1
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Akbari Nia S, Tomaszowska A, Powroźnik P, Krzywiecki M. Effective Factors for Optimizing Metallophthalocyanine-Based Optoelectronic Devices: Surface-Molecule Interactions. Molecules 2025; 30:471. [PMID: 39942576 PMCID: PMC11820906 DOI: 10.3390/molecules30030471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
As a promising structure for fabricating inorganic-organic-based optoelectronic devices, metal-metallophthalocyanine (MPc) hybrid layers are highly important to be considered. The efficient charge injection and transport across the metal/MPc interface are strictly dependent on the precise molecular orientation of the MPcs. Therefore, the efficiency of MPc-based optoelectronic devices strictly depends on the adsorption and orientation of the organic MPc on the inorganic metal substrate. The current review aims to explore the effect of the terminated atoms or surface atoms as an internal stimulus on molecular adsorption and orientation. Here, we investigate the adsorption of five different phthalocyanine molecules-free-based phthalocyanine (H2Pc), copper phthalocyanine (CuPc), iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), vanadyl phthalocyanine (VOPc)-on three metallic substrates: gold (Au), silver (Ag), and copper (Cu). This topic can guide new researchers to find out how molecular adsorbance and orientation determine the electronic structure by considering the surface-molecule interactions.
Collapse
Affiliation(s)
| | | | | | - Maciej Krzywiecki
- Institute of Physics—Centre for Science and Education, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland; (S.A.N.); (A.T.); (P.P.)
| |
Collapse
|
3
|
Schirato A, Sanders SK, Proietti Zaccaria R, Nordlander P, Della Valle G, Alabastri A. Quantifying Ultrafast Energy Transfer from Plasmonic Hot Carriers for Pulsed Photocatalysis on Nanostructures. ACS NANO 2024; 18:18933-18947. [PMID: 38990155 DOI: 10.1021/acsnano.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants. Accurate predictions of the plasmon photocatalytic activity can lead to optimized nanophotonic architectures with enhanced selectivity and rates, operating beyond the intrinsic limitations of the steady state. Here, we report on an original modeling approach to quantify, with space, time, and energy resolution, the ultrafast energy exchange from plasmonic hot carriers (HCs) to molecular systems adsorbed on the metal nanoparticle surface while consistently accounting for photothermal bond activation. Our analysis, illustrated for a few typical cases, reveals that the most energetic nonequilibrium carriers (i.e., with energies well far from the Fermi level) may introduce a wavelength-dependence of the reaction rates, and it elucidates on the role of the carriers closer to the Fermi energy and the photothermally heated lattice, suggesting ways to enhance and optimize each contribution. We show that the overall reaction rates can benefit strongly from using pulsed illumination with the optimal pulse width determined by the properties of the system. Taken together, these results contribute to the rational design of nanoreactors for pulsed catalysis, which calls for predictive modeling of the ultrafast HC-hot adsorbate energy transfer.
Collapse
Affiliation(s)
- Andrea Schirato
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Istituto Italiano di Tecnologia, Genoa 16163, Italy
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Stephen Keith Sanders
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | | | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Giuseppe Della Valle
- Department of Physics, Politecnico di Milano, Milano 20133, Italy
- Istituto di Fotonica e Nanotecnologie─Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci 32, Milano I-20133, Italy
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Chen Z, Meng X, Lu Y, Ding C, Huo J, Meng X, Li Z, Guo F, Wu K. Molecular Triplet Generation Enabled by Adjacent Metal Nanoparticles. J Am Chem Soc 2024; 146:19360-19368. [PMID: 39015060 DOI: 10.1021/jacs.4c05364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
High-efficiency generation of spin-triplet states in organic molecules is of great interest in diverse areas such as photocatalysis, photodynamic therapy, and upconversion photonics. Recent studies have introduced colloidal semiconductor nanocrystals as a new class of photosensitizers that can efficiently transfer their photoexcitation energy to molecular triplets. Here, we demonstrate that metallic Ag nanoparticles can also assist in the generation of molecular triplets in polycyclic aromatic hydrocarbons (PAHs), but not through a conventional sensitization mechanism. Instead, the triplet formation is mediated by charge-separated states resulting from hole transfer from photoexcited PAHs (anthracene and pyrene) to Ag nanoparticles, which is established through the rapid formation and subsequent decay of molecular anions revealed in our transient absorption measurements. The dominance of hole transfer over electron transfer, while both are energetically allowed, could be attributed to a Marcus inverted region of charge transfer. Owing to the rapid charge separation and the rapid spin-flip in metals, the triplet formation yields are remarkably high, as confirmed by their engagement in production of singlet oxygen with a quantum efficiency reaching 58.5%. This study not only uncovers the fundamental interaction mechanisms between metallic nanoparticles and organic molecules in both charge and spin degrees of freedom but also greatly expands the scope of triplet "sensitization" using inorganic nanomaterials for a variety of emerging applications.
Collapse
Affiliation(s)
- Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaoyi Meng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yinjie Lu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chenxi Ding
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingzhu Huo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinyi Meng
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhengxiao Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fengqi Guo
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Shibuta M, Nakajima A. Imaging of ultrafast photoexcited electron dynamics in pentacene nanocrystals on a graphite substrate. NANOSCALE 2024; 16:12397-12405. [PMID: 38832543 DOI: 10.1039/d4nr00720d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Understanding molecular film growth on substrates and the ultrafast electron dynamics at their interface is crucial for advancing next-generation organic electronics. We have focused on studying the ultrafast photoexcited electron dynamics in nanoscale organic crystals of an aromatic molecule, pentacene, on a two-dimensional material of graphite substrate. Through the use of time-resolved two-photon photoelectron emission microscopy (2P-PEEM), we have visualized the ultrafast lateral evolution of photoexcited electrons. By resonantly tuning the incident photon to excite pentacene molecules, polarization-dependent 2P-PEEM has revealed that pentacene nanocrystals (sub- to several μm) on the substrate exhibit a preferential orientation, in which a molecular π-orbital contacts the substrate in a "lying flat" orientation, facilitating electron transfer to the substrate. The time-resolved 2P-PEEM captures the motion of excited electrons in a femto- to pico-second timescale, clearly imaging the ultrafast charge transfer and lateral expansion two-dimensionally on the graphite substrate. Moreover, we found that the lying-flat molecular orientation of pentacene nanocrystals is transformable into a "standing-up" one through gentle heating up to 50 °C. These experimental insights using time-resolved 2P-PEEM will be highly valuable in enhancing the photofunctionalities of organic electronic devices by controlled molecular deposition.
Collapse
Affiliation(s)
- Masahiro Shibuta
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Atsushi Nakajima
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
6
|
Steidel J, Michalsky I, Ajdari M, Kivala M, Tegeder P. Determination of energetic positions of electronic states and the exciton dynamics in a π-expanded N-heterotriangulene derivative adsorbed on Au(111). Phys Chem Chem Phys 2024; 26:16454-16458. [PMID: 38819930 DOI: 10.1039/d4cp01713g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Bridged triarylamines, so-called N-heterotriangulenes (N-HTAs) are promising organic semiconductors for applications in optoelectronic devices. Thereby the electronic structure at organic/metal interfaces and within thin films as well as the electronically excited states dynamics after optical excitation is essential for the performance of organic-molecule-based devices. Here, we investigated the energy level alignment and the excited state dynamics of a N-HTA derivative adsorbed on Au(111) by means of energy- and time-resolved two-photon photoemission spectroscopy. We quantitatively determined the energetic positions of several occupied and unoccupied molecular (transport levels) and excitonic states (optical gap) in detail. A transport gap of 3.20 eV and an optical gap of 2.58 eV is determined, resulting in an exciton binding energy of 0.62 eV. With the first time-resolved investigation on a N-HTA compound we gained insights into the exciton dynamics and resolved processes on the femtosecond to picosecond timescale.
