1
|
El Mouat A, Abdallah W, Ternel J, Ferreira M, Bricout H, Vorholt AJ, Stieber H, Stoertte S, Monflier E, Lahcini M, Tilloy S. Rhodium/Trialkylamines Catalyzed Reductive Hydroformylation in Ionic Liquid/Heptane Medium: An Unexpected Concept for Catalyst Recycling in Batch and Continuous Flow Processes. CHEMSUSCHEM 2024:e202401384. [PMID: 39325655 DOI: 10.1002/cssc.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
We report here the rhodium catalyzed reductive hydroformylation of methyl 10-undecenoate. Our approach is based on an ionic liquid/heptane biphasic system associated with commercially available trialkylamines. The effects of various reaction parameters such as amine type, amine amount, temperature, syngas pressure and composition were studied in order to minimize the rhodium leaching and increase the production of primary alcohols. Although the amine is less soluble in the ionic liquid than in heptane, the catalytic system is efficiently maintained in the ionic liquid phase. For the optimized conditions, the catalytic ionic liquid layer can be recycled at least nine times by keeping an alcohol yield over 50 % and by limiting the rhodium leaching. As an extension of this system and to examine the long-term stability, this batch system was transferred to a miniplant for a continuous flow process. A pilot plant was operated for 45 h of total reaction time, reaching a TTON of 232 for alcohol production.
Collapse
Affiliation(s)
- Abdelghani El Mouat
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
- IMED-Lab, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Avenue Abdelkrim Elkhattabi, B.P. 549, Marrakech, 40000, Maroc
| | - Walid Abdallah
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Jérémy Ternel
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Michel Ferreira
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Hervé Bricout
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Andreas J Vorholt
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Hannah Stieber
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Sven Stoertte
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Eric Monflier
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| | - Mohammed Lahcini
- IMED-Lab, Faculté des Sciences et Techniques Marrakech, Université Cadi Ayyad, Avenue Abdelkrim Elkhattabi, B.P. 549, Marrakech, 40000, Maroc
- Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir, 43150, Maroc
| | - Sébastien Tilloy
- Univ. Artois, CNRS, Centrale Lille, Unité de Catalyse et Chimie du Solide (UCCS), Univ. Lille, UMR 8181, rue Jean Souvraz, SP 18, 62300, Lens, France
| |
Collapse
|
2
|
Clarke CJ, Clayton T, Palmer MJ, Lovelock KRJ, Licence P. A thermophysical investigation of weakly coordinated metals in ionic liquids. Chem Sci 2024; 15:13832-13840. [PMID: 39211497 PMCID: PMC11351778 DOI: 10.1039/d4sc03588g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Ionic liquids can solvate metals without strongly coordinating them, which gives a rare opportunity to probe the complexity of weakly coordinated metals through characterisation of liquid properties. In this work we use bis(trifluoromethanesulfonyl)imide (i.e. bistriflimide; [NTf2]-) anions to prepare weakly coordinated metal containing ionic liquids (MILs) that are highly versatile because they are reactive with readily substituted ligands. Weakly coordinated metals are more than highly active catalysts. They are primed to create dynamic systems that are useful in other areas such as battery electrolytes, soft materials, and separations. However, very little is known about the properties of ionic liquids with weakly coordinated metals, so we present a wide scope analysis of nineteen 1-alkyl-3-methylimidazolium bistriflimide ILs with five different M[NTf2] n salts (M = Li, Mg, Zn, Co, Ni) in variable concentration to understand how metal cations influence thermophysical properties. We investigate short- and long-term thermal stability, decomposition kinetics, and decomposition mechanisms which provides operating windows and knowledge on how to improve stability. In particular, we find that all metals catalyse the elimination decomposition process, which severely compromises thermal stability. Alongside this, we present a detailed analysis of viscosities, densities, and heat capacities, the latter of which revealed that bistriflimide metal ILs are prone to drawing water from the air to form strong hydration spheres. Thermal parameters are affected to varying degrees, but desorption is possible under elevated temperatures - further justifying the need to know upper temperature limits. Altogether, this work provides a broad and methodical study to help understand solvent-solute interactions and thus design better systems for emerging applications that utilise weakly coordinated metals.
Collapse
Affiliation(s)
- Coby J Clarke
- GSK Carbon Neutral Laboratory, School of Chemistry, University of Nottingham Nottingham UK
| | - Thomas Clayton
- GSK Carbon Neutral Laboratory, School of Chemistry, University of Nottingham Nottingham UK
| | - Matthew J Palmer
- GSK Carbon Neutral Laboratory, School of Chemistry, University of Nottingham Nottingham UK
| | | | - Peter Licence
- GSK Carbon Neutral Laboratory, School of Chemistry, University of Nottingham Nottingham UK
| |
Collapse
|
3
|
Sholokhova AY, Borovikova SA. In-Column Dehydration Benzyl Alcohols and Their Chromatographic Behavior on Pyridinium-Based Ionic Liquids as Gas Stationary Phases. Molecules 2024; 29:3721. [PMID: 39202801 PMCID: PMC11357630 DOI: 10.3390/molecules29163721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
At present, stationary phases based on ionic liquids are a promising and widely used technique in gas chromatography, yet they remain poorly studied. Unfortunately, testing of "new" stationary phases is often carried out on a limited set of test compounds (about 10 compounds) of relatively simple structures. This study represents the first investigation into the physicochemical patterns of retention of substituted (including polysubstituted) aromatic alcohols on two stationary phases of different polarities: one based on pyridinium-based ionic liquids and the other on a standard polar phase. The retention order of the studied compounds on such stationary phases compared to the standard polar phase, polyethylene glycol (SH-Stabilwax), was compared and studied. It was shown that pyridinium-based ionic liquids stationary phase has a different selectivity compared to the SH-Stabilwax. Using a quantitative structure-retention relationships (QSRR) study, the differences in selectivity of the two stationary phases were interpreted. Using CHERESHNYA software, the importance of descriptors on different stationary phases was evaluated for the same data set. Different selectivity of the stationary phases correlates with different contributions of descriptors for the analytes under study. For the first time, we show that in-column dehydration is observed for some compounds (mostly substituted benzyl alcohols). This effect is worthy of further investigation and requires attention when analyzing complex mixtures. It suggests that when testing "new" stationary phases, it is necessary to conduct tests on a large set of different classes of compounds. This is because, in the case of using ionic liquids as an stationary phase, a reaction between the analyte and the stationary phase is possible.
