1
|
Guruswamy KP, Thambiannan S, Anthonysamy A, Jalgaonkar K, Dukare AS, Pandiselvam R, Jha N. Coir fibre-reinforced concrete for enhanced compressive strength and sustainability in construction applications. Heliyon 2024; 10:e39773. [PMID: 39553567 PMCID: PMC11567113 DOI: 10.1016/j.heliyon.2024.e39773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
This research explores the potential of coir fibre as a sustainable and effective reinforcement material to enhance the compressive strength (CS) of concrete. The influence of the fibre volume fraction (FVF) and fibre length (FL) on the CS of the coir fibre reinforced concrete was studied using the response surface method (RSM). The selected range for the FVF was from 4 % to 12 %, and the FL varied from 0.4 cm to 1.2 cm, as per the experimental design. The research determined that the coir fibre with an FVF of 4 % and an FL of 10 mm yielded the maximum CS for the reinforced concrete cubes, measuring 34 N/mm2. Furthermore, an increase in fibre content was observed to lead to a decrease in the workability of coir fibre-reinforced concrete. Furthermore, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses of the control and coir fibres extracted from the concrete cubes after a period of 1 year indicated no significant changes in the functional properties, thermal properties and crystallinity of the fibres.
Collapse
Affiliation(s)
| | | | - Arputharaj Anthonysamy
- ICAR- Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, 400019, India
| | - Kirti Jalgaonkar
- ICAR- Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, 400019, India
| | | | - Ravi Pandiselvam
- ICAR- Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, 400019, India
| | - Naveenkumar Jha
- ICAR- Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, 400019, India
| |
Collapse
|
2
|
Zhang M, Chen Y, Wu C, Zheng R, Xia Y, Saccuzzo EG, Trinh TKH, Mondarte EAQ, Nakouzi E, Rad B, Legg BA, Shaw WJ, Tao J, De Yoreo JJ, Chen CL. A molecular view of peptoid-induced acceleration of calcite growth. Proc Natl Acad Sci U S A 2024; 121:e2412358121. [PMID: 39471223 PMCID: PMC11551417 DOI: 10.1073/pnas.2412358121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/12/2024] [Indexed: 11/01/2024] Open
Abstract
The extensive deposits of calcium carbonate (CaCO3) generated by marine organisms constitute the largest and oldest carbon dioxide (CO2) reservoir. These organisms utilize macromolecules like peptides and proteins to facilitate the nucleation and growth of carbonate minerals, serving as an effective method for CO2 sequestration. However, the precise mechanisms behind this process remain elusive. In this study, we report the use of sequence-defined peptoids, a class of peptidomimetics, to achieve the accelerated calcite step growth kinetics with the molecular level mechanistic understanding. By designing peptoids with hydrophilic and hydrophobic blocks, we systematically investigated the acceleration in step growth rate of calcite crystals using in situ atomic force microscopy (AFM), varying peptoid sequences and concentrations, CaCO3 supersaturations, and the ratio of Ca2+/ HCO3-. Mechanistic studies using NMR, three-dimensional fast force mapping (3D FFM), and isothermal titration calorimetry (ITC) were conducted to reveal the interactions of peptoids with Ca2+ and HCO3- ions in solution, as well as the effect of peptoids on solvation and energetics of calcite crystal surface. Our results indicate the multiple roles of peptoid in facilitating HCO3- deprotonation, Ca2+ desolvation, and the disruption of interfacial hydration layers of the calcite surface, which collectively contribute to a peptoid-induced acceleration of calcite growth. These findings provide guidelines for future design of sequence-specific biomimetic polymers as crystallization promoters, offering potential applications in environmental remediation (such as CO2 sequestration), biomedical engineering, and energy storage where fast crystallization is preferred.
Collapse
Affiliation(s)
- Mingyi Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | - Ying Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | - Chunhui Wu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
| | - Renyu Zheng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
| | - Ying Xia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA98195
| | - Emily G. Saccuzzo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | - Thi Kim Hoang Trinh
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | | | - Elias Nakouzi
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | - Behzad Rad
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Benjamin A. Legg
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | - Wendy J. Shaw
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
| | - James J. De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
- Department of Materials Science and Engineering, University of Washington, Seattle, WA98195
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA99352
- Department of Chemical Engineering, University of Washington, Seattle, WA98195
| |
Collapse
|
3
|
Knight B, Mondal R, Han N, Pietra NF, Hall BA, Edgar KJ, Vaissier Welborn V, Madsen LA, De Yoreo JJ, Dove PM. Kinetics of Calcite Nucleation onto Sulfated Chitosan Derivatives and Implications for Water-Polysaccharide Interactions during Crystallization of Sparingly Soluble Salts. CRYSTAL GROWTH & DESIGN 2024; 24:6338-6353. [PMID: 39131446 PMCID: PMC11311137 DOI: 10.1021/acs.cgd.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Anionic macromolecules are found at sites of CaCO3 biomineralization in diverse organisms, but their roles in crystallization are not well-understood. We prepared a series of sulfated chitosan derivatives with varied positions and degrees of sulfation, DS(SO3 -), and measured calcite nucleation rate onto these materials. Fitting the classical nucleation theory model to the kinetic data reveals the interfacial free energy of the calcite-polysaccharide-solution system, γnet, is lowest for nonsulfated controls and increases with DS(SO3 -). The kinetic prefactor also increases with DS(SO3 -). Simulations of Ca2+-H2O-chitosan systems show greater water structuring around sulfate groups compared to uncharged substituents, independent of sulfate location. Ca2+-SO3 - interactions are solvent-separated by distances that are inversely correlated with DS(SO3 -) of the polysaccharide. The simulations also predict SO3 - and NH3 + groups affect the solvation waters and HCO3 - ions associated with Ca2+. Integrating the experimental and computational evidence suggests sulfate groups influence nucleation by increasing the difficulty of displacing near-surface water, thereby increasing γnet. By correlating γnet and net charge per monosaccharide for diverse polysaccharides, we suggest the solvent-separated interactions of functional groups with Ca2+ influence thermodynamic and kinetic components to crystallization by similar solvent-dominated processes. The findings reiterate the importance of establishing water structure and properties at macromolecule-solution interfaces.