Collapse
Affiliation(s)
- Jakob Steidel
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | - Ina Michalsky
- Ruprecht-Karls-Universität Heidelberg, Organisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Mohsen Ajdari
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| | - Milan Kivala
- Ruprecht-Karls-Universität Heidelberg, Organisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Petra Tegeder
- Ruprecht-Karls-Universität Heidelberg, Physikalisch-Chemisches Institut, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Wang Y, Dou W. Electron Transfer at Molecule-Metal Interfaces under Floquet Engineering: Rate Constant and Floquet Marcus Theory. ACS PHYSICAL CHEMISTRY AU 2024; 4:160-166. [PMID: 38560755 PMCID: PMC10979498 DOI: 10.1021/acsphyschemau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 04/04/2024]
Abstract
Electron transfer (ET) at molecule-metal or molecule-semiconductor interfaces is a fundamental reaction that underlies all electrochemical processes and substrate-mediated surface photochemistry. In this study, we show that ET rates near a metal surface can be significantly manipulated by periodic driving (e.g., Floquet engineering). We employ the Floquet surface hopping and Floquet electronic friction algorithms developed previously to calculate the ET rates near the metal surface as a function of driving amplitudes and driving frequencies. We find that ET rates have a turnover effect when the driving frequencies increase. A Floquet Marcus theory is further formulated to analyze such a turnover effect. We then benchmark the Floquet Marcus theory against Floquet surface hopping and Floquet electronic friction methods, indicating that the Floquet Marcus theory works in the strong nonadiabatic regimes but fails in the weak nonadiabatic regimes. We hope these theoretical tools will be useful to study ET rates in the plasmonic cavity and plasmon-assisted photocatalysis.
Collapse
Affiliation(s)
- Yu Wang
- Department
of Chemistry, School of Science, Westlake
University, Hangzhou, Zhejiang 310024, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Wenjie Dou
- Department
of Chemistry, School of Science, Westlake
University, Hangzhou, Zhejiang 310024, China
- Institute
of Natural Sciences, Westlake Institute
for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
8
|
Muhammed MM, Mokkath JH. Plasmon-induced hot carrier distribution in a composite nanosystem: role of the adsorption site. Phys Chem Chem Phys 2024; 26:9037-9050. [PMID: 38440841 DOI: 10.1039/d4cp00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The generation of hot carriers (HCs) through the excitation of localized surface plasmon resonance (LSPR) in metal nanostructures is a fascinating phenomenon that fuels both fundamental and applied research. However, gaining insights into HCs at a microscopic level has posed a complex challenge, limiting our ability to create efficient nanoantennas that utilize these energized carriers. In this investigation, we employ real-time time-dependent density functional theory (rt-TDDFT) calculations to examine the creation and distribution of HCs within a model composite system consisting of a silver (Ag) nanodisk and a carbon monoxide (CO) molecule. We find that the creation and distribution of HCs are notably affected by the CO adsorption site. Particularly, when the CO molecule adsorbs onto the hollow site of the Ag nanodisk, it exhibits the highest potential among various composite systems in terms of structural stability, enhanced orbital hybridization, and HC generation and transfer. Utilizing a Gaussian laser pulse adjusted to match the LSPR frequency, we observe a marked buildup of hot electrons and hot holes on the C and O atoms. Conversely, the region encompassing the C-O bond exhibits a depletion of hot electrons and hot holes. We believe that these findings could have significant implications in the field of HC photocatalysis.
Collapse
Affiliation(s)
| | - Junais Habeeb Mokkath
- College of Integrative Studies, Abdullah Al Salem University (AASU), Block 3, Khaldiya, Kuwait.
| |
Collapse
|
9
|
Jiang H, He Y, Lu J, Zheng F, Zhu Z, Yan Y, Sun Q. Unraveling the Mechanisms of On-Surface Photoinduced Reaction with Polarized Light Excitations. ACS NANO 2024; 18:1118-1125. [PMID: 38117979 DOI: 10.1021/acsnano.3c10690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
On-surface reaction has been shown as a powerful strategy to achieve atomically precise nanostructures. Numerous reactions have been realized on surfaces with thermal annealing as the primary excitation. In contrast, far fewer reactions have been triggered by light on surfaces despite its advantages due to the nonthermal process. This is possibly ascribed to our limited understanding on the excitation mechanisms of on-surface photoinduced reactions. In this work, we have studied the photoinduced debrominated coupling by using a linearly polarized light. We successfully achieved the reaction with no annealing process and obtained oligomers as the primary reaction products, which is in contrast with the formation of polymers with traditional thermal treatments. By exploring the dependence of reaction yield on the angle of incidence, we demonstrate an experimental method that can provide fundamental insights. The comparison with the theoretical approximation suggests indirect hot carrier excitation as the leading excitation mechanism. Our results not only provide fundamental insight into the surface photochemical reactions but also set the basis for harnessing light to construct unconventional nanomaterials.
Collapse
Affiliation(s)
- Hao Jiang
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Yu He
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Jiayi Lu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Fengru Zheng
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Zhiwen Zhu
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Yuyi Yan
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| | - Qiang Sun
- Materials Genome Institute, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
10
|
Kiani F, Bowman AR, Sabzehparvar M, Karaman CO, Sundararaman R, Tagliabue G. Transport and Interfacial Injection of d-Band Hot Holes Control Plasmonic Chemistry. ACS ENERGY LETTERS 2023; 8:4242-4250. [PMID: 37854045 PMCID: PMC10580318 DOI: 10.1021/acsenergylett.3c01505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Harnessing nonequilibrium hot carriers from plasmonic metal nanostructures constitutes a vibrant research field with the potential to control photochemical reactions, particularly for solar fuel generation. However, a comprehensive understanding of the interplay of plasmonic hot-carrier-driven processes in metal/semiconducting heterostructures has remained elusive. In this work, we reveal the complex interdependence among plasmon excitation, hot-carrier generation, transport, and interfacial collection in plasmonic photocatalytic devices, uniquely determining the charge injection efficiency at the solid/liquid interface. Measuring the internal quantum efficiency of ultrathin (14-33 nm) single-crystalline plasmonic gold (Au) nanoantenna arrays on titanium dioxide substrates, we find that the performance of the device is limited by hot hole collection at the metal/electrolyte interface. Our solid- and liquid-state experimental approach, combined with ab initio simulations, demonstrates more efficient collection of high-energy d-band holes traveling in the [111] orientation, enhancing oxidation reactions on {111} surfaces. These findings establish new guidelines for optimizing plasmonic photocatalytic systems and optoelectronic devices.
Collapse
Affiliation(s)
- Fatemeh Kiani
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alan R. Bowman
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milad Sabzehparvar
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Can O. Karaman
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ravishankar Sundararaman
- Department
of Materials Science & Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Giulia Tagliabue
- Laboratory
of Nanoscience for Energy Technologies (LNET), STI, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Liu H, Chen L, Zhang H, Yang Z, Ye J, Zhou P, Fang C, Xu W, Shi J, Liu J, Yang Y, Hong W. Single-molecule photoelectron tunnelling spectroscopy. NATURE MATERIALS 2023; 22:1007-1012. [PMID: 37349394 DOI: 10.1038/s41563-023-01591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO-LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.
