inorganic and Analytic Chemistry Justus-Liebig University of Gießen Heinrich-Buff Ring 17 D-35392 Gießen Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytic Chemistry Justus-Liebig University of Gießen Heinrich-Buff Ring 17 D-35392 Gießen Germany
| | - Sabine Becker
- Technische Universität Kaiserslautern Fachbereich Chemie Erwin-Schrödinger-Straße Gebäude 54/684 67663 Kaiserslautern Germany
| | - Andreas Miska
- Institute of Inorganic and Analytic Chemistry Justus-Liebig University of Gießen Heinrich-Buff Ring 17 D-35392 Gießen Germany
| | - Christopher Gawlig
- Institute of Inorganic and Analytic Chemistry Justus-Liebig University of Gießen Heinrich-Buff Ring 17 D-35392 Gießen Germany
| | - Siegfried Schindler
- Institute of Inorganic and Analytic Chemistry Justus-Liebig University of Gießen Heinrich-Buff Ring 17 D-35392 Gießen Germany
| |
Collapse
|
23
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
25
|
Mubarak MQE, de Visser SP. Second-Coordination Sphere Effect on the Reactivity of Vanadium–Peroxo Complexes: A Computational Study. Inorg Chem 2019; 58:15741-15750. [DOI: 10.1021/acs.inorgchem.9b01778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
26
|
Song H, Naowarojna N, Cheng R, Lopez J, Liu P. Non-heme iron enzyme-catalyzed complex transformations: Endoperoxidation, cyclopropanation, orthoester, oxidative C-C and C-S bond formation reactions in natural product biosynthesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 117:1-61. [PMID: 31564305 DOI: 10.1016/bs.apcsb.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Non-heme iron enzymes catalyze a wide range of chemical transformations, serving as one of the key types of tailoring enzymes in the biosynthesis of natural products. Hydroxylation reaction is the most common type of reactions catalyzed by these enzymes and hydroxylation reactions have been extensively investigated mechanistically. However, the mechanistic details for other types of transformations remain largely unknown or unexplored. In this paper, we present some of the most recently discovered transformations, including endoperoxidation, orthoester formation, cyclopropanation, oxidative C-C and C-S bond formation reactions. In addition, many of them are multi-functional enzymes, which further complicate their mechanistic investigations. In this work, we summarize their biosynthetic pathways, with special emphasis on the mechanistic details available for these newly discovered enzymes.
Collapse
Affiliation(s)
- Heng Song
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei, People's Republic of China
| | | | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Juan Lopez
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States
| |
Collapse
|
27
|
Comparison of the stability and reactivity of achiral versus chiral nonheme oxoiron(IV) complexes supported by pentadentate N5 ligands in oxygen-atom and hydrogen-atom transfer reactions. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Tseberlidis G, Demonti L, Pirovano V, Scavini M, Cappelli S, Rizzato S, Vicente R, Caselli A. Controlling Selectivity in Alkene Oxidation: Anion Driven Epoxidation or Dihydroxylation Catalysed by [Iron(III)(Pyridine‐Containing Ligand)] Complexes. ChemCatChem 2019. [DOI: 10.1002/cctc.201901045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giorgio Tseberlidis
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Luca Demonti
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Valentina Pirovano
- Department of Pharmaceutical Sciences General and Organic Chemistry Section “A. Marchesini”University of Milan Via Venezian 21 Milano 20133 Italy
| | - Marco Scavini
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Serena Cappelli
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Silvia Rizzato
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Rubén Vicente
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”Universidad de Oviedo c/ Julián Clavería 8 Oviedo 33007 Spain
| | - Alessandro Caselli
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| |
Collapse
|
29
|
Abstract
Metal-oxyl (Mn+-O•) complexes having an oxyl radical ligand, which are electronically equivalent to well-known metal-oxo (M(n+1)+═O) complexes, are surveyed as a new category of metal-based oxidants. Detection and characterization of Mn+-O• species have been made in some cases, although proposals and characterization of the species are mostly done on the basis of density functional theory (DFT) calculations. The reactivity of Mn+-O• complexes will provide a way to achieve potentially difficult oxidative conversion of substrates. This Viewpoint will provide state-of-the-art knowledge on the Mn+-O• species in terms of the formation, characterization, and DFT-based proposals to shed light on the characteristics of the intriguing oxidatively active species.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan.,Interdisciplinary Research Center for Catalytic Chemistry , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Ibaraki 305-8565 , Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-8571 , Japan