Collapse
Affiliation(s)
- Brenna
M. Knight
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ronnie Mondal
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nizhou Han
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas F. Pietra
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A. Hall
- GlycoMIP, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A. Madsen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J. De Yoreo
- Physical
Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Hwang ET, Yoon Y, Kim KR, Lee CH, Jeon KC, Min JH, Lee JW, Kim J. Hybrid protein microspheres and their responsive release behaviors and inhibitory effects on melanin synthesis. Biomater Sci 2024; 12:2434-2443. [PMID: 38517309 DOI: 10.1039/d4bm00106k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
In this study, the formation of protein microspheres through lysosomal enzyme-assisted biomineralized crystallization was demonstrated. Spherical micro-sized hybrid CaCO3 constructs were synthesized and characterized using field-emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and particle size analysis. Additionally, parameters such as the Brunauer-Emmett-Teller surface area and single-point total pore volume, and adsorption/desorption analysis were used to investigate the mesoporous properties, which are advantageous for lysosomal enzyme (LE) loading. A LE can be used as an organic template, not only as a morphological controller but also for entrapping LE during the crystallization pathway. The hybrid protein microspheres accommodated 2.3 mg of LE with a 57% encapsulation efficiency and 5.1 wt% loading. The peroxidase activity of the microspheres was calculated and found to be approximately 0.0238 mM-1 min-1. pH-responsive release of the LE from CaCO3 was observed, suggesting potential biomedical and cosmetic applications in acidic environments. The hybrid LE microsphere treatment significantly alleviated melanin production in a dose-dependent manner and further downregulated the mRNA expression of MITF, tyrosinase, TYRP-1, and TYRP-2. These results indicate skin-whitening effects by inhibiting melanin without inducing cytotoxicity. The data provide the first evidence of the potential use of a LE for obtaining hybrid minerals and the effectiveness of biomineralization-based sustainable delivery of enzyme-based vehicles based on organelle-extract-assisted biomineralization.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| | - Yeahwa Yoon
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ka Ram Kim
- GeneCellPharm Corporation, Seoul, 05836, Republic of Korea
| | - Chan Hee Lee
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| | - Kyung Chan Jeon
- Division of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji Ho Min
- Division of Chemical Engineering, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae Won Lee
- Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Jangyong Kim
- Institute for Integrated Micro and Nano Systems (IMNS), The University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
5
|
Claesson PM, Wojas NA, Corkery R, Dedinaite A, Schoelkopf J, Tyrode E. The dynamic nature of natural and fatty acid modified calcite surfaces. Phys Chem Chem Phys 2024; 26:2780-2805. [PMID: 38193529 DOI: 10.1039/d3cp04432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Calcium carbonate, particularly in the form of calcite, is an abundant mineral widely used in both human-made products and biological systems. The calcite surface possesses a high surface energy, making it susceptible to the adsorption of organic contaminants. Moreover, the surface is also reactive towards a range of chemicals, including water. Consequently, studying and maintaining a clean and stable calcite surface is only possible under ultrahigh vacuum conditions and for limited amounts of time. When exposed to air or solution, the calcite surface undergoes rapid transformations, demanding a comprehensive understanding of the properties of calcite surfaces in different environments. Similarly, attention must also be directed towards the kinetics of changes, whether induced by fluctuating environments or at constant condition. All these aspects are encompassed in the expression "dynamic nature", and are of crucial importance in the context of the diverse applications of calcite. In many instances, the calcite surface is modified by adsorption of fatty acids to impart a desired nonpolar character. Although the binding between carboxylic acid groups and calcite surfaces is strong, the fatty acid layer used for surface modification undergoes significant alterations when exposed to water vapour and liquid water droplets. Therefore, it is also crucial to understand the dynamic nature of the adsorbed layer. This review article provides a comprehensive overview of the current understanding of both the dynamics of the calcite surface as well as when modified by fatty acid surface treatments.
Collapse
Affiliation(s)
- Per M Claesson
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| | - Natalia A Wojas
- RISE Research Institutes of Sweden, Division of Bioeconomy and Health - Material and Surface Design, Drottning Kristinas väg 61B, SE-114 28 Stockholm, Sweden
| | - Robert Corkery
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| | - Andra Dedinaite
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Engineering Pedagogics, SE-100 44 Stockholm, Sweden
- RISE Research Institutes of Sweden, Division Bioeconomy and Health, Department Chemical Process and Pharmaceutical Development, Box 5604, SE-114 86 Stockholm, Sweden
| | | | - Eric Tyrode
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Teknikringen 29, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
6
|
Bistervels MH, Antalicz B, Kamp M, Schoenmaker H, Noorduin WL. Light-driven nucleation, growth, and patterning of biorelevant crystals using resonant near-infrared laser heating. Nat Commun 2023; 14:6350. [PMID: 37816757 PMCID: PMC10564937 DOI: 10.1038/s41467-023-42126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
Spatiotemporal control over crystal nucleation and growth is of fundamental interest for understanding how organisms assemble high-performance biominerals, and holds relevance for manufacturing of functional materials. Many methods have been developed towards static or global control, however gaining simultaneously dynamic and local control over crystallization remains challenging. Here, we show spatiotemporal control over crystallization of retrograde (inverse) soluble compounds induced by locally heating water using near-infrared (NIR) laser light. We modulate the NIR light intensity to start, steer, and stop crystallization of calcium carbonate and laser-write with micrometer precision. Tailoring the crystallization conditions overcomes the inherently stochastic crystallization behavior and enables positioning single crystals of vaterite, calcite, and aragonite. We demonstrate straightforward extension of these principles toward other biorelevant compounds by patterning barium-, strontium-, and calcium carbonate, as well as strontium sulfate and calcium phosphate. Since many important compounds exhibit retrograde solubility behavior, NIR-induced heating may enable light-controlled crystallization with precise spatiotemporal control.
Collapse
Affiliation(s)
| | | | - Marko Kamp
- AMOLF, 1098 XG, Amsterdam, The Netherlands
| | | | - Willem L Noorduin
- AMOLF, 1098 XG, Amsterdam, The Netherlands.