Collapse
Affiliation(s)
- Haojie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Hao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Zhangqiang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jingyao Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Ping Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Ye Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, China.
| |
Collapse
|
12
|
Wenderich K, Zhu K, Bu Y, Tichelaar FD, Mul G, Huijser A. Photophysical Characterization of Ru Nanoclusters on Nanostructured TiO 2 by Time-Resolved Photoluminescence Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:14353-14362. [PMID: 37529662 PMCID: PMC10388344 DOI: 10.1021/acs.jpcc.3c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/23/2023] [Indexed: 08/03/2023]
Abstract
Despite the promising performance of Ru nanoparticles or nanoclusters on nanostructured TiO2 in photocatalytic and photothermal reactions, a mechanistic understanding of the photophysics is limited. The aim of this study is to uncover the nature of light-induced processes in Ru/TiO2 and the role of UV versus visible excitation by time-resolved photoluminescence (PL) spectroscopy. The PL at a 267 nm excitation is predominantly due to TiO2, with a minor contribution of the Ru nanoclusters. Relative to TiO2, the PL of Ru/TiO2 following a 267 nm excitation is significantly blue-shifted, and the bathochromic shift with time is smaller. We show by global analysis of the spectrotemporal PL behavior that for both TiO2 and Ru/TiO2 the bathochromic shift with time is likely caused by the diffusion of electrons from the TiO2 bulk toward the surface. During this directional motion, electrons may recombine (non)radiatively with relatively immobile hole polarons, causing the PL spectrum to red-shift with time following excitation. The blue-shifted PL spectra and smaller bathochromic shift with time for Ru/TiO2 relative to TiO2 indicate surface PL quenching, likely due to charge transfer from the TiO2 surface into the Ru nanoclusters. When deposited on SiO2 and excited at 532 nm, Ru shows a strong emission. The PL of Ru when deposited on TiO2 is completely quenched, demonstrating interfacial charge separation following photoexcitation of the Ru nanoclusters with a close to unity quantum yield. The nature of the charge-transfer phenomena is discussed, and the obtained insights indicate that Ru nanoclusters should be deposited on semiconducting supports to enable highly effective photo(thermal)catalysis.
Collapse
Affiliation(s)
- Kasper Wenderich
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Kaijian Zhu
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yibin Bu
- Nanolab,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Frans D. Tichelaar
- Kavli
Institute of Technology, Quantum Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands
| | - Guido Mul
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Annemarie Huijser
- Photocatalytic
Synthesis Group, Faculty of Science and Technology, MESA+ Institute
for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
13
|
Shibuta M, Nakajima A. Two-Photon Photoemission Spectroscopy and Microscopy for Electronic and Plasmonic Characterizations of Molecularly Designed Organic Surfaces. J Phys Chem Lett 2023; 14:3285-3295. [PMID: 36988100 DOI: 10.1021/acs.jpclett.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Functional surfaces decorated with organic molecules and/or nanoclusters (NCs) composed of several tens of atoms are promising for use in future photoelectronic substrates, whose functionalities are governed by molecular local electronic/plasmonic excitations at the interfaces. Here, we combine two-photon photoemission spectroscopy (2P-PES) and microscopy (2P-PEEM) to investigate the local excited-state dynamics at organic surfaces functionalized with NCs. The 2P-PES and 2P-PEEM for organic fullerene (C60) layers on graphite and Au substrates demonstrated photophysical characterization of electronic and plasmonic properties, including propagating surface plasmon polaritons (SPPs). The SPP propagation at the Au interface buried by overlayered C60 can be visualized by Agn NC deposition, which enhances plasmon-induced hot electrons, where the threshold number of Ag atoms (n ≥ 9) for the plasmonic response is revealed by the size dependence of 2P-PES for Agn NCs on C60 layers.
Collapse
Affiliation(s)
- Masahiro Shibuta
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Atsushi Nakajima
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
14
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
15
|
Yuan Y, Zhou L, Robatjazi H, Bao JL, Zhou J, Bayles A, Yuan L, Lou M, Lou M, Khatiwada S, Carter EA, Nordlander P, Halas NJ. Earth-abundant photocatalyst for H
2
generation from NH
3
with light-emitting diode illumination. Science 2022; 378:889-893. [PMID: 36423268 DOI: 10.1126/science.abn5636] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Catalysts based on platinum group metals have been a major focus of the chemical industry for decades. We show that plasmonic photocatalysis can transform a thermally unreactive, earth-abundant transition metal into a catalytically active site under illumination. Fe active sites in a Cu-Fe antenna-reactor complex achieve efficiencies very similar to Ru for the photocatalytic decomposition of ammonia under ultrafast pulsed illumination. When illuminated with light-emitting diodes rather than lasers, the photocatalytic efficiencies remain comparable, even when the scale of reaction increases by nearly three orders of magnitude. This result demonstrates the potential for highly efficient, electrically driven production of hydrogen from an ammonia carrier with earth-abundant transition metals.
Collapse
Affiliation(s)
- Yigao Yuan
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | - Linan Zhou
- Department of Chemistry, Rice University; Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University; Houston, TX 77005, USA
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hossein Robatjazi
- Department of Chemistry, Rice University; Houston, TX 77005, USA
- Syzygy Plasmonics Inc., Houston, TX 77054, USA
| | - Junwei Lucas Bao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263; Present address: Department of Chemistry, Boston College; Chestnut Hill, MA 02467, USA
| | - Jingyi Zhou
- Department of Materials Science and NanoEngineering, Rice University; Houston, TX 77005, USA
| | - Aaron Bayles
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | - Lin Yuan
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | - Minghe Lou
- Department of Chemistry, Rice University; Houston, TX 77005, USA
| | - Minhan Lou
- Department of Electrical and Computer Engineering, Rice University; Houston, TX 77005, USA
| | | | - Emily A. Carter
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles; Los Angeles, CA 90095-1405 and Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton University; Princeton, NJ 08544-5263, USA
| | - Peter Nordlander
- Department of Electrical and Computer Engineering, Rice University; Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Naomi J. Halas
- Department of Chemistry, Rice University; Houston, TX 77005, USA
- Department of Electrical and Computer Engineering, Rice University; Houston, TX 77005, USA
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| |
Collapse
|
16
|
Perylene bisimide-based nanocubes for selective vapour phase ultra-trace detection of aniline derivatives. Anal Chim Acta 2022; 1238:340632. [DOI: 10.1016/j.aca.2022.340632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
17
|
Zhou WJ, You JB, Xiong X, Lu YW, Ang LK, Liu JF, Wu L. Cavity spectral-hole-burning to boost coherence in plasmon-emitter strong coupling systems. NANOTECHNOLOGY 2022; 33:475001. [PMID: 35981513 DOI: 10.1088/1361-6528/ac8aa3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Significant decoherence of the plasmon-emitter (i.e., plexcitonic) strong coupling systems hinders the progress towards their applications in quantum technology due to the unavoidable lossy nature of the plasmons. Inspired by the concept of spectral-hole-burning (SHB) for frequency-selective bleaching of the emitter ensemble, we propose 'cavity SHB' by introducing cavity modes with moderate quality factors to the plexcitonic system to boost its coherence. We show that the detuning of the introduced cavity mode with respect to the original plexcitonic system, which defines the location of the cavity SHB, is the most critical parameter. Simultaneously introducing two cavity modes of opposite detunings, the excited-state population of the emitter can be enhanced by 4.5 orders of magnitude within 300 fs, and the attenuation of the emitter's population can be slowed down by about 56 times. This theoretical proposal provides a new approach of cavity engineering to enhance the plasmon-emitter strong coupling systems' coherence, which is important for realistic hybrid-cavity design for applications in quantum technology.