| |
Collapse
|
30
|
Barman P, Cantú Reinhard FG, Bagha UK, Kumar D, Sastri CV, de Visser SP. Hydrogen by Deuterium Substitution in an Aldehyde Tunes the Regioselectivity by a Nonheme Manganese(III)-Peroxo Complex. Angew Chem Int Ed Engl 2019; 58:10639-10643. [PMID: 31108009 DOI: 10.1002/anie.201905416] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 12/31/2022]
Abstract
Mononuclear nonheme MnIII -peroxo complexes are important intermediates in biology, and take part in oxygen activation by photosystem II. Herein, we present work on two isomeric biomimetic side-on MnIII -peroxo intermediates with bispidine ligand system and reactivity patterns with aldehydes. The complexes are characterized with UV/Vis and mass spectrometric techniques and reaction rates with cyclohexane carboxaldehyde (CCA) are measured. The reaction gives an unusual regioselectivity switch from aliphatic to aldehyde hydrogen atom abstraction upon deuteration of the substrate, leading to the corresponding carboxylic acid product for the latter, while the former gives a deformylation reaction. Mechanistic details are established from kinetic isotope effect studies and density functional theory calculations. Thus, replacement of C-H by C-D raises the hydrogen atom abstraction barriers and enables a regioselectivity switch to a competitive pathway that is slightly higher in energy.
Collapse
Affiliation(s)
- Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Fabián G Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Umesh Kumar Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Devesh Kumar
- Department of Physics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
31
|
Barman P, Cantú Reinhard FG, Bagha UK, Kumar D, Sastri CV, de Visser SP. Hydrogen by Deuterium Substitution in an Aldehyde Tunes the Regioselectivity by a Nonheme Manganese(III)–Peroxo Complex. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prasenjit Barman
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Umesh Kumar Bagha
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Devesh Kumar
- Department of PhysicsSchool of Physical and Decision SciencesBabasaheb Bhimrao Ambedkar University Lucknow 226025 India
| | - Chivukula V. Sastri
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati Assam 781039 India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
32
|
Catalytic and stoichiometric C H oxidation of benzylalcohols and hydrocarbons mediated by nonheme oxoiron(IV) complex with chiral tetrapyridyl ligand. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Synthesis, DFT/TD-DFT theoretical studies, experimental characterization, electrochemical and antioxidant activity of Fe(III) complexes of bis (dimethylglyoximato) guanine. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Woodall DW, El-Baba TJ, Fuller DR, Liu W, Brown CJ, Laganowsky A, Russell DH, Clemmer DE. Variable-Temperature ESI-IMS-MS Analysis of Myohemerythrin Reveals Ligand Losses, Unfolding, and a Non-Native Disulfide Bond. Anal Chem 2019; 91:6808-6814. [PMID: 31038926 DOI: 10.1021/acs.analchem.9b00981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Variable-temperature electrospray ionization combined with ion mobility spectrometry (IMS) and mass spectrometry (MS) techniques are used to monitor structural transitions of the protein myohemerythrin from peanut worm in aqueous ammonium acetate solutions from ∼15 to 92 °C. At physiological temperatures, myohemerythrin favors a four-helix bundle motif and has a diiron oxo cofactor that binds oxygen. As the solution temperature is increased from ∼15 to 35 °C, some bound oxygen dissociates; at ∼66 °C, the cofactor dissociates to produce populations of both folded and unfolded apoprotein. At higher temperatures (∼85 °C and above), the IMS-MS spectrum indicates that the folded apoprotein dominates, and provides evidence for stabilization of the structure by formation of a non-native disulfide bond. In total, we find evidence for 18 unique forms of myohemerythrin as well as information about the structures and stabilities of these states. The high-fidelity of IMS-MS techniques provides a means of examining the stabilities of individual components of complex mixtures that are inaccessible by traditional calorimetric and spectroscopic methods.