Collapse
Affiliation(s)
- Anastasia Yu. Sholokhova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, GSP-1, 119071 Moscow, Russia;
| | | |
Collapse
|
4
|
Wang J, Wang R. Treatment and Resource Utilization of Gaseous Pollutants in Functionalized Ionic Liquids. Molecules 2024; 29:3279. [PMID: 39064858 PMCID: PMC11279358 DOI: 10.3390/molecules29143279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
With the rapid development of science, technology, and the economy of human society, the emission problem of gas pollutants is becoming more and more serious, which brings great pressure to the global ecological environment. At the same time, the natural resources that can be exploited and utilized on Earth are also showing a trend of exhaustion. As an innovative and environmentally friendly material, functionalized ionic liquids (FILs) have shown great application potential in the capture, separation, and resource utilization of gaseous pollutants. In this paper, the synthesis and characterization methods of FILs are introduced, and the application of FILs in the treatment and recycling of gaseous pollutants is discussed. The future development of FILs in this field is also anticipated, which will provide new ideas and methods for the treatment and recycling of gaseous pollutants and promote the process of environmental protection and sustainable development.
Collapse
Affiliation(s)
- Jiayu Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| |
Collapse
|
5
|
Asare-Bediako BB, Li M, Houston A, Vilmercati P, Mannella N, Labbé N, Abdoulmoumine N. Boosting Dimethyl Carbonate Production from CO 2 and Methanol using Ceria-Ionic Liquid Catalyst. CHEMSUSCHEM 2024; 17:e202301805. [PMID: 38361160 DOI: 10.1002/cssc.202301805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
As a crucial strategy towards a sustainable chemical industry, the direct synthesis of dimethyl carbonate (DMC) from renewable carbon dioxide (CO2) and methanol (MeOH) is studied using CeO2 nanoparticles modified with 1-butyl-3-methylimidazolium hydrogen carbonate ([BMIm][HCO3]) devoid of stoichiometric dehydrating agents. The synthesized CeO2@[BMIm][HCO3] catalyst having high thermal stability harnesses the unique physicochemical properties of CeO2 and the ionic liquid to exhibit a DMC yield of 10.4 % and a methanol conversion of 16.1 % at optimal conditions (pressure of CO2=5 MPa; temperature=130 °C). The catalytic behavior of CeO2@[BMIm][HCO3] studied with a detailed XRD, XPS, CO2 and NH3-TPD, Raman spectroscopy, TGA, FTIR, SEM and TEM suggests that the synergy between the two catalytic components originating from an increased surface oxygen vacancies boosts the overall catalytic performance. After several recycling tests, the catalyst demonstrated no significant reduction in DMC yield and methanol conversion. This platform is an attractive approach to synthesize thermally stable nanoparticle@ionic liquid that retains and merges the physical attributes of both materials for producing useful bulk chemicals from readily available chemical resources.
Collapse
Affiliation(s)
| | - Mi Li
- Center for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, 37996, Knoxville, TN, USA
| | - Austin Houston
- Department of Materials Science and Engineering, University of Tennessee, 2506 Jacob Drive, 37996, Knoxville, TN, USA
| | - Paolo Vilmercati
- Department of Physics and Astronomy, The University of Tennessee Knoxville, 1408 Circle Drive, 37996, Knoxville, TN, USA
- Institute for Advanced Materials and Manufacturing, 2641 Osprey Vista Way, 37920, Knoxville, TN, USA
| | - Norman Mannella
- Department of Physics and Astronomy, The University of Tennessee Knoxville, 1408 Circle Drive, 37996, Knoxville, TN, USA
- Institute for Advanced Materials and Manufacturing, 2641 Osprey Vista Way, 37920, Knoxville, TN, USA
| | - Nicole Labbé
- Center for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, 37996, Knoxville, TN, USA
| | - Nourredine Abdoulmoumine
- Center for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, 37996, Knoxville, TN, USA
- Department of Biosystems Engineering and Soil Science, University of Tennessee, 2506 E.J. Chapman Drive, 37996, Knoxville, TN, USA
| |
Collapse
|
6
|
Sahiba N, Teli P, Meena P, Agarwal S. Exploring the Synthetic and Antioxidant Potential of 1,2-Disubstituted Benzimidazoles Using [Et 3NH][HSO 4] Ionic Liquid Catalyst. Chem Biodivers 2024; 21:e202301159. [PMID: 37718514 DOI: 10.1002/cbdv.202301159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/19/2023]
Abstract
An [Et3NH][HSO4] ionic-liquid catalyzed, intermolecular C-N bond formation for 1,2-disubstituted benzimidazole synthesis was achieved by the reaction of OPD and substituted aldehydes at ambient reaction conditions. Operational simplicity, use of easily available substrate and reagents, good yields (74-95 %) in short reaction time (4-18 min), simple work-up, and column chromatographic free synthesis are the remarkable features of this new protocol. The applicability of [Et3NH][HSO4] ionic-liquid as a green and inexpensive catalyst with good recyclability and compatibility with a broad range of functional group having heteroatom, electron-withdrawing, and electron-releasing groups manifested the sustainability, eco-friendliness, and efficiency of the present methodology. Moreover, the antioxidant studies of the synthesized compounds using DPPH and ABTS assays were appealing and several synthesized compounds showed significant antioxidant activity.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| | - Pankaj Teli
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| | - Priyadarshi Meena
- Cancer Biology Lab, Department of Zoology, University of Rajasthan, Jaipur, 302004, Rajasthan, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Lab, Department of Chemistry, MLSU, Udaipur, 313001, Rajasthan, India
| |
Collapse
|
7
|
Fritsch S, Strassner T. Synthesis and physical properties of tunable aryl alkyl ionic liquids based on 1-aryl-4,5-dimethylimidazolium cations. Beilstein J Org Chem 2024; 20:1278-1285. [PMID: 38887574 PMCID: PMC11181176 DOI: 10.3762/bjoc.20.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
We present a new class of tunable aryl alkyl ionic liquids (TAAILs) based on 1-aryl-4,5-dimethylimidazolium cations with electron-withdrawing and -donating substituents in different positions of the phenyl ring and the bis(trifluoromethylsulfonyl)imide (NTf2) anion. We investigated the effect of additional methyl groups in the backbone of the imidazolium core on the physical properties regarding viscosity, conductivity and electrochemical window. With an electrochemical window of up to 6.3 V, which is unprecedented for TAAILs with an NTf2 anion, this new class of TAAILs demonstrates the opportunities that arise from modifications in the backbone of the imidazolium cation.