Collapse
Affiliation(s)
- Wen-Jie Zhou
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Jia-Bin You
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Xiao Xiong
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Yu-Wei Lu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, People's Republic of China
| | - Lay Kee Ang
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Jing-Feng Liu
- College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Lin Wu
- Science, Mathematics and Technology (SMT), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| |
Collapse
|
18
|
He N, Wei S, Hu T, Ye Y, Cai Y, Liu J, Li P, Liang C. Surface-Plasmon-Mediated Alloying for Monodisperse Au-Ag Alloy Nanoparticles in Liquid. Inorg Chem 2022; 61:12449-12457. [PMID: 35904272 DOI: 10.1021/acs.inorgchem.2c01975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plasmonic noble-metal nanoparticles with broadly tunable optical properties and catalytically active surfaces offer a unique opportunity for photochemistry. Resonant optical excitation of surface-plasmon generates high-energy hot carriers, which can participate in photochemical reactions. Although the surface-plasmon-driven catalysis on molecules has been extensively studied, surface-plasmon-mediated synthesis of bimetallic nanomaterials is less reported. Herein, we perform a detailed investigation on the formation mechanism and colloidal stability of monodisperse Au-Ag alloy nanoparticles synthesized through irradiating the intermixture of Au nanochains and AgNO3 solution with a nanosecond pulsed laser. It is revealed that the Ag atoms can be extracted from AgNO3 solution by surface-plasmon-generated hot electrons and alloy with Au atoms. Particularly, the obtained Au-Ag alloy nanoparticles without any surfactants or ligands exhibit superior stability that is confirmed by experiments as well as DLVO-based theoretical simulation. Our work would provide novel insights into the synthesis of potentially useful bimetallic nanoparticles via surface-plasmon-medicated alloying.
Collapse
Affiliation(s)
- Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Taiping Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Liu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
19
|
Experimental characterization techniques for plasmon-assisted chemistry. Nat Rev Chem 2022; 6:259-274. [PMID: 37117871 DOI: 10.1038/s41570-022-00368-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/19/2022]
Abstract
Plasmon-assisted chemistry is the result of a complex interplay between electromagnetic near fields, heat and charge transfer on the nanoscale. The disentanglement of their roles is non-trivial. Therefore, a thorough knowledge of the chemical, structural and spectral properties of the plasmonic/molecular system being used is required. Specific techniques are needed to fully characterize optical near fields, temperature and hot carriers with spatial, energetic and/or temporal resolution. The timescales for all relevant physical and chemical processes can range from a few femtoseconds to milliseconds, which necessitates the use of time-resolved techniques for monitoring the underlying dynamics. In this Review, we focus on experimental techniques to tackle these challenges. We further outline the difficulties when going from the ensemble level to single-particle measurements. Finally, a thorough understanding of plasmon-assisted chemistry also requires a substantial joint experimental and theoretical effort.
Collapse
|
20
|
Lee M, Kazuma E, Jung J, Trenary M, Kim Y. Dissociation of Single O 2 Molecules on Ag(110) by Electrons, Holes, and Localized Surface Plasmons. CHEM REC 2022; 22:e202200011. [PMID: 35332649 DOI: 10.1002/tcr.202200011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Indexed: 11/06/2022]
Abstract
A detailed understanding of the dissociation of O2 molecules on metal surfaces induced by various excitation sources, electrons/holes, light, and localized surface plasmons, is crucial not only for controlling the reactivity of oxidation reactions but also for developing various oxidation catalysts. The necessity of mechanistic studies at the single-molecule level is increasingly important for understanding interfacial interactions between O2 molecules and metal surfaces and to improve the reaction efficiency. We review single-molecule studies of O2 dissociation on Ag(110) induced by various excitation sources using a scanning tunneling microscope (STM). The comprehensive studies based on the STM and density functional theory calculations provide fundamental insights into the excitation pathway for the dissociation reaction.
Collapse
Affiliation(s)
- Minhui Lee
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jaehoon Jung
- Department of Chemistry, University of Ulsan, Nam-gu, Ulsan 44776, Republic of Korea
| | - Michael Trenary
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor Street, Chicago, Illinois 60607, United States
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Schürmann R, Titov E, Ebel K, Kogikoski S, Mostafa A, Saalfrank P, Milosavljević AR, Bald I. The electronic structure of the metal-organic interface of isolated ligand coated gold nanoparticles. NANOSCALE ADVANCES 2022; 4:1599-1607. [PMID: 35399325 PMCID: PMC8922996 DOI: 10.1039/d1na00737h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Light induced electron transfer reactions of molecules on the surface of noble metal nanoparticles (NPs) depend significantly on the electronic properties of the metal-organic interface. Hybridized metal-molecule states and dipoles at the interface alter the work function and facilitate or hinder electron transfer between the NPs and ligand. X-ray photoelectron spectroscopy (XPS) measurements of isolated AuNPs coated with thiolated ligands in a vacuum have been performed as a function of photon energy, and the depth dependent information of the metal-organic interface has been obtained. The role of surface dipoles in the XPS measurements of isolated ligand coated NPs is discussed and the binding energy of the Au 4f states is shifted by around 0.8 eV in the outer atomic layers of 4-nitrothiophenol coated AuNPs, facilitating electron transport towards the molecules. Moreover, the influence of the interface dipole depends significantly on the adsorbed ligand molecules. The present study paves the way towards the engineering of the electronic properties of the nanoparticle surface, which is of utmost importance for the application of plasmonic nanoparticles in the fields of heterogeneous catalysis and solar energy conversion.
Collapse
Affiliation(s)
- Robin Schürmann
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Evgenii Titov
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Kenny Ebel
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Sergio Kogikoski
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Amr Mostafa
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | - Peter Saalfrank
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| | | | - Ilko Bald
- University of Potsdam, Institute of Chemistry 14476 Potsdam Germany
| |
Collapse
|
22
|
Orbital-resolved visualization of single-molecule photocurrent channels. Nature 2022; 603:829-834. [PMID: 35354999 DOI: 10.1038/s41586-022-04401-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
Given its central role in utilizing light energy, photoinduced electron transfer (PET) from an excited molecule has been widely studied1-6. However, even though microscopic photocurrent measurement methods7-11 have made it possible to correlate the efficiency of the process with local features, spatial resolution has been insufficient to resolve it at the molecular level. Recent work has, however, shown that single molecules can be efficiently excited and probed when combining a scanning tunnelling microscope (STM) with localized plasmon fields driven by a tunable laser12,13. Here we use that approach to directly visualize with atomic-scale resolution the photocurrent channels through the molecular orbitals of a single free-base phthalocyanine (FBPc) molecule, by detecting electrons from its first excited state tunnelling through the STM tip. We find that the direction and the spatial distribution of the photocurrent depend sensitively on the bias voltage, and detect counter-flowing photocurrent channels even at a voltage where the averaged photocurrent is near zero. Moreover, we see evidence of competition between PET and photoluminescence12, and find that we can control whether the excited molecule primarily relaxes through PET or photoluminescence by positioning the STM tip with three-dimensional, atomic precision. These observations suggest that specific photocurrent channels can be promoted or suppressed by tuning the coupling to excited-state molecular orbitals, and thus provide new perspectives for improving energy-conversion efficiencies by atomic-scale electronic and geometric engineering of molecular interfaces.