Collapse
Affiliation(s)
- Daniel W Woodall
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Tarick J El-Baba
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Daniel R Fuller
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Wen Liu
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Christopher J Brown
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Arthur Laganowsky
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David H Russell
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - David E Clemmer
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
35
|
Mukherjee G, Alili A, Barman P, Kumar D, Sastri CV, de Visser SP. Interplay Between Steric and Electronic Effects: A Joint Spectroscopy and Computational Study of Nonheme Iron(IV)-Oxo Complexes. Chemistry 2019; 25:5086-5098. [PMID: 30720909 DOI: 10.1002/chem.201806430] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Indexed: 01/05/2023]
Abstract
Iron is an essential element in nonheme enzymes that plays a crucial role in many vital oxidative transformations and metabolic reactions in the human body. Many of those reactions are regio- and stereospecific and it is believed that the selectivity is guided by second-coordination sphere effects in the protein. Here, results are shown of a few engineered biomimetic ligand frameworks based on the N4Py (N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) scaffold and the second-coordination sphere effects are studied. For the first time, selective substitutions in the ligand framework have been shown to tune the catalytic properties of the iron(IV)-oxo complexes by regulating the steric and electronic factors. In particular, a better positioning of the oxidant and substrate in the rate-determining transition state lowers the reaction barriers. Therefore, an optimum balance between steric and electronic factors mediates the ideal positioning of oxidant and substrate in the rate-determining transition state that affects the reactivity of high-valent reaction intermediates.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aligulu Alili
- The Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow, 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical, Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
36
|
SEKINO M, FURUTACHI H, TASAKI K, ISHIKAWA T, FUJINAMI S, AKINE S, SAKATA Y, SUZUKI M, NOMURA T, OGURA T, KITAGAWA T. Crystal Structure of Bis(μ-hydroxo)diiron(II) Complex with a Dinucleating Ligand Having a Butyl Linker. X-RAY STRUCTURE ANALYSIS ONLINE 2019. [DOI: 10.2116/xraystruct.35.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mio SEKINO
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Hideki FURUTACHI
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Kyosuke TASAKI
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Takanao ISHIKAWA
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Shuhei FUJINAMI
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Shigehisa AKINE
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University
| | - Yoko SAKATA
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Masatatsu SUZUKI
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Takashi NOMURA
- Picobiology Institute, Graduate School of Life Science, University of Hyogo
| | - Takashi OGURA
- Picobiology Institute, Graduate School of Life Science, University of Hyogo
| | - Teizo KITAGAWA
- Picobiology Institute, Graduate School of Life Science, University of Hyogo
| |
Collapse
|
37
|
Glaser T. A dinucleating ligand system with varying terminal donor functions but without bridging donor functions: Design, synthesis, and applications for diiron complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Bohn A, Chinaux-Chaix C, Cheaib K, Guillot R, Herrero C, Sénéchal-David K, Rebilly JN, Banse F. Base-controlled mechanistic divergence between iron(iv)-oxo and iron(iii)-hydroperoxo in the H2O2 activation by a nonheme iron(ii) complex. Dalton Trans 2019; 48:17045-17051. [DOI: 10.1039/c9dt03487k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An FeII complex reacts with excess H2O2 in the presence of sub-stoichiometric NEt3 to give FeIV(O) and FeIII(OOH) reactive species following a base-dependent and a base-independent pathway, respectively.