Collapse
Affiliation(s)
- Stefan Fritsch
- Physikalische Organische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
8
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
9
|
Egorova KS, Kibardin AV, Posvyatenko AV, Ananikov VP. Mechanisms of Biological Effects of Ionic Liquids: From Single Cells to Multicellular Organisms. Chem Rev 2024; 124:4679-4733. [PMID: 38621413 DOI: 10.1021/acs.chemrev.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The review presents a detailed discussion of the evolving field studying interactions between ionic liquids (ILs) and biological systems. Originating from molten salt electrolytes to present multiapplication substances, ILs have found usage across various fields due to their exceptional physicochemical properties, including excellent tunability. However, their interactions with biological systems and potential influence on living organisms remain largely unexplored. This review examines the cytotoxic effects of ILs on cell cultures, biomolecules, and vertebrate and invertebrate organisms. Our understanding of IL toxicity, while growing in recent years, is yet nascent. The established findings include correlations between harmful effects of ILs and their ability to disturb cellular membranes, their potential to trigger oxidative stress in cells, and their ability to cause cell death via apoptosis. Future research directions proposed in the review include studying the distribution of various ILs within cellular compartments and organelles, investigating metabolic transformations of ILs in cells and organisms, detailed analysis of IL effects on proteins involved in oxidative stress and apoptosis, correlation studies between IL doses, exposure times and resulting adverse effects, and examination of effects of subtoxic concentrations of ILs on various biological objects. This review aims to serve as a critical analysis of the current body of knowledge on IL-related toxicity mechanisms. Furthermore, it can guide researchers toward the design of less toxic ILs and the informed use of ILs in drug development and medicine.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V Kibardin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Alexandra V Posvyatenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Ministry of Health of Russian Federation, Moscow 117198, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
10
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
11
|
Yu G, Dai C, Liu N, Xu R, Wang N, Chen B. Hydrocarbon Extraction with Ionic Liquids. Chem Rev 2024; 124:3331-3391. [PMID: 38447150 DOI: 10.1021/acs.chemrev.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Separation and reaction processes are key components employed in the modern chemical industry, and the former accounts for the majority of the energy consumption therein. In particular, hydrocarbon separation and purification processes, such as aromatics extraction, desulfurization, and denitrification, are challenging in petroleum refinement, an industrial cornerstone that provides raw materials for products used in human activities. The major technical shortcomings in solvent extraction are volatile solvent loss, product entrainment leading to secondary pollution, low separation efficiency, and high regeneration energy consumption due to the use of traditional organic solvents with high boiling points as extraction agents. Ionic liquids (ILs), a class of designable functional solvents or materials, have been widely used in chemical separation processes to replace conventional organic solvents after nearly 30 years of rapid development. Herein, we provide a systematic and comprehensive review of the state-of-the-art progress in ILs in the field of extractive hydrocarbon separation (i.e., aromatics extraction, desulfurization, and denitrification) including (i) molecular thermodynamic models of IL systems that enable rapid large-scale screening of IL candidates and phase equilibrium prediction of extraction processes; (ii) structure-property relationships between anionic and cationic structures of ILs and their separation performance (i.e., selectivity and distribution coefficients); (iii) IL-related extractive separation mechanisms (e.g., the magnitude, strength, and sites of intermolecular interactions depending on the separation system and IL structure); and (iv) process simulation and design of IL-related extraction at the industrial scale based on validated thermodynamic models. In short, this Review provides an easy-to-read exhaustive reference on IL-related extractive separation of hydrocarbon mixtures from the multiscale perspective of molecules, thermodynamics, and processes. It also extends to progress in IL analogs, deep eutectic solvents (DESs) in this research area, and discusses the current challenges faced by ILs in related separation fields as well as future directions and opportunities.
Collapse
Affiliation(s)
- Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
12
|
Sharma S, Oberdisse J, Alauzun JG, Dieudonné-George P, Bizien T, Akkaya C, Hesemann P, Genix AC. Controlled formation of multi-scale porosity in ionosilica templated by ionic liquid. NANOSCALE 2024; 16:6053-6067. [PMID: 38421016 DOI: 10.1039/d3nr06213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Mesoporous systems are ubiquitous in membrane science and applications due to their high internal surface area and tunable pore size. A new synthesis pathway of hydrolytic ionosilica films with mesopores formed by ionic liquid (IL) templating is proposed and compared with the traditional non-hydrolytic strategy. For both pathways, the multi-scale formation of pores has been studied as a function of IL content, combining the results of thermogravimetric analysis (TGA), nitrogen sorption, and small-angle X-ray scattering (SAXS). The combination of TGA and nitrogen sorption provides access to ionosilica and pore volume fractions, with contributions of meso- and macropores. We then elaborate an original and quantitative geometrical model to analyze the SAXS data based on small spheres (Rs = 1-2 nm) and cylinders (Lcyl = 10-20 nm) with radial polydispersity provided by the nitrogen sorption isotherms. As a result, we found that for a given incorporation of a templating IL, both synthesis pathways produce very similar pore geometries, but the better incorporation efficacy of the new hydrolytic films provides higher mesoporosity. Our combined study provides a coherent view of mesopore geometry, and thereby an optimization pathway of porous ionic membranes in terms of accessible mesoporosity contributing to the specific surface. Possible applications include electrolyte membranes with improved ionic properties, e.g., in fuel cells and batteries, as well as molecular storage.
Collapse
Affiliation(s)
- Shilpa Sharma
- ICGM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Julian Oberdisse
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France.
| | - Johan G Alauzun
- ICGM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | | | - Thomas Bizien
- SOLEIL Synchrotron, L'Orme des Merisiers, Gif-Sur-Yvette, 91192 Saint-Aubin, France
| | - Cansu Akkaya
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France.
| | - Peter Hesemann
- ICGM, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| | - Anne-Caroline Genix
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France.
| |
Collapse
|
13
|
Liu Y, Li Y, Wu H, Xu S, Zhang B, Li S, Du R, Jiang M, Chen Z, Lv Y, Wang ZG. Robust Oxidase-Mimetic Supramolecular Nanocatalyst for Lignin Biodegradation. NANO LETTERS 2024; 24:2520-2528. [PMID: 38359360 DOI: 10.1021/acs.nanolett.3c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.
Collapse
Affiliation(s)
- Yuanxi Liu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haifeng Wu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoli Zhang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shan Li
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minquan Jiang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziman Chen
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, National Energy Research and Development Center for Biorefinery, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), International Joint Bioenergy Laboratory of Ministry of Education, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Abarbanel NV, Suvorov SS, Petukhov AN, Belousov AS, Markov AN, Zarubin DM, Barysheva AV, Vorotyntsev IV, Kapinos AA, Kulikov AD, Vorotyntsev AV. Bifunctional Silica-Supported Ionic Liquid Phase (SILP) Catalysts in Silane Production: Their Synthesis, Characterization and Catalytic Activity. Int J Mol Sci 2023; 25:68. [PMID: 38203238 PMCID: PMC10778910 DOI: 10.3390/ijms25010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
A mesoporous silica support was synthesized using the sol-gel method from trichlorosilane. There is a tendency for the specific surface area and the proportion of silica particles mesopores to increase during all stages of sol-gel synthesis. It has been shown that the insertion of hexane and toluene, as additional solvents, into the structure-forming polyethylene glycol, makes it possible to regulate the pore size and specific surface area of silica. Silica functionalization was carried out using SILP technology. The activities of the catalytic systems based on polymer and inorganic supports immobilized by imidazole-based ionic liquids during the trichlorosilane disproportionation reaction were compared. There is a tendency for the monosilane yield for catalytic systems based on an inorganic support to increase. We identified the most promising catalyst in terms of monosilane yield and proposed a bifunctional catalyst that exhibited activity in two parallel reactions: trichlorosilane disproportionation and silicon tetrachloride hydrogenation.