Collapse
|
23
|
Shi Z, Liu JW, Xi H, Wu PF, Pan N, You TT, Gao YK, Yin PG. In-situ monitoring the plasmon catalytic reaction of P-nitroaniline at gas-liquid-solid three phase interface. Phys Chem Chem Phys 2022; 24:14545-14551. [DOI: 10.1039/d2cp01380k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Localized surface plasmon resonance (LSPR) is caused by the irradiation of light on metal surface. Here we present a surface plasmon catalytic reaction at the gas-liquid-solid three phase interface. Electrochemical...
Collapse
|
24
|
Mou T, Quiroz J, Camargo PHC, Wang B. Localized Orbital Excitation Drives Bond Formation in Plasmonic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60115-60124. [PMID: 34874713 DOI: 10.1021/acsami.1c21607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Localized surface plasmons generated on metallic nanostructures can be used to accelerate molecular transformations; however, the efficiency is limited by the challenge to control the energy/charge transfer at the interfaces. Here, we combine density functional theory (DFT) calculations and experiments to reveal the mechanism of nitrophenol reduction on Au nanoparticles under visible-light irradiation and propose a strategy to further enhance the reaction rates. DFT calculations show a reduced activation barrier under electronic excitation on Au(111), thus explaining the measured higher rates under visible-light irradiation. Furthermore, we propose a heterostructure with Au nanoparticles covered by a thin film of hexagonal boron nitride; the latter is used to decouple the molecular orbitals from the metal to enable charge localization in the molecule. DFT calculations show that by this electronic decoupling, the activation barrier can be lowered by a factor of five. This work thus provides a valuable strategy for optimizing catalytic efficiency in plasmonic photocatalysis.
Collapse
Affiliation(s)
- Tong Mou
- Center for Interfacial Reaction Engineering and School of Chemical, Biological and Materials Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, Guangdong 518131, China
| | - Jhon Quiroz
- Department of Chemistry, University of Helsinki, 00560 Helsinki, Finland
| | - Pedro H C Camargo
- Department of Chemistry, University of Helsinki, 00560 Helsinki, Finland
| | - Bin Wang
- Center for Interfacial Reaction Engineering and School of Chemical, Biological and Materials Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
25
|
Podder C, Gong X, Pan H. Ultrafast, Non-Equilibrium and Transient Heating and Sintering of Nanocrystals for Nanoscale Metal Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103436. [PMID: 34617399 DOI: 10.1002/smll.202103436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The carrier excitation, relaxation, energy transport, and conversion processes during light-nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non-equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two-pulse correlation and in-situ optical transmission probing to investigate the non-equilibrium heating of NCs and transient sintering dynamics. First, a two-pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three-temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non-equilibrium process facilitates sintering in dry (spin-coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub-diffraction-limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs.
Collapse
Affiliation(s)
- Chinmoy Podder
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiangtao Gong
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Heng Pan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| |
Collapse
|
26
|
Wang C, Chi W, Qiao Q, Tan D, Xu Z, Liu X. Twisted intramolecular charge transfer (TICT) and twists beyond TICT: from mechanisms to rational designs of bright and sensitive fluorophores. Chem Soc Rev 2021; 50:12656-12678. [PMID: 34633008 DOI: 10.1039/d1cs00239b] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The twisted intramolecular charge transfer (TICT) mechanism has guided the development of numerous bright and sensitive fluorophores. This review briefly overviews the history of establishing the TICT mechanism, and systematically summarizes the molecular design strategies in modulating the TICT tendency of various organic fluorophores towards different applications, along with key milestone studies and representative examples. Additionally, we also succinctly review the twisted intramolecular charge shuttle (TICS) and twists during photoinduced electron transfer (PET), and compare their similarities and differences with TICT, with emphasis on understanding the structure-property relationships between the twisted geometries and how they can directly affect the fluorescence of the molecules. Such structure-property relationships presented herein will greatly aid the rational development of fluorophores that involve molecular twisting in the excited state.
Collapse
Affiliation(s)
- Chao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. .,Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
| |
Collapse
|
27
|
Ayani CG, Pisarra M, Urgel JI, Navarro JJ, Díaz C, Hayashi H, Yamada H, Calleja F, Miranda R, Fasel R, Martín F, Vázquez de Parga AL. Efficient photogeneration of nonacene on nanostructured graphene. NANOSCALE HORIZONS 2021; 6:744-750. [PMID: 34165121 DOI: 10.1039/d1nh00184a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The on-surface photogeneration of nonacene from α-bisdiketone precursors deposited on nanostructured epitaxial graphene grown on Ru(0001) has been studied by means of low temperature scanning tunneling microscopy and spectroscopy. The presence of an unoccupied surface state, spatially localized in the regions where the precursors are adsorbed, and energetically accessible in the region of the electromagnetic spectrum where n-π* transitions take place, allows for a 100% conversion of the precursors into nonacenes. With the help of state-of-the-art theoretical calculations, we show that such a high yield is due to the effective population of the surface state by the incoming light and the ensuing electron transfer to the unoccupied states of the precursors through an inelastic scattering mechanism. Our findings are the experimental confirmation that surface states can play a prominent role in the surface photochemistry of complex molecular systems, in accordance with early theoretical predictions made on small molecules.
Collapse
Affiliation(s)
- Cosme G Ayani
- Dep Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Smart materials are a kind of functional materials which can sense and response to environmental conditions or stimuli from optical, electrical, magnetic mechanical, thermal, and chemical signals, etc. Patterning of smart materials is the key to achieving large-scale arrays of functional devices. Over the last decades, printing methods including inkjet printing, template-assisted printing, and 3D printing are extensively investigated and utilized in fabricating intelligent micro/nano devices, as printing strategies allow for constructing multidimensional and multimaterial architectures. Great strides in printable smart materials are opening new possibilities for functional devices to better serve human beings, such as wearable sensors, integrated optoelectronics, artificial neurons, and so on. However, there are still many challenges and drawbacks that need to be overcome in order to achieve the controllable modulation between smart materials and device performance. In this review, we give an overview on printable smart materials, printing strategies, and applications of printed functional devices. In addition, the advantages in actual practices of printing smart materials-based devices are discussed, and the current limitations and future opportunities are proposed. This review aims to summarize the recent progress and provide reference for novel smart materials and printing strategies as well as applications of intelligent devices.