Collapse
Affiliation(s)
- Antoine Bohn
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| | - Clémence Chinaux-Chaix
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| | - Khaled Cheaib
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| | - Katell Sénéchal-David
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| | - Jean-Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'Orsay
- Univ. Paris-Sud
- Univ. Paris-Saclay
- CNRS
- 91405 Orsay cedex
| |
Collapse
|
39
|
Lacy DC. Applications of the Marcus cross relation to inner sphere reduction of O 2: implications in small-molecule activation. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00828d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Marcus cross relation is demonstrated to be applicable to inner sphere electron transfer from iron to molecular oxygen by incorporation of the Fe(iii)–O2to Fe(iii) + superoxide BDFE inKeq. A few case-studies are provided as working examples.
Collapse
Affiliation(s)
- David C. Lacy
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
40
|
Cheaib K, Mubarak MQE, Sénéchal-David K, Herrero C, Guillot R, Clémancey M, Latour JM, de Visser SP, Mahy JP, Banse F, Avenier F. Selective Formation of an FeIV
O or an FeIII
OOH Intermediate From Iron(II) and H2
O2
: Controlled Heterolytic versus Homolytic Oxygen-Oxygen Bond Cleavage by the Second Coordination Sphere. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812724] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Khaled Cheaib
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Katell Sénéchal-David
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Martin Clémancey
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249; Université Grenoble Alpes; Grenoble 38054 France
| | - Jean-Marc Latour
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249; Université Grenoble Alpes; Grenoble 38054 France
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science; The University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud; Université Paris Saclay; 91405 Orsay cedex France
| |
Collapse
|
41
|
Cheaib K, Mubarak MQE, Sénéchal-David K, Herrero C, Guillot R, Clémancey M, Latour JM, de Visser SP, Mahy JP, Banse F, Avenier F. Selective Formation of an Fe IV O or an Fe III OOH Intermediate From Iron(II) and H 2 O 2 : Controlled Heterolytic versus Homolytic Oxygen-Oxygen Bond Cleavage by the Second Coordination Sphere. Angew Chem Int Ed Engl 2018; 58:854-858. [PMID: 30485630 DOI: 10.1002/anie.201812724] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 11/06/2022]
Abstract
We demonstrate that the devised incorporation of an alkylamine group into the second coordination sphere of an FeII complex allows to switch its reactivity with H2 O2 from the usual formation of FeIII species towards the selective generation of an FeIV -oxo intermediate. The FeIV -oxo species was characterized by UV/Vis absorption and Mössbauer spectroscopy. Variable-temperature kinetic analyses point towards a mechanism in which the heterolytic cleavage of the O-O bond is triggered by a proton transfer from the proximal to the distal oxygen atom in the FeII -H2 O2 complex with the assistance of the pendant amine. DFT studies reveal that this heterolytic cleavage is actually initiated by an homolytic O-O cleavage immediately followed by a proton-coupled electron transfer (PCET) that leads to the formation of the FeIV -oxo and release of water through a concerted mechanism.