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, 1090 GD, The Netherlands.
| |
Collapse
|
7
|
Lan T, Dong Y, Xu Z, Zhang Y, Jiang L, Zhou W, Sui X. Quercetin directed transformation of calcium carbonate into porous calcite and their application as delivery system for future foods. Biomaterials 2023; 301:122216. [PMID: 37413843 DOI: 10.1016/j.biomaterials.2023.122216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/21/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
The hierarchically porous property of CaCO3 has attracted considerable attention in the field of active delivery ingredients due to its high adsorption capacity. Here, a facile and high-efficient approach to control the calcification processes of CaCO3 ending with calcite microparticles with superior porosity and stability is reported and evaluated. In this work, a series of quercetin promoted CaCO3 microparticles, using soy protein isolate (SPI) as entrapment agent, was synthesized, characterized, and their digestive behavior and antibacterial activity were evaluated. Results obtained indicated that quercetin showed good ability to direct the calcification pathway of amorphous calcium carbonate (ACC) with the formation of flower- and petal-like structures. The quercetin-loaded CaCO3 microparticles (QCM) had a macro-meso-micropore structure, which was identified to be the calcite form. The macro-meso-micropore structure provided QCM with the largest surface area of 78.984 m2g-1. The loading ratio of SPI to QCM was up to 200.94 μg per mg of QCM. The protein and quercetin composite microparticles (PQM) were produced by simply dissolving the CaCO3 core, and the obtained PQM was used for the delivery of quercetin and protein. Thermogravimetric analysis showed PQM presented with good thermal stability without the CaCO3 core. Furthermore, minor discrepancy was noted in protein conformational structures after removing the CaCO3 core. In vitro digestion revealed that approximately 80% of the loaded quercetin was released from PQM during intestinal digestion, and the released quercetin exhibited efficient transportation across the Caco-2 cell monolayer. More importantly, the PQM digesta retained enhanced antibacterial activities to inhibit growth of Escherichia coli and Staphylococcus aureus. Porous calcites show a high potential as a delivery system for food applications.
Collapse
Affiliation(s)
- Tian Lan
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Boyn JN, Carter EA. Probing pH-Dependent Dehydration Dynamics of Mg and Ca Cations in Aqueous Solutions with Multi-Level Quantum Mechanics/Molecular Dynamics Simulations. J Am Chem Soc 2023; 145:20462-20472. [PMID: 37672633 DOI: 10.1021/jacs.3c06182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The dehydration of aqueous calcium and magnesium cations is the most fundamental process controlling their reactivity in chemical and biological phenomena, such as the formation of ionic solids or passing through ion channels. It holds particular relevance in light of recent advancements in the development of carbon capture techniques that rely on mineralization for long-term carbon storage. Specifically, dehydration of Ca2+ and Mg2+ is a key step in proposed carbon capture processes aiming to exploit the relatively high concentration of dissolved carbon dioxide in seawater via the formation of carbonate minerals from solvated Ca2+ and Mg2+ cations for sequestration and storage. Nevertheless, atomic-scale understanding of the dehydration of aqueous Ca2+ and Mg2+ cations remains limited. Here, we utilize rare event sampling via density functional theory molecular dynamics and embedded wavefunction theory calculations to elucidate the dehydration dynamics of aqueous Ca2+ and Mg2+. Emphasis is placed on the investigation of the effect pH has on the stability of the different coordination environments. Our results reveal significant differences in the dehydration dynamics of the two cations and provide insight into how they may be modulated by pH changes.
Collapse
Affiliation(s)
- Jan-Niklas Boyn
- Department of Mechanical and Aerospace Engineering, the Andlinger Center for Energy and the Environment, and the Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
| | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, the Andlinger Center for Energy and the Environment, and the Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
9
|
Zhang B, Zhu Y, Shi S, Li Y, Luo Y, Huang Z, Xiao W, Wang S, Zhang P, Shu Y, Chen C. Embedding Hierarchical Pores by Mechanochemistry in Carbonates with Superior Chemoselective Catalysis and Stability. Inorg Chem 2023; 62:12920-12930. [PMID: 37523448 DOI: 10.1021/acs.inorgchem.3c01648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Hierarchical porosity of carbonates can facilitate their performance in massive applications as compared to their corresponding bulk samples. Traditional solution-based precipitation is typically utilized to fabricate porous carbonates. However, this tactic is generally employed under humid conditions, which demand soluble metal precursors, solvents, and extended dry periods. A salt-assisted mechanochemistry is exploited in contemporary work to settle the shortcomings. Enlighted by solid-state technology, this approach eliminates the utilization of solvents, and the process of ball milling can create pores in 5 min. A range of highly porous carbonates and their derivatives are acquired, with several materials surpassing recording surface areas (e.g., H-CaCO3: 108 m2/g, SrCO3: 125 m2/g, BaCO3: 172 m2/g, Pd/H-CaCO3 catalyst: 101 m2/g). The results display that Pd/H-CaCO3 shows superior catalytic efficiency in the synthesis of aniline (turnover frequency [TON] = 1.33 × 104/h-1, yield ≥ 99%, and recycle stability: 11 cycles) and dye degradation. Combining mechanochemistry and salt-assisted tactic provides a facile and efficient pathway for processing porous materials.
Collapse
Affiliation(s)
- Bingzhen Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yahui Zhu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Ying Li
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yanping Luo
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Zhixin Huang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuan Shu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemical Engineering and Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
10
|
Knight BM, Edgar KJ, De Yoreo JJ, Dove PM. Chitosan as a Canvas for Studies of Macromolecular Controls on CaCO 3 Biological Crystallization. Biomacromolecules 2023; 24:1078-1102. [PMID: 36853173 DOI: 10.1021/acs.biomac.2c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A mechanistic understanding of how macromolecules, typically as an organic matrix, nucleate and grow crystals to produce functional biomineral structures remains elusive. Advances in structural biology indicate that polysaccharides (e.g., chitin) and negatively charged proteoglycans (due to carboxyl, sulfate, and phosphate groups) are ubiquitous in biocrystallization settings and play greater roles than currently recognized. This review highlights studies of CaCO3 crystallization onto chitinous materials and demonstrates that a broader understanding of macromolecular controls on mineralization has not emerged. With recent advances in biopolymer chemistry, it is now possible to prepare chitosan-based hydrogels with tailored functional group compositions. By deploying these characterized compounds in hypothesis-based studies of nucleation rate, quantitative relationships between energy barrier to crystallization, macromolecule composition, and solvent structuring can be determined. This foundational knowledge will help researchers understand composition-structure-function controls on mineralization in living systems and tune the designs of new materials for advanced applications.