Collapse
Affiliation(s)
- Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| |
Collapse
|
29
|
Xie B, Kumar P, Tan TH, Esmailpour AA, Aguey-Zinsou KF, Scott J, Amal R. Doping-Mediated Metal–Support Interaction Promotion toward Light-Assisted Methanol Production over Cu/ZnO/Al 2O 3. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bingqiao Xie
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Priyank Kumar
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Tze Hao Tan
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Ali Asghar Esmailpour
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | | | - Jason Scott
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
30
|
Jensen ET. Contrasting mechanisms for photodissociation of methyl halides adsorbed on thin films of C 6H 6 and C 6F 6. Phys Chem Chem Phys 2021; 23:3748-3760. [PMID: 33533786 DOI: 10.1039/d0cp05844k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanisms for photodissociation of methyl halides (CH3X, X = Cl, Br, I) have been studied for these molecules when adsorbed on thin films of C6H6 or C6F6 on copper single crystals, using time-of-flight spectroscopy with 248 nm and 193 nm light. For CH3Cl and CH3Br monolayers adsorbed on C6H6, two photodissociation pathways can be identified - neutral photodissociation similar to the gas-phase, and a dissociative electron attachment (DEA) pathway due to photoelectrons from the metal. The same methyl halides adsorbed on a C6F6 thin film display only neutral photodissociation, with the DEA pathway entirely absent due to intermolecular quenching via a LUMO-derived electronic band in the C6F6 thin film. For CH3I adsorbed on a C6F6 thin film, illumination with 248 nm light results in CH3 photofragments departing due to neutral photodissociation via the A-band absorption. When CH3I monolayers on C6H6 thin films are illuminated at the same wavelength, additional new photodissociation pathways are observed that are due to absorption in the molecular film with energy transfer leading to dissociation of the CH3I molecules adsorbed on top. The proposed mechanism for this photodissociation is via a charge-transfer complex for the C6H6 layer and adsorbed CH3I.
Collapse
Affiliation(s)
- E T Jensen
- Department of Physics, University of Northern BC, 3333 University Way, Prince George B.C., V2N 4Z9, Canada.
| |
Collapse
|
31
|
Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J. On-surface synthesis of graphene nanostructures with π-magnetism. Chem Soc Rev 2021; 50:3238-3262. [PMID: 33481981 DOI: 10.1039/d0cs01060j] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Graphene nanostructures (GNs) including graphene nanoribbons and nanoflakes have attracted tremendous interest in the field of chemistry and materials science due to their fascinating electronic, optical and magnetic properties. Among them, zigzag-edged GNs (ZGNs) with precisely-tunable π-magnetism hold great potential for applications in spintronics and quantum devices. To improve the stability and processability of ZGNs, substitutional groups are often introduced to protect the reactive edges in organic synthesis, which renders the study of their intrinsic properties difficult. In contrast to the conventional wet-chemistry method, on-surface bottom-up synthesis presents a promising approach for the fabrication of both unsubstituted ZGNs and functionalized ZGNs with atomic precision via surface-catalyzed transformation of rationally-designed precursors. The structural and spin-polarized electronic properties of these ZGNs can then be characterized with sub-molecular resolution by means of scanning probe microscopy techniques. This review aims to highlight recent advances in the on-surface synthesis and characterization of a diversity of ZGNs with π-magnetism. We also discuss the important role of precursor design and reaction stimuli in the on-surface synthesis of ZGNs and their π-magnetism origin. Finally, we will highlight the existing challenges and future perspective surrounding the synthesis of novel open-shell ZGNs towards next-generation quantum technology.
Collapse
Affiliation(s)
- Shaotang Song
- SZU-NUS Collaborative Center, International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shen Zhen, 518060, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Li Y, Hui D, Sun Y, Wang Y, Wu Z, Wang C, Zhao J. Boosting thermo-photocatalytic CO 2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat Commun 2021; 12:123. [PMID: 33402672 PMCID: PMC7785748 DOI: 10.1038/s41467-020-20444-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Natural photosynthesis proceeded by sequential water splitting and CO2 reduction reactions is an efficient strategy for CO2 conversion. Here, mimicking photosynthesis to boost CO2-to-CO conversion is achieved by using plasmonic Bi as an electron-proton-transfer mediator. Electroreduction of H2O with a Bi electrode simultaneously produces O2 and hydrogen-stored Bi (Bi-Hx). The obtained Bi-Hx is subsequently used to generate electron-proton pairs under light irradiation to reduce CO2 to CO; meanwhile, Bi-Hx recovers to Bi, completing the catalytic cycle. This two-step strategy avoids O2 separation and enables a CO production efficiency of 283.8 μmol g-1 h-1 without sacrificial reagents and cocatalysts, which is 9 times that on pristine Bi in H2 gas. Theoretical/experimental studies confirm that such excellent activity is attributed to the formed Bi-Hx intermediate that improves charge separation and reduces reaction barriers in CO2 reduction.
Collapse
Affiliation(s)
- Yingxuan Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Danping Hui
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuqing Sun
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ying Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
33
|
Yuan H, Xu M, Yao J. SERS Studies on the Electrochemical and SPR Synergistic Catalytic Interfacial Reaction of 4-Chlorothiophenol. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21080405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Hosseinpour S, Walsh LJ. Laser-assisted nucleic acid delivery: A systematic review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000295. [PMID: 32931155 DOI: 10.1002/jbio.202000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Gene therapy has become an effective treatment modality for some conditions. Laser light may augment or enhance gene therapy through photomechanical, photothermal, and photochemical. This review examined the evidence base for laser therapy to enhance nucleic acid transfection in mammalian cells. An electronic search of MEDLINE, Scopus, EMBASE, Web of Science, and Google Scholar was performed, covering all available years. The preferred reporting items for systematic reviews and meta-analyses guideline for systematic reviews was used for designing the study and analyzing the results. In total, 49 studies of laser irradiation for nucleic acid delivery were included. Key approaches were optoporation, photomechanical gene transfection, and photochemical internalization. Optoporation is better suited to cells in culture, photomechanical and photochemical approaches appear well suited to in vivo use. Additional studies explored the impact of photothermal for enhancing gene transfection. Each approach has merits and limitations. Augmenting nucleic acid delivery using laser irradiation is a promising method for improving gene therapy. Laser protocols can be non-invasive because of the penetration of desirable wavelengths of light, but it depends on various parameters such as power density, treatment duration, irradiation mode, etc. The current protocols show low efficiency, and there is a need for further work to optimize irradiation parameters.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| | - Laurence J Walsh
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
35
|
Electrodeposited polyaniline/Cu2ZnSnSe4 heterojunction. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-020-04801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Xiao Q, Sarina S, Waclawik ER, Zhu H. Direct visible photoexcitation on palladium nanocatalysts by chemisorption with distinct size dependence. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02311f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Direct photoexcitation of metal nanoparticles (NPs) can induce selective chemical reactions that are difficult to achieve with thermal energy.
Collapse
Affiliation(s)
- Qi Xiao
- School of Chemistry and Physics
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane
- Australia
| | - Sarina Sarina
- School of Chemistry and Physics
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane
- Australia
| | - Eric R. Waclawik
- School of Chemistry and Physics
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane
- Australia
| | - Huaiyong Zhu
- School of Chemistry and Physics
- Science and Engineering Faculty
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
37
|
Dhayagude AC, Debnath AK, Joshi SS, Kapoor S, Maiti N. Adsorption of
l
‐selenomethionine and
l
‐selenocystine on the surface of silver nanoparticles: A spectroscopic study. NANO SELECT 2020. [DOI: 10.1002/nano.202000061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Akshay C. Dhayagude
- Radiation and Photochemistry Division Bhabha Atomic Research Center Mumbai 400085 India
- Department of Chemistry Savitribai Phule Pune University Pune 411007 India
- K. K. Wagh College, (Present address), Pimpalgaon (B) Nashik 422209 India
| | - Anil K. Debnath
- Technical Physics Division Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Mumbai 400094 India
| | - Satyawati S. Joshi
- Department of Chemistry Savitribai Phule Pune University Pune 411007 India
| | - Sudhir Kapoor
- Radiation and Photochemistry Division Bhabha Atomic Research Center Mumbai 400085 India
| | - Nandita Maiti
- Radiation and Photochemistry Division Bhabha Atomic Research Center Mumbai 400085 India
- Homi Bhabha National Institute Mumbai 400094 India
| |
Collapse
|
38
|
Chowdhury FA, Pradhan B, Ding Y, Towers A, Gesquiere A, Tetard L, Thomas J. Perovskite Quantum Dot-Reduced Graphene Oxide Superstructure for Efficient Photodetection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45165-45173. [PMID: 32897694 DOI: 10.1021/acsami.0c11966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance photodetectors require efficient photogeneration and charge transport. Perovskite quantum dots (PQDs) have received enormous interest for applications in optoelectronics due to their high photogeneration efficiency. However, they offer meager carrier transport. Reduced graphene oxide (RGO) exhibits inferior photoresponse compared to materials such as quantum dots. An effective synthesis protocol to grow PQDs from the RGO lattice may facilitate direct charge transfers from PQDs to RGO, which could not be accomplished by mixing individual PQDs with RGO or making a bilayer. At ambient condition, the photodetector fabricated with the PQD-RGO superstructure showed high responsivity of 1.07 × 103 A/W, detectivity of 1 × 1013 Jones as well as sharp switching in the visible wavelength. After 3 months in an unencapsulated sample, the photocurrent was decreased ∼10% of its initial value while preserving speed and cycle stability at ambient condition.