Collapse
Affiliation(s)
- Nataliia V. Abarbanel
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Sergey S. Suvorov
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Anton N. Petukhov
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
- Laboratory of Smart Materials and Technologies, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russia
| | - Artem S. Belousov
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Artem N. Markov
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Dmitriy M. Zarubin
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Alexandra V. Barysheva
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Ilya V. Vorotyntsev
- Laboratory of Smart Materials and Technologies, Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russia
| | - Alexander A. Kapinos
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Artem D. Kulikov
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| | - Andrey V. Vorotyntsev
- Chemical Engineering Laboratory, Lobachevsky State University of Nizhny Novgorod, Gagarina Avenue 23, Nizhny Novgorod 603950, Russia (A.S.B.); (A.N.M.); (D.M.Z.); (A.V.B.); (A.V.V.)
| |
Collapse
|
15
|
Guo M, Xun Y, Kang F, Revsbech NP. Copper Catalysis-Based Amperometric Microsensors for Carbon Dioxide Monitoring. ACS OMEGA 2023; 8:44995-45002. [PMID: 38046328 PMCID: PMC10688157 DOI: 10.1021/acsomega.3c06480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
A fast response microsensor that can detect the distribution of CO2 at the microscale level is essential for the observation of biophysiological activity, carbon flux, and carbon burial. Inspired by the previous success of Cu catalysis, we attempted to use this metal Cu material to develop an amperometric microsensor that can meet the requirements. Specifically, the ambient gases diffuse through a silicone membrane into a trap casing filled with an acidic CrCl2 solution, where the otherwise interfering O2 interferent is removed by a redox with Cr2+. The gases then diffuse through a second silicone membrane into an electrolyte, where CO2 is selectively reduced to methanol (CH3OH) at a Cu cathode through a carbon monoxide (CO) pathway. Due to the use of Cu catalysis at the WE tip, CO2 can be reduced at a less negative polarization (-470 mV) instead of the previously reported -1200 mV, thus avoiding hydrogen-evolution interference due to water from the byproduct or from water diffusion through the silicone membrane. This moderate polarization results in a stable baseline, making the microsensor suitable for long-term monitoring. Interferences from other gases, such as N2O, which may be of much concern in environmental monitoring, can be ignored. Applications and limitations are also discussed with a view to further improvement in the future.
Collapse
Affiliation(s)
- Mengwen Guo
- Analysis
Center of College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yao Xun
- Analysis
Center of College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fuxing Kang
- Analysis
Center of College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Niels Peter Revsbech
- WATEC,
Section for Microbiology, Department of Biology, Aarhus University, Aarhus
C 8000, Denmark
| |
Collapse
|
16
|
Bakulina OD, Ivanov MY, Prikhod’ko SA, Adonin NY, Fedin MV. Effects of Zwitterions on Structural Anomalies in Ionic Liquid Glasses Studied by EPR. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2164. [PMID: 37570482 PMCID: PMC10420841 DOI: 10.3390/nano13152164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Ionic liquids (ILs) form a variety of nanostructures due to their amphiphilic nature. Recently, unusual structural phenomena have been found in glassy ILs near their glass transition temperatures; however, in all studied cases, IL cations and anions were in the form of separate moieties. In this work, we investigate for the first time such structural anomalies in zwitterionic IL glasses (ZILs), where the cation and anion are bound in a single molecule. Such binding reasonably restricts mutual diffusion of cations and anions, leading to modification of nano-ordering and character of structural anomalies in these glassy nanomaterials, as has been investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. In particular, the occurrence of structural anomalies in ZIL glasses was revealed, and their characteristic temperatures were found to be higher compared to common ILs of a similar structure. Altogether, this work broadens the scope of structural anomalies in ionic liquid glasses and indicates new routes to tune their properties.
Collapse
Affiliation(s)
- Olga D. Bakulina
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia;
- Physics Department, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Mikhail Yu. Ivanov
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia;
- Physics Department, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Sergey A. Prikhod’ko
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Nicolay Yu. Adonin
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Avenue 5, 630090 Novosibirsk, Russia; (S.A.P.); (N.Y.A.)
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya Street 3a, 630090 Novosibirsk, Russia;
- Physics Department, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
17
|
Nifant’ev IE, Komarov PD, Kostomarova OD, Kolosov NA, Ivchenko PV. MAO- and Borate-Free Activating Supports for Group 4 Metallocene and Post-Metallocene Catalysts of α-Olefin Polymerization and Oligomerization. Polymers (Basel) 2023; 15:3095. [PMID: 37514483 PMCID: PMC10384419 DOI: 10.3390/polym15143095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Modern industry of advanced polyolefins extensively uses Group 4 metallocene and post-metallocene catalysts. High-throughput polyolefin technologies demand the use of heterogeneous catalysts with a given particle size and morphology, high thermal stability, and controlled productivity. Conventional Group 4 metal single-site heterogeneous catalysts require the use of high-cost methylalumoxane (MAO) or perfluoroaryl borate activators. However, a number of inorganic phases, containing highly acidic Lewis and Brønsted sites, are able to activate Group 4 metal pre-catalysts using low-cost and affordable alkylaluminums. In the present review, we gathered comprehensive information on MAO- and borate-free activating supports of different types and discussed the surface nature and chemistry of these phases, examples of their use in the polymerization of ethylene and α-olefins, and prospects of the further development for applications in the polyolefin industry.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel D. Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
| | | | - Nikolay A. Kolosov
- NIOST LLC, Kuzovlevsky Tr. 2-270, 634067 Tomsk, Russia; (O.D.K.); (N.A.K.)