Collapse
Affiliation(s)
- Brenna M Knight
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M Dove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Colon S, Paige A, Bolarinho R, Young H, Gerdon AE. Secondary Structure of DNA Aptamer Influences Biomimetic Mineralization of Calcium Carbonate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6274-6282. [PMID: 36715729 PMCID: PMC9924263 DOI: 10.1021/acsami.2c15626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Calcium materials, such as calcium carbonate, are produced in natural and industrial settings that range from oceanic to biomedical. An array of biological and biomimetic template molecules have been employed in controlling and understanding the mineralization reaction but have largely focused on small molecule additives or disordered polyelectrolytes. DNA aptamers are synthetic and programmable biomolecules with polyelectrolyte characteristics but with predictable and controllable secondary structure akin to native extracellular moieties. This work demonstrates for the first time the influence of DNA aptamers with known G-quadruplex structures on calcium carbonate mineralization. Aptamers demonstrate kinetic inhibition of mineral formation, sequence and pH-dependent uptake into the mineral, and morphological control of the primarily calcite material in controlled solution conditions. In reactions initiated from the complex matrix of ocean water, DNA aptamers demonstrated enhancement of mineralization kinetics and resulting amorphous material. This work provides new biomimetic tools to employ in controlled mineralization and demonstrates the influence that template secondary structure can have in material formation.
Collapse
Affiliation(s)
| | | | - Rylie Bolarinho
- Department of Chemistry and
Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Hailey Young
- Department of Chemistry and
Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Aren E Gerdon
- Department of Chemistry and
Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Kababya S, Ben Shir I, Schmidt A. From molecular level to macroscopic properties: A solid-state NMR biomineralization and biomimetic exploration. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
14
|
Du H, Yuan T, Zhao R, Hirsch M, Kessler M, Amstad E. Reinforcing hydrogels with in situ formed amorphous CaCO 3. Biomater Sci 2022; 10:4949-4958. [PMID: 35861615 DOI: 10.1039/d2bm00322h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels are often employed for tissue engineering and moistening applications. However, they are rarely used for load-bearing purposes because of their limited stiffness and the stiffness-toughness compromise inherent to them. By contrast, nature uses hydrogel-based materials as scaffolds for load-bearing and protecting materials by mineralizing them. Inspired by nature, the stiffness or toughness of synthetic hydrogels has been increased by forming minerals, such as CaCO3, within them. However, the degree of hydrogel reinforcement achieved with CaCO3 remains limited. To address this limitation, we form CaCO3 biominerals in situ within a model hydrogel, poly(acrylamide) (PAM), and systematically investigate the influence of the size, structure, and morphology of the reinforcing CaCO3 on the mechanical properties of the resulting hydrogels. We demonstrate that especially the structure of CaCO3 and its affinity to the hydrogel matrix strongly influence the mechanical properties of mineralized hydrogels. For example, while the fracture energy of PAM hydrogels is increased 3-fold if reinforced with individual micro-sized CaCO3 crystals, it increases by a factor of 13 if reinforced with a percolating amorphous calcium carbonate (ACC) nano-structure that forms in the presence of a sufficient quantity of Mg2+. If PAM is further functionalized with acrylic acid (AA) that possesses a high affinity towards ACC, the stiffness of the hydrogel increases by a factor 50. These fundamental insights on the structure-mechanical property relationship of hydrogels that have been functionalized with in situ formed minerals has the potential to enable tuning the mechanical properties of mineralized hydrogels over a much wider range than what is currently possible.
Collapse
Affiliation(s)
- Huachuan Du
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Tianyu Yuan
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Ran Zhao
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Matteo Hirsch
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Michael Kessler
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Nada H. Stable Binding Conformations of Polymaleic and Polyacrylic Acids at a Calcite Surface in the Presence of Countercations: A Metadynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7046-7057. [PMID: 35604639 DOI: 10.1021/acs.langmuir.2c00750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Elucidating the stable binding conformations of additives at the surface of CaCO3 crystals is essential to biomineralization, scale inhibition, and materials technology. However, accomplishing this by experimental means is rather difficult. In this study, molecular dynamics simulations based on a metadynamics approach were conducted to elucidate the stable binding conformations of a deprotonated polymaleic acid (PMA) additive and two deprotonated poly(acrylic acid) (PAA) additives with different polymerization degrees in the presence of various countercations at a hydrated calcite (104) surface. The simulated free-energy surfaces suggested the existence of several slightly different stable binding conformations for each additive. The appearance of these distinct binding conformations is speculated to originate from different balances of interactions between the additive, the calcite surface, and the countercations. The binding conformations and binding stabilities at the calcite surface were affected by the countercations, with Ca2+ ions producing a more pronounced effect than Na+ ions. Furthermore, the simulation results suggested that the binding stability at the calcite surface was higher for the PMA additive than for the PAA additives, and the PAA additive with a polymerization degree of 10 displayed a binding stability that was similar to or lower than that of the PAA additive with a polymerization degree of 5. The present simulation method provides a new strategy for analyzing the binding conformations of complex additives at material surfaces, developing additives that stably bind to these surfaces, and designing additives to control crystal growth.