Collapse
Affiliation(s)
- Farzana A Chowdhury
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Basudev Pradhan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Yi Ding
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Andrew Towers
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Andre Gesquiere
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Laurene Tetard
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Jayan Thomas
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
39
|
Xie B, Wong RJ, Tan TH, Higham M, Gibson EK, Decarolis D, Callison J, Aguey-Zinsou KF, Bowker M, Catlow CRA, Scott J, Amal R. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat Commun 2020; 11:1615. [PMID: 32235859 PMCID: PMC7109065 DOI: 10.1038/s41467-020-15445-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 12/04/2022] Open
Abstract
Although photoexcitation has been employed to unlock the low-temperature equilibrium regimes of thermal catalysis, mechanism underlining potential interplay between electron excitations and surface chemical processes remains elusive. Here, we report an associative zinc oxide band-gap excitation and copper plasmonic excitation that can cooperatively promote methanol-production at the copper-zinc oxide interfacial perimeter of copper/zinc oxide/alumina (CZA) catalyst. Conversely, selective excitation of individual components only leads to the promotion of carbon monoxide production. Accompanied by the variation in surface copper oxidation state and local electronic structure of zinc, electrons originating from the zinc oxide excitation and copper plasmonic excitation serve to activate surface adsorbates, catalysing key elementary processes (namely formate conversion and hydrogen molecule activation), thus providing one explanation for the observed photothermal activity. These observations give valuable insights into the key elementary processes occurring on the surface of the CZA catalyst under light-heat dual activation.
Collapse
Affiliation(s)
- Bingqiao Xie
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Roong Jien Wong
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0FA, UK
| | - Tze Hao Tan
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Michael Higham
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0FA, UK
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 1AT, UK
| | - Emma K Gibson
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0FA, UK
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Donato Decarolis
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0FA, UK
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 1AT, UK
| | - June Callison
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0FA, UK
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 1AT, UK
| | | | - Michael Bowker
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0FA, UK
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 1AT, UK
| | - C Richard A Catlow
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxon, OX11 0FA, UK
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 1AT, UK
- Department of Chemistry, University College London, 20 Gordon St, London, WC1 HOAJ, UK
| | - Jason Scott
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia.
| | - Rose Amal
- School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia.
| |
Collapse
|
40
|
Yamada T, Ito N, Kawakita N, Kato HS, Munakata T. Formation and regulation of unoccupied hybridized band with image potential states at perylene/graphite interface. J Chem Phys 2019; 151:224703. [DOI: 10.1063/1.5126373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Takashi Yamada
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Natsumi Ito
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Noriaki Kawakita
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Hiroyuki S. Kato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Toshiaki Munakata
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| |
Collapse
|
41
|
Palmino F, Loppacher C, Chérioux F. Photochemistry Highlights on On-Surface Synthesis. Chemphyschem 2019; 20:2271-2280. [PMID: 31225692 DOI: 10.1002/cphc.201900312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 11/12/2022]
Abstract
On-surface chemistry is a promising way to achieve the bottom-up construction of covalently-bonded molecular precursors into extended atomically-precise polymers adsorbed on surfaces. These polymers exhibit unprecedented physical or chemical properties which are of great interest for various potential applications. These nanostructures were mainly obtained in ultra-high vacuum (UHV) on noble metal single-crystal surfaces by thermal annealing as stimulus to provoke the polymerization with a catalytic role of the surface adatoms. Nevertheless, photons are also a powerful source of energy to induce the formation of covalent architectures, even if it is less-used on surfaces than in solution. In this minireview, we discuss the photo-induced on-surface polymerization from the basic mechanisms of photochemistry to the formation of extended polymers on different kinds of surfaces, which are characterized by scanning probe microscopies.
Collapse
Affiliation(s)
- F Palmino
- Institut FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, F-25030, Besancon, France
| | - C Loppacher
- Aix-Marseille Université, CNRS, IM2NP, F-13397, Marseille, France
| | - F Chérioux
- Institut FEMTO-ST, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, F-25030, Besancon, France
| |
Collapse
|
42
|
Abstract
After presenting the basic theoretical models of excitation energy transfer and charge transfer, I describe some of the novel experimental methods used to probe them. Finally, I discuss recent results concerning ultrafast energy and charge transfer in biological systems, in chemical systems and in photovoltaics based on sensitized transition metal oxides.
Collapse
Affiliation(s)
- Majed Chergui
- Ecole Polytechnique Fédérale de Lausanne, Laboratoire de Spectroscopie Ultrarapide, ISIC, Lausanne Centre for Ultrafast Science (LACUS), FSB, Station 6, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Schürmann R, Ebel K, Nicolas C, Milosavljević AR, Bald I. Role of Valence Band States and Plasmonic Enhancement in Electron-Transfer-Induced Transformation of Nitrothiophenol. J Phys Chem Lett 2019; 10:3153-3158. [PMID: 31117676 PMCID: PMC6569622 DOI: 10.1021/acs.jpclett.9b00848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Hot-electron-induced reactions are more and more recognized as a critical and ubiquitous reaction in heterogeneous catalysis. However, the kinetics of these reactions is still poorly understood, which is also due to the complexity of plasmonic nanostructures. We determined the reaction rates of the hot-electron-mediated reaction of 4-nitrothiophenol (NTP) on gold nanoparticles (AuNPs) using fractal kinetics as a function of the laser wavelength and compared them with the plasmonic enhancement of the system. The reaction rates can be only partially explained by the plasmonic response of the NPs. Hence, synchrotron X-ray photoelectron spectroscopy (XPS) measurements of isolated NTP-capped AuNP clusters have been performed for the first time. In this way, it was possible to determine the work function and the accessible valence band states of the NP systems. The results show that besides the plasmonic enhancement, the reaction rates are strongly influenced by the local density of the available electronic states of the system.