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
18
|
Au-Duong AN, Abdulahad A. Structure-Property Relationships of CO 2 Absorbing Core-Shell Microparticles with Encapsulated Ionic Liquid. ACS OMEGA 2023; 8:24032-24041. [PMID: 37426253 PMCID: PMC10324060 DOI: 10.1021/acsomega.3c02975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
The demand for new ionic liquid (IL)-based systems to selectively sequester carbon dioxide from gas mixtures has prompted the development of individual components involving the tailored design of IL themselves or solid-supported materials that provide excellent gas permeability of the overall material as well as the ability to incorporate large amounts of ionic liquid. In this work, novel IL-encapsulated microparticles comprising a cross-linked copolymer shell of β-myrcene and styrene and a hydrophilic core of the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) are proposed as viable materials for CO2 capture. Water-in-oil (w/o) emulsion polymerization of different mass ratios of β-myrcene to styrene (i.e. 100/0, 70/30, 50/50, 0/100) yielded IL-encapsulated microparticles, where the encapsulation efficiency of [EMIM][DCA] was dependent on the copolymer shell composition. Thermal analysis using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) revealed that both thermal stability and glass transition temperatures depend on the mass ratio of β-myrcene to styrene. Images from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the microparticle shell morphology as well as measure the particle size perimeter. Particle sizes were found to be between 5 and 44 μm. CO2 sorption experiments were conducted gravimetrically using TGA instrumentation. Interestingly, a trade-off between CO2 absorption capacity and ionic liquid encapsulation was observed. While increasing the β-myrcene content within the microparticle shell increases the amount of encapsulated [EMIM][DCA], the observed CO2 absorption capacity did not increase as expected due to reduced porosity compared to microparticles with higher styrene content in the microparticle shell. [EMIM][DCA] microcapsules with a 50/50 weight ratio of β-myrcene/styrene showed the best synergistic effect between spherical particle diameter (32.2 μm), pore size (0.75 μm), and high CO2 sorption capacity of ∼0.5 mmol CO2/g sample within a short absorption period of 20 min. Therefore, core-shell microcapsules composed of β-myrcene and styrene are envisioned as a promising material for CO2 sequestration applications.
Collapse
Affiliation(s)
- Ai-Nhan Au-Duong
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1056, United
States
| | - Asem Abdulahad
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125-1056, United
States
| |
Collapse
|
19
|
Ionic Liquids: Advances and Applications in Phase Transfer Catalysis. Catalysts 2023. [DOI: 10.3390/catal13030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Ionic liquids are a family of liquids that are composed entirely of ions and usually have melting points lower than 100 °C. Extensive research, along with the ever-growing interest of the scientific community, allowed for the development of a multitude of ionic liquids with low melting points. Such compounds are considered neoteric materials as well as ideal, custom-made solvents for a variety of different chemical transformations. In this regard, the importance of phase transfer catalysis is evident in a diversity of substrates and reactions. The use of phase transfer catalysts allows the reaction to proceed, facilitating the transfer of otherwise insoluble reactants to the desired phase. Recent scientific advances led to the emergence of ionic liquids, which are excellent candidates as phase transfer catalysts. The inherent fine-tuning capability of these molecules, along with the potential of phase transfer catalytic reactions, epitomize the sustainable aspect of this field of research. Herein, a cohesive report of such applications will be presented, including the period from the last decade of the 20th century up to date.
Collapse
|
20
|
Lerch S, Fritsch S, Strassner T. Friedel-Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs). Beilstein J Org Chem 2023; 19:212-216. [PMID: 36865025 PMCID: PMC9972882 DOI: 10.3762/bjoc.19.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
An iron(III) chloride hexahydrate-catalyzed Friedel-Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs) has been developed. Through optimization of the metal salt, reaction conditions and ionic liquids, we were able to design a robust catalyst system that tolerates different electron-rich substrates under ambient atmosphere and allows for a multigram scale.
Collapse
Affiliation(s)
- Swantje Lerch
- Professur für Physikalische Organische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Fritsch
- Professur für Physikalische Organische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Thomas Strassner
- Professur für Physikalische Organische Chemie, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
21
|
Więcławik J, Chrobok A. Gallium(III)- and Indium(III)-Containing Ionic Liquids as Highly Active Catalysts in Organic Synthesis. Molecules 2023; 28:1955. [PMID: 36838943 PMCID: PMC9967191 DOI: 10.3390/molecules28041955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The chemical industry still requires development of environmentally friendly processes. Acid-catalysed chemical processes may cause environmental problems. Urgent need to replace conventional acids has forced the search for sustainable alternatives. Metal-containing ionic liquids have drawn considerable attention from scientists for many years. These compounds may exhibit very high Lewis acidity, which is usually dependent on the composition of the ionic liquid with the particular content of metal salt. Therefore, metal-containing ionic liquids have found a lot of applications and are successfully employed as catalysts, co-catalysts or reaction media in various fields of chemistry, especially in organic chemistry. Gallium(III)- and indium(III)-containing ionic liquids help to transfer the remarkable activity of metal salts into even more active and easier-to-handle forms of ionic liquids. This review highlights the wide range of possible applications and the high potential of metal-containing ionic liquids with special focus on Ga(III) and In(III), which may help to outline the framework for further development of the presented research topic and synthesis of new representatives of this group of compounds.
Collapse
Affiliation(s)
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
22
|
Sahiba N, Sethiya A, Teli P, Agarwal S. Tandem Protocol of Hexahydroquinoline Synthesis Using [H 2-DABCO][HSO 4] 2 Ionic Liquid as a Green Catalyst at Room Temperature. ACS OMEGA 2023; 8:5877-5884. [PMID: 36816668 PMCID: PMC9933228 DOI: 10.1021/acsomega.2c07672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Green, eco-benign, and sustainable synthesis is paramount in present chemistry. Here, a facile, efficient, and [H2-DABCO][HSO4]2 ionic-liquid-catalyzed one-pot multicomponent synthesis of hexahydroquinolines was reported under ambient reaction conditions. The reaction of 1,3-dicarbonyls, malononitrile, and ammonium acetate with various aldehydes in the presence of an ionic liquid catalyst and EtOH solvent at room temperature afforded excellent yields (76-100%) of hexahydroquinolines under a short reaction time (5-15 min). Mild reaction conditions, broad substrate scope (28 derivatives), and column-chromatography-free synthesis with excellent catalytic efficiency and good recyclability rendered this protocol superior and practical. The greenness of the present method was assessed through eco-score and E-factor. The significant results in gram-scale synthetic conditions validate its applicability in industries as well as academia in the near future.