Collapse
Affiliation(s)
- Hiroki Nada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
16
|
Mokkath JH. Impact of Adsorption of Straight Chain Alcohol Molecules on the Optical Properties of Calcite (10.4) Surface. NANOMATERIALS 2022; 12:nano12091460. [PMID: 35564169 PMCID: PMC9099925 DOI: 10.3390/nano12091460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/09/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023]
Abstract
Calcium carbonate plays a central role in controlling the chemistry of the oceans, biomineralization and oil production, to name a few. In this work, using density functional theory with semiempirical dispersion corrections and simplified TD-DFT using Tamm-Dancoff approximation, we investigated the impact of the adsorption of straight chain alcohol (ethanol and pentanol) molecules on the optical properties of a calcite (10.4) surface. Our results show that ethanol and/or pentanol molecules form a well-ordered monolayer (through their hydroxyl group with carbon chains sticking away in a standing-up position) on the calcite (10.4) surface. Additionally, we found intriguing modulations in the photoabsorption spectra and circular dichroism spectra. In particular, the latter was a unique optical fingerprint for a molecule-adsorbed calcite (10.4) surface. Our findings provide useful insights into the structural and optical features of calcite-based systems at the atomic level.
Collapse
Affiliation(s)
- Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, Kuwait City P.O. Box 27235, Kuwait
| |
Collapse
|
17
|
Zafar B, Campbell J, Cooke J, Skirtach AG, Volodkin D. Modification of Surfaces with Vaterite CaCO 3 Particles. MICROMACHINES 2022; 13:473. [PMID: 35334765 PMCID: PMC8954061 DOI: 10.3390/mi13030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Former studies have demonstrated a strong interest toward the crystallization of CaCO3 polymorphs in solution. Nowadays, CaCO3 crystallization on solid surfaces is extensively being studied using biomolecules as substrates for the control of the growth aiming at various applications of CaCO3. Calcium carbonate exists in an amorphous state, as three anhydrous polymorphs (aragonite, calcite and vaterite), and as two hydrated polymorphs (monohydrocalcite and ikaite). The vaterite polymorph is considered as one of the most attractive forms due to its large surface area, biocompatibility, mesoporous nature, and other features. Based on physical or chemical immobilization approaches, vaterite can be grown directly on solid surfaces using various (bio)molecules, including synthetic polymers, biomacromolecules such as proteins and peptides, carbohydrates, fibers, extracellular matrix components, and even biological cells such as bacteria. Herein, the progress on the modification of solid surfaces by vaterite CaCO3 crystals is reviewed, focusing on main findings and the mechanism of vaterite growth initiated by various substances mentioned above, as well as the discussion of the applications of such modified surfaces.
Collapse
Affiliation(s)
- Bushra Zafar
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Jake Cooke
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| | - Andre G. Skirtach
- Nanotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (B.Z.); (J.C.); (J.C.)
| |
Collapse
|
18
|
Lee JW, Hwang ET. Oral administration of tetrahydrocurcumin entrapped hybrid colloid as a food additive ameliorates atopic dermatitis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
19
|
Wang D, Kim J, Park CB. Lignin-Induced CaCO 3 Vaterite Structure for Biocatalytic Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58522-58531. [PMID: 34851105 DOI: 10.1021/acsami.1c16661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The vaterite phase of CaCO3 exhibits unique characteristics, such as high porosity, surface area, dispersivity, and low specific gravity, but it is the most unstable polymorph. Here, we report lignin-induced stable vaterite as a support matrix for integrated artificial photosynthesis through the encapsulation of key active components such as the photosensitizer (eosin y, EY) and redox enzyme (l-glutamate dehydrogenase, GDH). The lignin-vaterite/EY/GDH photobiocatalytic platform enabled the regeneration of the reduced nicotinamide cofactor under visible light and facilitated the rapid conversion of α-ketoglutarate into l-glutamate (initial conversion rate, 0.41 mM h-1; turnover frequency, 1060 h-1; and turnover number, 39,750). The lignin-induced vaterite structure allowed for long-term protection and recycling of the active components while facilitating the photosynthesis reaction due to the redox-active lignin. Succession of stability tests demonstrated a significant improvement of GDH's robustness in the lignin-vaterite structure against harsh environments. This work provides a simple approach for solar-to-chemical conversion using a sustainable, integrated light-harvesting system.
Collapse
Affiliation(s)
- Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
20
|
Ensikat HJ, Weigend M. Distribution of Biominerals and Mineral-Organic Composites in Plant Trichomes. Front Bioeng Biotechnol 2021; 9:763690. [PMID: 34869274 PMCID: PMC8640136 DOI: 10.3389/fbioe.2021.763690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Biomineralization is a common phenomenon in plants and has been shown to be chemically, functionally and topologically diverse. Silica and calcium carbonate have long been known as structural plant biominerals and calcium phosphate (apatite)–long known from animals–has recently been reported. Strikingly, up to three different biominerals may occur in a single trichome in, e.g., Urticaceae and Loasaceae, and in combination with organic compounds, can form organic/inorganic composite materials. This article presents an extension of previous studies on the distribution of these biominerals in Loasaceae trichomes with a focus on their spatial (three-dimensional) distribution and co-localization with organic substances. Light microscopy and scanning electron microscopy with high-resolution EDX element analyses of sample surfaces and sections illustrate the differential distribution and composition of the different biomineral phases across cell surfaces and cell walls. Raman spectroscopy additionally permits the identification of organic and inorganic compounds side by side. All three biominerals may be found in a nearly pure inorganic phase, e.g., on the plant surfaces and in the barbs of the glochidiate trichomes, or in combination with a larger proportion of organic compounds (cellulose, pectin). The cell lumen may be additionally filled with amorphous mineral deposits. Water-solubility of the mineral fractions differs considerably. Plant trichomes provide an exciting model system for biomineralization and enable the in-vivo study of the formation of complex composite materials with different biomineral and organic compounds involved.
Collapse
|
21
|
Tang S, Dong Z, Ke X, Luo J, Li J. Advances in biomineralization-inspired materials for hard tissue repair. Int J Oral Sci 2021; 13:42. [PMID: 34876550 PMCID: PMC8651686 DOI: 10.1038/s41368-021-00147-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, PR China.