Collapse
Affiliation(s)
- Khaled Cheaib
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - M Qadri E Mubarak
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Katell Sénéchal-David
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Martin Clémancey
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249, Université Grenoble Alpes, Grenoble, 38054, France
| | - Jean-Marc Latour
- LCBM/PMB and CEA/BIG/CBM/ and CNRS UMR 5249, Université Grenoble Alpes, Grenoble, 38054, France
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Pierre Mahy
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| | - Frédéric Avenier
- Institut de Chimie Moléculaire et des matériaux d'Orsay (UMR 8182) Univ Paris Sud, Université Paris Saclay, 91405, Orsay cedex, France
| |
Collapse
|
42
|
Miska A, Schurr D, Rinke G, Dittmeyer R, Schindler S. From model compounds to applications: Kinetic studies on the activation of dioxygen using an iron complex in a SuperFocus mixer. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Wern M, Ortmeyer J, Josephs P, Schneider T, Neuba A, Henkel G, Schindler S. Syntheses, characterization, and reactivity of copper complexes with camphor-like tetramethylguanidine ligands. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Timmins A, Quesne MG, Borowski T, de Visser SP. Group Transfer to an Aliphatic Bond: A Biomimetic Study Inspired by Nonheme Iron Halogenases. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01673] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Amy Timmins
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Matthew G. Quesne
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Sam P. de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
45
|
Surendhran R, D'Arpino AA, Sciscent BY, Cannella AF, Friedman AE, MacMillan SN, Gupta R, Lacy DC. Deciphering the mechanism of O 2 reduction with electronically tunable non-heme iron enzyme model complexes. Chem Sci 2018; 9:5773-5780. [PMID: 30079187 PMCID: PMC6050603 DOI: 10.1039/c8sc01621f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
A homologous series of electronically tuned 2,2',2''-nitrilotris(N-arylacetamide) pre-ligands (H3LR ) were prepared (R = NO2, CN, CF3, F, Cl, Br, Et, Me, H, OMe, NMe2) and some of their corresponding Fe and Zn species synthesized. The iron complexes react rapidly with O2, the final products of which are diferric mu-oxo bridged species. The crystal structure of the oxidized product obtained from DMA solutions contain a structural motif found in some diiron proteins. The mechanism of iron mediated O2 reduction was explored to the extent that allowed us to construct an empirically consistent rate law. A Hammett plot was constructed that enabled insightful information into the rate-determining step and hence allows for a differentiation between two kinetically equivalent O2 reduction mechanisms.
Collapse
Affiliation(s)
- Roshaan Surendhran
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Alexander A D'Arpino
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Bao Y Sciscent
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Anthony F Cannella
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| | - Alan E Friedman
- Department of Materials Design & Innovation , University at Buffalo , SUNY , Buffalo , NY 14260 , USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , USA
| | - Rupal Gupta
- Department of Chemistry , College of Staten Island , City University of New York , Staten Island , NY 10314 , USA
| | - David C Lacy
- Department of Chemistry , University at Buffalo , State University of New York , Buffalo , New York 14260 , USA .
| |
Collapse
|
46
|
|
47
|
Basak T, Ghosh K, Gómez-García CJ, Chattopadhyay S. Synthesis, structure and magnetic characterization of a dinuclear and two mononuclear iron(III) complexes with N,O-donor Schiff base ligands. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Abstract
Aerobic organisms have evolved to activate oxygen from the atmosphere, which allows them to catalyze the oxidation of different kinds of substrates. This activation of oxygen is achieved by a metal center (usually iron or copper) buried within a metalloprotein. In the case of iron-containing heme enzymes, the activation of oxygen is achieved by formation of transient iron-oxo (ferryl) intermediates; these intermediates are called Compound I and Compound II. The Compound I and II intermediates were first discovered in the 1930s in horseradish peroxidase, and it is now known that these same species are used across the family of heme enzymes, which include all of the peroxidases, the heme catalases, the P450s, cytochrome c oxidase, and NO synthase. Many years have passed since the first observations, but establishing the chemical nature of these transient ferryl species remains a fundamental question that is relevant to the reactivity, and therefore the usefulness, of these species in biology. This Account summarizes experiments that were conceived and conducted at Leicester and presents our ideas on the chemical nature, stability, and reactivity of these ferryl heme species. We begin by briefly summarizing the early milestones in the field, from the 1940s and 1950s. We present comparisons between the nature and reactivity of the ferryl species in horseradish peroxidase, cytochrome c peroxidase, and ascorbate peroxidase; and we consider different modes of electron delivery to ferryl heme, from different substrates in different peroxidases. We address the question of whether the ferryl heme is best formulated as an (unprotonated) FeIV═O or as a (protonated) FeIV-OH species. A range of spectroscopic approaches (EXAFS, resonance Raman, Mossbauer, and EPR) have been used over many decades to examine this question, and in the last ten years, X-ray crystallography has also been employed. We describe how information from all of these studies has blended together to create an overall picture, and how the recent application of neutron crystallography has directly identified protonation states and has helped to clarify the precise nature of the ferryl heme in cytochrome c peroxidase and ascorbate peroxidase. We draw comparisons between the Compound I and Compound II species that we have observed in peroxidases with those found in other heme systems, notably the P450s, highlighting possible commonality across these heme ferryl systems. The identification of proton locations from neutron structures of these ferryl species opens the door for understanding the proton translocations that need to occur during O-O bond cleavage.