Collapse
|
23
|
Mechanistic Studies of Improving Pt Catalyst Stability at High Potential via Designing Hydrophobic Micro-Environment with Ionic Liquid in PEMFC. Catalysts 2023. [DOI: 10.3390/catal13020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Recently, the focus of fuel cell technologies has shifted from light-duty automotive to heavy-duty vehicle applications, which require improving the stability of membrane electrode assemblies (MEAs) at high constant potential. The hydrophilicity of Pt makes it easy to combine with water molecules and then oxidize at high potential, resulting in poor durability of the catalyst. In this work, an ionic liquid [BMIM][NTF2] was used to modify the Pt catalyst (Pt/C + IL) to create a hydrophobic, antioxidant micro-environment in the catalyst layer (CL). The effect of [BMIM][NTF2] on the decay of the CL performance at high constant potential (0.85 V) for a long time was investigated. It was found that the performance attenuation of Pt/C + IL in the high-potential range (OCV 0.75 V) was less than that of commercial Pt/C after 10 h. The Pt-oxide coverage test showed that the hydrophobic micro-environment of the CL enhanced the stability by inhibiting Pt oxidation. In addition, the electrochemical recovery of Pt oxides showed that the content of recoverable oxides in Pt/C + IL was higher than that in commercial Pt/C. Overall, modifying the Pt catalyst with hydrophobic ionic liquid is an effective strategy to improve the catalyst stability and reduce the irreversible voltage loss caused by the oxide at high constant potential.
Collapse
|
24
|
Biller H, Strassner T. Synthesis and Physical Properties of Tunable Aryl Alkyl Ionic Liquids (TAAILs) Comprising Imidazolium Cations Blocked with Methyl-, Propyl- and Phenyl-Groups at the C2 Position. Chemistry 2023; 29:e202202795. [PMID: 36508719 PMCID: PMC10107658 DOI: 10.1002/chem.202202795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 12/14/2022]
Abstract
Imidazolium-based ionic liquids are very popular for different applications because of their low viscosity and melting point. However, the hydrogen atom at the C2 position of the imidazolium cation can easily be deprotonated by a base, resulting in a reactive carbene. If an inert ionic liquid is needed, it is necessary to introduce an unreactive alkyl or aryl group at the C2 position to prevent deprotonation. Tunable aryl alkyl ionic liquids (TAAILs) were first introduced by our group in 2009 and are characterized by a phenyl group at the N1 position, which offers the possibility to fine-tune the physicochemical properties by using different electron-donating or -withdrawing substituents. In this work, we present a new series of TAAILs where the C2 position is blocked by a methyl, propyl or phenyl group. For each of the blocking groups, the phenyl and three different phenyl derivatives (2-Me, 4-OMe, 2,4-F2 ) are compared with respect to melting point, viscosity, conductivity and electrochemical window. In addition, the differences between blocked and unblocked TAAILs with regard to their electrochemical reduction potentials are investigated by quantum chemical methods.
Collapse
Affiliation(s)
- Harry Biller
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstrasse 66, 01069, Dresden, Germany
| |
Collapse
|
25
|
Nezhadramezan-Ghasemabadi H, Mazloumi M, Azimi S, Shirini F. One-pot three component synthesis of pyrido[2,3-d]pyrimidines and benzo[4,5]imidazo[1,2-a]-pyrimidine-3-carbonitrile catalyzed by acidic ionic liquid immobilized on nanoporous TiO2. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Bao YF, Wang YJ, Wang YC, Liu DH. Homogeneous base catalyst with high activity and stability for synthesis of dimethyl carbonate by transesterification †. RSC Adv 2023; 13:9347-9352. [PMID: 36959885 PMCID: PMC10028615 DOI: 10.1039/d3ra00164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
In the synthesis of dimethyl carbonate (DMC) by transesterification, CH3ONa has been commonly applied as a homogeneous catalyst due to its high catalytic activity, but its stability is unsatisfactory. Here, by studying the influence of ionic liquid base strength on transesterification, we prepared an organic base catalyst, potassium imidazole (KIm), with high catalytic activity and stability, which solved the problem of catalyst deactivation in transesterification. The results showed that when KIm was used in the synthesis of DMC from propylene carbonate (PC) and methanol (MeOH), the chemical equilibrium could be reached within 3 minutes and the yield of DMC reached 73.03%, indicating that KIm performed better in transesterification than the majority of previously reported catalysts. In addition, the activity of the catalyst had hardly decreased after ten cycles of reaction, which can well meet the requirements of industrial production. A novel type of homogeneous catalyst KIm was developed and applied to the reaction of PC and MeOH to synthesize DMC.![]()
Collapse
Affiliation(s)
- Yu-Fen Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech UniversityNanjing210009China
| | - Yi-Jie Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech UniversityNanjing210009China
| | - Yu-Chen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech UniversityNanjing210009China
| | - Ding-Hua Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech UniversityNanjing210009China
| |
Collapse
|
27
|
Aravena RI, Hallett JP. Protic ionic liquids based on fatty acids: a mixture of ionic and non-ionic molecules. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Xu X, Van Eygen G, Molina-Fernández C, Nikolaeva D, Depasse Y, Chergaoui S, Hartanto Y, Van der Bruggen B, Coutinho JA, Buekenhoudt A, Luis P. Evaluation of task-specific ionic liquids applied in pervaporation membranes: Experimental and COSMO-RS studies. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Tanpure S, Mulik A, Rajmane M, Lawande S. Novel ionic liquid dihydrogen 4,4′-trimethylenedipiperidine phosphate-catalyzed greener and efficient synthesis of dihydro pyrano [2,3-c] pyrazole. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Nguyen TT, Huynh TTT, Nguyen NH, Nguyen TH, Tran PH. Recent advances in the application of ionic liquid-modified silica gel in solid-phase extraction. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Pan Y, Tong K, Lin M, Zhuang W, Zhu W, Chen X, Li Q. Aggregation behaviours of sulfobetaine zwitterionic surfactants in EAN. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Advanced Formulations Based on Poly(ionic liquid) Materials for Additive Manufacturing. Polymers (Basel) 2022; 14:polym14235121. [PMID: 36501514 PMCID: PMC9735564 DOI: 10.3390/polym14235121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Innovation in materials specially formulated for additive manufacturing is of great interest and can generate new opportunities for designing cost-effective smart materials for next-generation devices and engineering applications. Nevertheless, advanced molecular and nanostructured systems are frequently not possible to integrate into 3D printable materials, thus limiting their technological transferability. In some cases, this challenge can be overcome using polymeric macromolecules of ionic nature, such as polymeric ionic liquids (PILs). Due to their tuneability, wide variety in molecular composition, and macromolecular architecture, they show a remarkable ability to stabilize molecular and nanostructured materials. The technology resulting from 3D-printable PIL-based formulations represents an untapped array of potential applications, including optoelectronic, antimicrobial, catalysis, photoactive, conductive, and redox applications.