- Med-X Center for Materials, Sichuan University, Chengdu, PR China.
| |
Collapse
|
22
|
Sovova S, Abalymov A, Pekar M, Skirtach AG, Parakhonskiy B. Calcium carbonate particles: synthesis, temperature and time influence on the size, shape, phase, and their impact on cell hydroxyapatite formation. J Mater Chem B 2021; 9:8308-8320. [PMID: 34518864 DOI: 10.1039/d1tb01072g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop materials for drug delivery and tissue engineering and to study their efficiency with respect to ossification, it is necessary to apply physicochemical and biological analyses. The major challenge is labor-intensive data mining during synthesis and the reproducibility of the obtained data. In this work, we investigated the influence of time and temperature on the reaction yield, the reaction rate, and the size, shape, and phase of the obtained product in the completely controllable synthesis of calcium carbonate. We show that calcium carbonate particles can be synthesized in large quantities, i.e., in gram quantities, which is a substantial advantage over previously reported synthesis methods. We demonstrated that the presence of vaterite particles can dramatically stimulate hydroxyapatite (HA) production by providing the continued release of the main HA component - calcium ions - depending on the following particle parameters: size, shape, and phase. To understand the key parameters influencing the efficiency of HA production by cells, we created a predictive model by means of principal component analysis. We found that smaller particles in the vaterite state are best suited for HA growth (HA growth was 8 times greater than that in the control). We also found that the reported dependence of cell adhesion on colloidal particles can be extended to other types of particles that contain calcium ions.
Collapse
Affiliation(s)
- Sarka Sovova
- Institute of Physical and Applied Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Anatolii Abalymov
- Science Medical Center, Saratov State University, Saratov 410012, Russian Federation.,Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Miloslav Pekar
- Institute of Physical and Applied Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Andre G Skirtach
- NanoBioTechnology laboratory. Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- NanoBioTechnology laboratory. Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
23
|
Zhai L, Zhang Z, Guo L, Zhu Z, Hu C, Zhang G. Synthesis, Characterization, and Properties of Rivaroxaban New Crystalline Forms. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202000243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lihai Zhai
- Lunan Pharmaceutical Group Co., Ltd. Linyi 273400 P. R. China
- National Engineering and Technology Research Centre of Chiral Pharmaceutical Linyi 273400 P. R. China
| | - Zhaohua Zhang
- Lunan Pharmaceutical Group Co., Ltd. Linyi 273400 P. R. China
| | - Lihong Guo
- Lunan Pharmaceutical Group Co., Ltd. Linyi 273400 P. R. China
- National Engineering and Technology Research Centre of Chiral Pharmaceutical Linyi 273400 P. R. China
| | - Zhiying Zhu
- Lunan Pharmaceutical Group Co., Ltd. Linyi 273400 P. R. China
| | - Changkai Hu
- Lunan Pharmaceutical Group Co., Ltd. Linyi 273400 P. R. China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd. Linyi 273400 P. R. China
- National Engineering and Technology Research Centre of Chiral Pharmaceutical Linyi 273400 P. R. China
| |
Collapse
|
24
|
Hwang ET, Joo YE, Kim KR, Jeong J. Biomineralized separation, concentration, and evaluation of the effectiveness of Schisandra chinensis fruit extract. Food Chem 2021; 360:130063. [PMID: 34029927 DOI: 10.1016/j.foodchem.2021.130063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/08/2023]
Abstract
Here, we detail the biomineralization-assisted separation and concentration of crude food extract and an evaluation of its effectiveness. Schisandra chinensis fruit extract was used as a model plant extract. Hybrid grape-like mineral was assembled by calcium carbonate mineralization. The hybrid particles of S. chinensis mineral were fully characterized using field emission scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and particle size analysis. Data including the Brunauer-Emmett-Teller surface area, single point total pore volume, and adsorption/desorption analysis of pore size were also investigated. Organic molecules, including lipids such as palmitic acid, stearic acid, and linolenic acid in the Schisandra chinensis fruit, affect the formation of complex structures involving the CaCO3 mineralization pathway by inhibiting crystallization. However, the cosmetic active primary components were entrapped in a similar proportion in the preserved extract, and were efficiently separated without additional filtering and concentration steps for purification. In addition, the hybrid mineral was enriched (10.5 times) in Gomisin N, a representative component of S. chinensis fruit, relative to its concentration in the initial extract samples. The hybrid mineral inhibited both intracellular and extracellular melanin production and increased the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. The data provide the first evidence of the potential use of fruit extract for obtaining hybrid minerals and the effectiveness of the biomineralization-based separation and concentration strategy.
Collapse
Affiliation(s)
- Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| | - Ye Eun Joo
- GeneCellPharm Corporation, Seoul 05836, Republic of Korea
| | - Ka Ram Kim
- GeneCellPharm Corporation, Seoul 05836, Republic of Korea
| | - Jinhee Jeong
- Symbiose Cosmetics, Seongnam-si, Gyeonggi-do 13555, Republic of Korea
| |
Collapse
|
25
|
Liu X, Wang Y, Ma Z, Zhou W, Wang X, Zhou H, Wang X, Wang J, Shi W. HABS‐Silicate Controlled Synthesis of Worm‐Like Calcite via Orientated Attachment. ChemistrySelect 2021. [DOI: 10.1002/slct.202003622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiangbin Liu
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
- Oil Production Engineering Research Institute of Daqing Oilfield Ltd. Daqing 163453 China
| | - Yanling Wang
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
| | - Zaiqiang Ma
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
| | - Wanfu Zhou
- Oil Production Engineering Research Institute of Daqing Oilfield Ltd. Daqing 163453 China
| | - Xin Wang
- Oil Production Engineering Research Institute of Daqing Oilfield Ltd. Daqing 163453 China
| | - Huajian Zhou
- Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education Northeast Petroleum University Daqing 163318 China
| | - Xiaofeng Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130023 China
| | - Jun Wang
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
| | - Weiguang Shi
- College of Chemistry and Chemical Engineering Northeast Petroleum University Daqing 163318 China
- Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education Northeast Petroleum University Daqing 163318 China
| |
Collapse
|
26
|
Nakamuro T, Sakakibara M, Nada H, Harano K, Nakamura E. Capturing the Moment of Emergence of Crystal Nucleus from Disorder. J Am Chem Soc 2021; 143:1763-1767. [PMID: 33475359 DOI: 10.1021/jacs.0c12100] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Crystallization is the process of atoms or molecules forming an organized solid via nucleation and growth. Being intrinsically stochastic, the research at an atomistic level has been a huge experimental challenge. We report herein in situ detection of a crystal nucleus forming during nucleation/growth of a NaCl nanocrystal, as video recorded in the interior of a vibrating conical carbon nanotube at 20-40 ms frame-1 with localization precision of <0.1 nm. We saw NaCl units assembled to form a cluster fluctuating between featureless and semiordered states, which suddenly formed a crystal. Subsequent crystal growth at 298 K and shrinkage at 473 K took place also in a stochastic manner. Productive contributions of the graphitic surface and its mechanical vibration have been experimentally indicated.