Collapse
Affiliation(s)
- Robin Schürmann
- Physical Chemistry,
Institute of
Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Department of Analytical Chemistry
BAM, Federal Institute of Material Research
and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Kenny Ebel
- Physical Chemistry,
Institute of
Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Department of Analytical Chemistry
BAM, Federal Institute of Material Research
and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Christophe Nicolas
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint
Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | | | - Ilko Bald
- Physical Chemistry,
Institute of
Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
- Department of Analytical Chemistry
BAM, Federal Institute of Material Research
and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| |
Collapse
|
44
|
Cao L, Yuan L, Yang M, Nerngchamnong N, Thompson D, Yu X, Qi DC, Nijhuis CA. The supramolecular structure and van der Waals interactions affect the electronic structure of ferrocenyl-alkanethiolate SAMs on gold and silver electrodes. NANOSCALE ADVANCES 2019; 1:1991-2002. [PMID: 36134247 PMCID: PMC9417838 DOI: 10.1039/c9na00107g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 06/12/2023]
Abstract
Understanding the influence of structural properties on the electronic structure will pave the way for optimization of charge transport properties of SAM devices. In this study, we systematically investigate the supramolecular and electronic structures of ferrocene (Fc) terminated alkanethiolate (SC n Fc) SAMs on both Au and Ag substrates with n = 1-15 by using a combination of synchrotron based near edge X-ray absorption spectroscopy (NEXAFS), photoemission spectroscopy (PES), and density functional theory (DFT) calculations. Odd-even effects in the supramolecular structure persist over the entire range of n = 1-15, which, in turn, explain the odd-even effects in the onset energy of the highest occupied molecular (HOMO) orbital. The orientation of the Fc moieties and the strength of Fc-substrate coupling, which both depend on n, affects the work function (WF). The variation of WF shows an odd-even effect in the weak electrode-Fc coupling regime for n ≥ 8, whereas the odd-even effect diminishes for n < 8 due to hybridization between Fc and the electrode (n < 3) or van der Waals (vdW) interactions between Fc and the electrode (n = 3-7). These results confirm that subtle changes in the supramolecular structure of the SAMs cause significant electronic changes that have a large influence on device properties.
Collapse
Affiliation(s)
- Liang Cao
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences 350 Shushanhu Road Hefei 230031 China
- Department of Physics, National University of Singapore 2 Science Drive 3 Singapore 117542 Singapore
| | - Li Yuan
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ming Yang
- Institute of Materials Research and Engineering (IMRE), Innovis 2 Fusionopolis Way Singapore 138634 Singapore
| | - Nisachol Nerngchamnong
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick V94 T9PX Ireland
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore 5 Research Link Singapore 117603 Singapore
| | - Dong-Chen Qi
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology Brisbane Queensland 4001 Australia
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore 6 Science Drive 2 Singapore 117546 Singapore
- NUSNNI-Nanocore, National University of Singapore Singapore 117411 Singapore
| |
Collapse
|
45
|
|
46
|
Stein A, Rolf D, Lotze C, Czekelius C, Franke KJ, Tegeder P. Electronic structure of an iron porphyrin derivative on Au(1 1 1). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:044002. [PMID: 30523801 DOI: 10.1088/1361-648x/aaf296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface-bound porphyrins are promising candidates for molecular switches, electronics and spintronics. Here, we studied the structural and the electronic properties of Fe-tetra-pyridil-porphyrin adsorbed on Au(1 1 1) in the monolayer regime. We combined scanning tunneling microscopy/spectroscopy, ultraviolet photoemission, and two-photon photoemission to determine the energy levels of the frontier molecular orbitals. We also resolved an excitonic state with a binding energy of 420 meV, which allowed us to compare the electronic transport gap with the optical gap.
Collapse
Affiliation(s)
- Arnulf Stein
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Yamada T, Kawakita N, Okui C, Munakata T. Hybridization of an unoccupied molecular orbital with an image potential state at a lead phthalocyanine/graphite interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:044004. [PMID: 30523835 DOI: 10.1088/1361-648x/aaf08e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The interaction of a molecular orbital with a surface state is important to understand the spatial distribution of the wave function at the molecule/substrate interface. In this study, we focus on hybridization of an unoccupied state of lead phthalocyanine (PbPc) with the image potential state (IPS) on a graphite surface. The hybridization modifies the energy-momentum dispersions of the IPS on PbPc films as observed by angle-resolved two-photon photoemission. On the PbPc 1 monolayer film, the IPS band forms a band gap and back-folding appears at the first Brillouin zone boundary due to the periodic potential by the adsorbate lattice. The modification of the dispersion is accompanied by the intensity enhancement of the IPS. We attributed the origin of the modified dispersion and intensity enhancement to a hybridization of the IPS with a molecule-derived unoccupied level. From the photon energy-dependent measurement on multilayer films, we have found the diffuse unoccupied molecular level in the vicinity of the IPS. The tail part of the IPS wave function in the substrate is enhanced by the hybridization with the unoccupied state, and thus strengthens the transition from the occupied substrate band to the hybridized IPS.
Collapse
|
48
|
Wei Q, Wu S, Sun Y. Quantum-Sized Metal Catalysts for Hot-Electron-Driven Chemical Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802082. [PMID: 30118547 DOI: 10.1002/adma.201802082] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Hot-electron-driven chemical transformation (HEDCT) represents an emerging research area in utilizing photoresponsive nanoparticles to enable efficient solar-to-chemical conversion. The unique properties of quantum-sized metal nanoparticles (QSMNPs) make them a class of photocatalysts that can generate hot electrons to drive surface chemical reactions with high quantum efficiency. Compared to the conventional thermal-driven chemical reactions, HEDCT offers the advantages of accelerating reaction rate, improving reaction selectivity, and possibly enabling the occurrence of thermodynamically endergonic reactions. Despite its embryonic stage of development, using QSMNPs for HEDCT shows great promise. Herein, a timely overview on the research progress is provided with a focus on the fundamental quantum processes involved in the photoexcitation of hot electrons and the following HEDCT on the surface of QSMNPs. The last section discusses the challenges, which also represent the opportunities for the materials research community, in designing robust QSMNP photocatalysts and understanding the fundamental quantum phenomena in HEDCT.
Collapse
Affiliation(s)
- Qilin Wei
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Siyu Wu
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
49
|
Aslam U, Rao VG, Chavez S, Linic S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat Catal 2018. [DOI: 10.1038/s41929-018-0138-x] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Kim C, Hyeon S, Lee J, Kim WD, Lee DC, Kim J, Lee H. Energy-efficient CO 2 hydrogenation with fast response using photoexcitation of CO 2 adsorbed on metal catalysts. Nat Commun 2018; 9:3027. [PMID: 30072704 PMCID: PMC6072744 DOI: 10.1038/s41467-018-05542-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/13/2018] [Indexed: 11/08/2022] Open
Abstract
Many heterogeneous catalytic reactions occur at high temperatures, which may cause large energy costs, poor safety, and thermal degradation of catalysts. Here, we propose a light-assisted surface reaction, which catalyze the surface reaction using both light and heat as an energy source. Conventional metal catalysts such as ruthenium, rhodium, platinum, nickel, and copper were tested for CO2 hydrogenation, and ruthenium showed the most distinct change upon light irradiation. CO2 was strongly adsorbed onto ruthenium surface, forming hybrid orbitals. The band gap energy was reduced significantly upon hybridization, enhancing CO2 dissociation. The light-assisted CO2 hydrogenation used only 37% of the total energy with which the CO2 hydrogenation occurred using only thermal energy. The CO2 conversion could be turned on and off completely with a response time of only 3 min, whereas conventional thermal reaction required hours. These unique features can be potentially used for on-demand fuel production with minimal energy input.
Collapse
Affiliation(s)
- Chanyeon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Seokwon Hyeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jonghyeok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Whi Dong Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|