Collapse
|
34
|
A Copper‐catalysed Facile Synthesis of Highly Functionalized Aryl Sulphones in Guanidinium IL(GIL) aided with Ultrasound. ChemistrySelect 2022. [DOI: 10.1002/slct.202202033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Piccoli V, Martínez L. Ionic liquid solvation of proteins in native and denatured states. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
36
|
Polidoro D, Perosa A, Selva M. Tunable Multi-Phase System for Highly Chemo-Selective Oxidation of Hydroxymethyl-Furfural. CHEMSUSCHEM 2022; 15:e202201059. [PMID: 35766162 DOI: 10.1002/cssc.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Three different multiphase systems (MP 1-3) comprised of two immiscible liquids, with or without an ionic liquid (IL: methyltrioctyl ammonium chloride), were investigated for the oxidation of 5-hydroxymethyl-furfural (HMF) over 5 % Ru/C as a catalyst and air (8 bar) as an oxidant. These conditions proved versatile for an excellent control of the reaction selectivity to 4 distinct products derived from full or partial oxidation of the carbonyl and alcohol functions of HMF, and each one achieved in 87-96 % isolated yield at complete conversion. MP1 based on water and isooctane, yielded 2,5-furandicarboxylic acid (FDCA, 91 % yield). In MP2, obtained by adding the IL to MP1, the oxidation proceeded towards the formation of 5-formyl-2-furancarboxylic acid (FFCA, 87-89 % yield). MP2 also proved successful in the design of a one pot-two step oxidation/reduction sequence to prepare 5-hydroxymethyl-2-furancarboxylic acid (HMFCA, 85 % yield). In MP3, the use of an acetonitrile/cyclooctane biphase yielded 2,5-diformylfuran (DFF, 96 % yield). All the multiphase systems MP 1-3 allowed a perfect segregation of the catalyst in a single phase (either the hydrocarbon or the IL) distinct from the one containing HMF and its oxidation products. This was crucial not only for the catalyst/product separation but also for the recycle of Ru/C that was possible under all the tested conditions. Accordingly, MP-reaction were run in a semicontinuous mode without removing the catalyst from the reactor nor resorting to conventional separation and activation techniques. Negligible Ru leaching, less than 0.96 ppb, was measured in all cases.
Collapse
Affiliation(s)
- Daniele Polidoro
- Department of Molecular Science and Nanosystem, Ca' Foscari, Università di Venezia, Via torino 155, 30172, Venezia Mestre, Italy
| | - Alvise Perosa
- Department of Molecular Science and Nanosystem, Ca' Foscari, Università di Venezia, Via torino 155, 30172, Venezia Mestre, Italy
| | - Maurizio Selva
- Department of Molecular Science and Nanosystem, Ca' Foscari, Università di Venezia, Via torino 155, 30172, Venezia Mestre, Italy
| |
Collapse
|
37
|
Oh YH, Kim DW, Lee S. Ionic Liquids as Organocatalysts for Nucleophilic Fluorination: Concepts and Perspectives. Molecules 2022; 27:5702. [PMID: 36080470 PMCID: PMC9457570 DOI: 10.3390/molecules27175702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Besides their extremely useful properties as solvent, ionic liquids (ILs) are now considered to be highly instructive tools for enhancing the rates of chemical reactions. The ionic nature of the IL anion and cation seems to be the origin of this fascinating function of ILs as organocatalyst/promoter through their strong Coulombic forces on other ionic species in the reaction and also through the formation of hydrogen bonds with various functional groups in substrates. It is now possible to tailor-make ILs for specific purposes as solvent/promoters in a variety of situations by carefully monitoring these interactions. Despite the enormous potentiality, it seems that the application of ILs as organocatalysts/promoters for chemical reactions have not been fully achieved so far. Herein, we review recent developments of ILs for promoting the nucleophilic reactions, focusing on fluorination. Various aspects of the processes, such as organocatalytic capability, reaction mechanisms and salt effects, are discussed.
Collapse
Affiliation(s)
- Young-Ho Oh
- Department of Applied Chemistry, Kyung Hee University, Duckyoung-daero 1732, Yongin City 446-701, Korea
| | - Dong Wook Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Nam-gu, Incheon 402-751, Korea
| | - Sungyul Lee
- Department of Applied Chemistry, Kyung Hee University, Duckyoung-daero 1732, Yongin City 446-701, Korea
| |
Collapse
|
38
|
Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Nandihalli N, Gregory DH, Mori T. Energy-Saving Pathways for Thermoelectric Nanomaterial Synthesis: Hydrothermal/Solvothermal, Microwave-Assisted, Solution-Based, and Powder Processing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106052. [PMID: 35843868 PMCID: PMC9443476 DOI: 10.1002/advs.202106052] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/06/2022] [Indexed: 05/16/2023]
Abstract
The pillars of Green Chemistry necessitate the development of new chemical methodologies and processes that can benefit chemical synthesis in terms of energy efficiency, conservation of resources, product selectivity, operational simplicity and, crucially, health, safety, and environmental impact. Implementation of green principles whenever possible can spur the growth of benign scientific technologies by considering environmental, economical, and societal sustainability in parallel. These principles seem especially important in the context of the manufacture of materials for sustainable energy and environmental applications. In this review, the production of energy conversion materials is taken as an exemplar, by examining the recent growth in the energy-efficient synthesis of thermoelectric nanomaterials for use in devices for thermal energy harvesting. Specifically, "soft chemistry" techniques such as solution-based, solvothermal, microwave-assisted, and mechanochemical (ball-milling) methods as viable and sustainable alternatives to processes performed at high temperature and/or pressure are focused. How some of these new approaches are also considered to thermoelectric materials fabrication can influence the properties and performance of the nanomaterials so-produced and the prospects of developing such techniques further.
Collapse
Affiliation(s)
- Nagaraj Nandihalli
- National Institute for Materials Science (NIMS)International Center for Materials Nanoarchitectonics (WPI‐MANA)Namiki 1‐1Tsukuba305‐0044Japan
| | | | - Takao Mori
- National Institute for Materials Science (NIMS)International Center for Materials Nanoarchitectonics (WPI‐MANA)Namiki 1‐1Tsukuba305‐0044Japan
| |
Collapse
|
40
|
De J, Sarkar S, Debbarma T, Khan SA, Roy M, Misra TK, Majumdar S. An elegant approach for selective synthesis of 2-substituted benzimidazoles at room temperature using Ag nanoparticles as an activator: effect of solvent on the selectivity. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An expedient, competent, and green protocol was developed for the selective synthesis of 2-substituted benzimidazole by the condensation of 1,2-diaminobenzene and various aldehydes, including aromatic, heteroaromatic, and aliphatic aldehydes, in methanol and water (1:1) as reaction media in the presence of Ag nanoparticles in a one pot operation at room temperature. The selectivity of the protocol for obtaining 2-substituted benzimidazole is highly dependent on the ratios of methanol and water used, as well as the reaction temperature. The present protocol exhibits several advantages, such as high yield, short reaction time, high selectivity, and no side reaction, and it works at room temperature, which makes this methodology green, providing a practical input to the existing procedures available for the synthesis of 2-substituted benzimidazole derivatives.