Collapse
Affiliation(s)
- Takayuki Nakamuro
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaya Sakakibara
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroki Nada
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Koji Harano
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Athanasiadou D, Carneiro KMM. DNA nanostructures as templates for biomineralization. Nat Rev Chem 2021; 5:93-108. [PMID: 37117611 DOI: 10.1038/s41570-020-00242-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 12/22/2022]
Abstract
Nature uses extracellular matrix scaffolds to organize biominerals into hierarchical structures over various length scales. This has inspired the design of biomimetic mineralization scaffolds, with DNA nanostructures being among the most promising. DNA nanotechnology makes use of molecular recognition to controllably give 1D, 2D and 3D nanostructures. The control we have over these structures makes them attractive templates for the synthesis of mineralized tissues, such as bones and teeth. In this Review, we first summarize recent work on the crystallization processes and structural features of biominerals on the nanoscale. We then describe self-assembled DNA nanostructures and come to the intersection of these two themes: recent applications of DNA templates in nanoscale biomineralization, a crucial process to regenerate mineralized tissues.
Collapse
|
28
|
Paul D, Sachan D, De S, Das G. Modulation of the CaCO 3 phase and morphology by tuning the sequence of addition: an insight into the formation of monohydrocalcite. NEW J CHEM 2021. [DOI: 10.1039/d1nj03707b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed study on the formation of monohydrocalcite as well as the modulation of the CaCO3 phase and morphology.
Collapse
Affiliation(s)
- Debojit Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Deepa Sachan
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Subhadeep De
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
29
|
The Crystallization Process of Vaterite Microdisc Mesocrystals via Proto-Vaterite Amorphous Calcium Carbonate Characterized by Cryo-X-ray Absorption Spectroscopy. CRYSTALS 2020. [DOI: 10.3390/cryst10090750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Investigation on the formation mechanism of crystals via amorphous precursors has attracted a lot of interests in the last years. The formation mechanism of thermodynamically meta-stable vaterite in pure alcohols in the absence of any additive is less known. Herein, the crystallization process of vaterite microdisc mesocrystals via proto-vaterite amorphous calcium carbonate (ACC) in isopropanol was tracked by using Ca K-edge X-ray absorption spectroscopy (XAS) characterization under cryo-condition. Ca K-edge X-ray absorption near edge structure (XANES) spectra show that the absorption edges of the Ca ions of the vaterite samples with different crystallization times shift to lower photoelectron energy while increasing the crystallization times from 0.5 to 20 d, indicating the increase of crystallinity degree of calcium carbonate. Ca K-edge extended X-ray absorption fine structure (EXAFS) spectra exhibit that the coordination number of the nearest neighbor atom O around Ca increases slowly with the increase of crystallization time and tends to be stable as 4.3 (±1.4). Crystallization time dependent XANES and EXAFS analyses indicate that short-range ordered structure in proto-vaterite ACC gradually transform to long-range ordered structure in vaterite microdisc mesocrystals via a non-classical crystallization mechanism.
Collapse
|
30
|
Stabilized Amorphous Calcium Carbonate as a Precursor of Microcoating on Calcite. MATERIALS 2020; 13:ma13173762. [PMID: 32858839 PMCID: PMC7503780 DOI: 10.3390/ma13173762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/20/2023]
Abstract
Highly controlled biomineralization of calcium carbonate is via non-classical mesocrystallization of amorphous precursors. In the present study, a simple in vitro assay was developed to mimic the biological process, which involved stabilized amorphous calcium carbonate and a single crystal substrate of calcite. The microcoating layer formed on the calcite substrate displayed mesocrystalline characteristics, and the layers near the substrate were strongly influenced by the epitaxy to the substrate. This behavior was preserved even when the morphology of the coating layer was modified with poly(acrylic acid), a model anionic macromolecule. Interestingly, the extent of the epitaxy increased substantially with poly(ethylene imine), which barely affected the crystal morphology. The in vitro assay in the present study will be useful in the investigations of the biomineralization and bioinspired crystallization of calcium carbonate in general.
Collapse
|
31
|
Ben Shir I, Kababya S, Zax DB, Schmidt A. Resilient Intracrystalline Occlusions: A Solid-State NMR View of Local Structure as It Tunes Bulk Lattice Properties. J Am Chem Soc 2020; 142:13743-13755. [PMID: 32689791 PMCID: PMC7586327 DOI: 10.1021/jacs.0c03590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 11/30/2022]
Abstract
In many marine organisms, biomineralization-the crystallization of calcium-based ionic lattices-demonstrates how regulated processes optimize for diverse functions, often via incorporation of agents from the precipitation medium. We study a model system consisting of l-aspartic acid (Asp) which when added to the precipitation solution of calcium carbonate crystallizes the thermodynamically disfavored polymorph vaterite. Though vaterite is at best only kinetically stable, that stability is tunable, as vaterite grown with Asp at high concentration is both thermally and temporally stable, while vaterite grown at 10-fold lower Asp concentration, yet 2-fold less in the crystal, spontaneously transforms to calcite. Solid-state NMR shows that Asp is sparsely occluded within vaterite and calcite. CP-REDOR NMR reveals that each Asp is embedded in a perturbed occlusion shell of ∼8 disordered carbonates which bridge to the bulk. In both the as-deposited vaterites and the evolved calcite, the perturbed shell contains two sets of carbonate species distinguished by their proximity to the amine and identifiable based on 13C chemical shifts. The embedding shell and the occluded Asp act as an integral until which minimally rearranges even as the bulk undergoes extensive reorganization. The resilience of these occlusion units suggests that large Asp-free domains drive the vaterite to calcite transformation-which are retarded by the occlusion units, resulting in concentration-dependent lattice stability. Understanding the structure and properties of the occlusion unit, uniquely amenable to ssNMR, thus appears to be a key to explaining other macroscopic properties, such as hardness.