Collapse
Affiliation(s)
- Peter C. E. Moody
- Department
of Molecular and Cell Biology and Leicester Institute of Structural
and Chemical Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, England
| | - Emma L. Raven
- Department
of Chemistry and Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester LE1 7RH, U.K
| |
Collapse
|
49
|
Mukherjee G, Lee CWZ, Nag SS, Alili A, Cantú Reinhard FG, Kumar D, Sastri CV, de Visser SP. Dramatic rate-enhancement of oxygen atom transfer by an iron(iv)-oxo species by equatorial ligand field perturbations. Dalton Trans 2018; 47:14945-14957. [DOI: 10.1039/c8dt02142b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactivity and characterization of a novel iron(iv)-oxo species is reported that gives enhanced reactivity as a result of second-coordination sphere perturbations of the ligand system.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Calvin W. Z. Lee
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | | | - Aligulu Alili
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Devesh Kumar
- Department of Applied Physics
- School for Physical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | | | - Sam P. de Visser
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| |
Collapse
|
50
|
Cantú Reinhard FG, Barman P, Mukherjee G, Kumar J, Kumar D, Kumar D, Sastri CV, de Visser SP. Keto-Enol Tautomerization Triggers an Electrophilic Aldehyde Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex. J Am Chem Soc 2017; 139:18328-18338. [PMID: 29148746 DOI: 10.1021/jacs.7b10033] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxygen atom transfer by high-valent enzymatic intermediates remains an enigma in chemical catalysis. In particular, manganese is an important first-row metal involved in key biochemical processes, including the biosynthesis of molecular oxygen (through the photosystem II complex) and biodegradation of toxic superoxide to hydrogen peroxide by superoxide dismutase. Biomimetic models of these biological systems have been developed to gain understanding on the structure and properties of short-lived intermediates but also with the aim to create environmentally benign oxidants. In this work, we report a combined spectroscopy, kinetics and computational study on aldehyde deformylation by two side-on manganese(III)-peroxo complexes with bispidine ligands. Both manganese(III)-peroxo complexes are characterized by UV-vis and mass spectrometry techniques, and their reactivity patterns with aldehydes was investigated. We find a novel mechanism for the reaction that is initiated by a hydrogen atom abstraction reaction, which enables a keto-enol tautomerization in the substrate. This is an essential step in the mechanism that makes an electrophilic attack on the olefin bond possible as the attack on the aldehyde carbonyl is too high in energy. Kinetics studies determine a large kinetic isotope effect for the replacement of the transferring hydrogen atom by deuterium, while replacing the transferring hydrogen atom by a methyl group makes the substrate inactive and hence confirm the hypothesized mechanism. Our new mechanism is confirmed with density functional theory modeling on the full mechanism and rationalized through valence bond and thermochemical cycles. Our unprecedented new mechanism may have relevance to biological and biomimetic chemistry processes in general and gives insight into the reactivity patterns of metal-peroxo and metal-hydroperoxo intermediates in general.
Collapse
Affiliation(s)
- Fabián G Cantú Reinhard
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Prasenjit Barman
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Jitendra Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Deep Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University , Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati 781039, Assam, India
| | - Sam P de Visser
- The Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|