Collapse
Affiliation(s)
- Jhinuk De
- Department of Chemistry, National Institute of Technology Agartala, Tripura 799046, India
| | - Subhrajit Sarkar
- Department of Chemistry, National Institute of Technology Agartala, Tripura 799046, India
| | - Trideep Debbarma
- Department of Chemistry, National Institute of Technology Agartala, Tripura 799046, India
| | - Shamim Ahmed Khan
- Department of Chemistry, National Institute of Technology Agartala, Tripura 799046, India
| | - Manojit Roy
- Department of Chemistry, National Institute of Technology Agartala, Tripura 799046, India
| | - Tarun Kumar Misra
- Department of Chemistry, National Institute of Technology Agartala, Tripura 799046, India
| | | |
Collapse
|
41
|
Garg P, Reddy SR. Biomass‐derived Sugar Ionic Liquid as a Sustainable Organocatalyst: An Efficient Synthesis of Functionalized Dihydropyrano Coumarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Garg
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| | | |
Collapse
|
42
|
Yan W, You Z, Meng K, Du F, Zhang S, Jin X. Cross-metathesis of biomass to olefins: Molecular catalysis bridging the gap between fossil and bio-energy. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Gan Z, Wang Y, Lu Y, Qin J, Nie Y, He H. Insight into the camel‐to‐bell transition of differential capacitance in ionic liquids‐based supercapacitor. ChemElectroChem 2022. [DOI: 10.1002/celc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhongdong Gan
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Yanlei Wang
- Institute of Process Engineering Chinese Academy of Sciences Ionic LIquid and Clean Process Beiertiao #1,Zhongguancun, Haidian District 100190 Beijing CHINA
| | - Yumiao Lu
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Jingyu Qin
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Yi Nie
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| | - Hongyan He
- Institute of Process Engineering Chinese Academy of Sciences Ionic liquid department CHINA
| |
Collapse
|
44
|
Pinate P, Makone S. Novel DABCO based acidic ionic liquid as a green protocol for the synthesis of thiazolidin-4-one derivatives and cytotoxic activity evaluation on human breast cancer cell line. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2099223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Priyanka Pinate
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| | - Sangita Makone
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| |
Collapse
|
45
|
Toots KM, Sild S, Leis J, Acree WE, Maran U. Machine Learning Quantitative Structure-Property Relationships as a Function of Ionic Liquid Cations for the Gas-Ionic Liquid Partition Coefficient of Hydrocarbons. Int J Mol Sci 2022; 23:7534. [PMID: 35886881 PMCID: PMC9323540 DOI: 10.3390/ijms23147534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/01/2023] Open
Abstract
Ionic liquids (ILs) are known for their unique characteristics as solvents and electrolytes. Therefore, new ILs are being developed and adapted as innovative chemical environments for different applications in which their properties need to be understood on a molecular level. Computational data-driven methods provide means for understanding of properties at molecular level, and quantitative structure-property relationships (QSPRs) provide the framework for this. This framework is commonly used to study the properties of molecules in ILs as an environment. The opposite situation where the property is considered as a function of the ionic liquid does not exist. The aim of the present study was to supplement this perspective with new knowledge and to develop QSPRs that would allow the understanding of molecular interactions in ionic liquids based on the structure of the cationic moiety. A wide range of applications in electrochemistry, separation and extraction chemistry depends on the partitioning of solutes between the ionic liquid and the surrounding environment that is characterized by the gas-ionic liquid partition coefficient. To model this property as a function of the structure of a cationic counterpart, a series of ionic liquids was selected with a common bis-(trifluoromethylsulfonyl)-imide anion, [Tf2N]-, for benzene, hexane and cyclohexane. MLR, SVR and GPR machine learning approaches were used to derive data-driven models and their performance was compared. The cross-validation coefficients of determination in the range 0.71-0.93 along with other performance statistics indicated a strong accuracy of models for all data series and machine learning methods. The analysis and interpretation of descriptors revealed that generally higher lipophilicity and dispersion interaction capability, and lower polarity in the cations induces a higher partition coefficient for benzene, hexane, cyclohexane and hydrocarbons in general. The applicability domain analysis of models concluded that there were no highly influential outliers and the models are applicable to a wide selection of cation families with variable size, polarity and aliphatic or aromatic nature.
Collapse
Affiliation(s)
- Karl Marti Toots
- Department of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia; (K.M.T.); (S.S.); (J.L.)
| | - Sulev Sild
- Department of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia; (K.M.T.); (S.S.); (J.L.)
| | - Jaan Leis
- Department of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia; (K.M.T.); (S.S.); (J.L.)
| | - William E. Acree
- Department of Chemistry, University of North Texas, 1155 Union Circle Drive #305070, Denton, TX 76203, USA;
| | - Uko Maran
- Department of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia; (K.M.T.); (S.S.); (J.L.)
| |
Collapse
|
46
|
Altun A, Şara ON. Density, viscosity and excess properties of binary mixtures of ethylene glycol and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Heller WT, Do C. Impact of Two Water-Miscible Ionic Liquids on the Temperature-Dependent Self-Assembly of the (EO) 6-(PO) 34-(EO) 6 Block Copolymer. ACS OMEGA 2022; 7:19474-19483. [PMID: 35721995 PMCID: PMC9202293 DOI: 10.1021/acsomega.2c01166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
There are many studies on the self-assembly of triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymers in aqueous solution. These polymers display a rich phase diagram as a function of block length, concentration, temperature, and additives. Here, we present a small-angle neutron scattering study of the impact of two water-miscible ionic liquids, 1-butyl-3-methylimidazolium chloride ([C4C1mim][Cl]) and 1-butyl-3-methylpyrrolidinium chloride ([C4C1pyrr][Cl]), on the temperature-dependent self-assembly of (EO)6-(PO)34-(EO)6, also known as L62 Pluronic, in aqueous solution. Both ionic liquids depress the temperatures of the various structural transitions that take place, but ([C4C1pyrr][Cl]) has a stronger effect. The structures that the triblock copolymer self-assembles into do not dramatically change nor do they significantly change the series of structures that the system transitions through as a function of temperature relative to the various transition temperatures.
Collapse
|
48
|
Pinate P, Makone S. Synthesis and Study of Catalytic Perspectives of DABCO Based Ionic Liquid for the Synthesis of 2,3-Dihydro-1,5-Benzothiazepines and 2-Phenylbenzothiazoles. Catal Letters 2022. [DOI: 10.1007/s10562-022-04033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Trialkylmethylammonium molybdate ionic liquids as novel oil-soluble precursors of dispersed metal catalysts for slurry-phase hydrocracking of heavy oils. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
|