Collapse
Affiliation(s)
- Ira Ben Shir
- Schulich
Faculty of Chemistry and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Shifi Kababya
- Schulich
Faculty of Chemistry and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - David B. Zax
- Department
of Chemistry & Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Asher Schmidt
- Schulich
Faculty of Chemistry and Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel
| |
Collapse
|
32
|
Chemical evidence of rare porphyrins in purple shells of Crassostrea gigas oyster. Sci Rep 2020; 10:12150. [PMID: 32699240 PMCID: PMC7376061 DOI: 10.1038/s41598-020-69133-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The colour of oyster shells is a very diverse characteristic morphotype, forming intriguing vivid patterns both on the inside and outside of the shell. In the present study, we have identified for the first time, the presence of several porphyrins as constituents of the shell pigmentation of the Crassostrea gigas oyster consumed worldwide. The precise molecular structures of halochromic, fluorescent and acid-soluble porphyrins, such as uroporphyrin and turacin, are unambiguously determined by reverse phase liquid chromatography combined with high resolution mass spectrometry. Their presence account for the purple colouration of shells but also for the dark colouration of adductor muscle scars. We have also defined the endogenous origin of these porphyrins, specifically secreted or accumulated by the shell forming tissue. These findings are pioneering analytical proofs of the existence of the haem pathway in the edible oyster Crassostrea gigas, evidenced by the chemical identification of haem side-products and supported by the recent publication of the corresponding oyster genome.
Collapse
|
33
|
Taylor JM, Konda A, Morin SA. Spatiotemporal control of calcium carbonate nucleation using mechanical deformations of elastic surfaces. SOFT MATTER 2020; 16:6038-6043. [PMID: 32568337 DOI: 10.1039/d0sm00734j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological systems generate crystalline materials with properties and morphologies that cannot be duplicated using synthetic procedures. Developing strategies that mimic the control mechanisms found in nature would enhance the range of functional materials available for numerous technological applications. Herein, a biomimetic approach based on the mechano-dynamic chemistry of silicone surfaces was used to control the rate of heterogeneous CaCO3 nucleation. Specifically, stretching the silicone surface redistributed functional groups, tuning interfacial energy and thus the rate of CaCO3 crystal formation, as predicted by classical nucleation rate laws. We extended this procedure using microrelief patterns to program surface strain fields to spatially control the location of nucleation. The strategies presented herein represent a fundamental departure from traditional bottom-up crystal engineering, where surfaces are chemically static, to them being active participants in the nucleation process controlling the outcome both spatially and temporally.
Collapse
Affiliation(s)
- Jay M Taylor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Abhiteja Konda
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Stephen A Morin
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA. and Nebraska Centre for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
34
|
Huang YH, Garcia-Segura S, de Luna MDG, Sioson AS, Lu MC. Beyond carbon capture towards resource recovery and utilization: fluidized-bed homogeneous granulation of calcium carbonate from captured CO 2. CHEMOSPHERE 2020; 250:126325. [PMID: 32234625 DOI: 10.1016/j.chemosphere.2020.126325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/15/2020] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
Atmospheric carbon dioxide (CO2) imbalance due to anthropogenic emissions has direct impact in climate change. Recent advancements in the mitigation of industrial CO2 emissions have been brought about by a paradigm shift from mere CO2 capture onto various adsorbents to CO2 conversion into high value products. The present study proposes a system which involves the conversion of CO2 into high purity, low moisture, compact and large CaCO3 solids through homogeneous granulation in a fluidized-bed reactor (FBR). In the present study, synthetic solutions of potassium carbonate (K2CO3) and calcium hydroxide (Ca(OH)2) were used as sources of carbonate and precipitant, respectively. The effects of the degree of supersaturation (S) as chemical loading and influx flow rate (QT) as hydraulic loading on CaCO3 granulation efficiency were investigated. In the study, S was varied from 10.2 to 10.8 and QT from 40 to 80 mL min-1 while the operating pH and calcium-is-to-carbonate molar ratio ([Ca2+]/[CO32-]) were set at 10 ± 0.2 and 1.50, respectively. Results showed that carbonate ions end product distribution had a highest carbonate granulation efficiency at [Carbonate]G of 95-96% using S of 10.6 and QT of 60 mL min-1. Characterization of the granules confirmed high purity calcium carbonate. Overall, the transformation of industrial CO2 emissions into a valuable solid product can be a significant move towards the mitigation of climate change from anthropogenic emissions.
Collapse
Affiliation(s)
- Yao-Hui Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan, ROC
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, United States
| | - Mark Daniel G de Luna
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines; Department of Chemical Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines.
| | - Arianne S Sioson
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Ming-Chun Lu
- Department of Environmental Resources Management, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan, ROC.
| |
Collapse
|
35
|
Xie Y, Khishvand M, Piri M. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6079-6088. [PMID: 32388994 DOI: 10.1021/acs.langmuir.0c00367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The interactions among the polar components of oil, aqueous phase ions, and carbonate minerals, as well as their subsequent effects on surface wettability, can significantly impact the fluid distribution and recovery in a hydrocarbon reservoir. In this study, we investigate the adsorption/desorption of molecules from oils with different levels of polarity on calcite surfaces during different displacement processes under elevated pressure and temperature conditions. We measured dynamic contact angles (CA) on untreated and aged calcite substrates using brines with different salinities and compositions and model oils, that is, mixtures of varying concentrations of stearic acid (SA) and n-decane. In particular, the impacts of the concentrations of Ca2+, SO42-, and OH- ions on the adsorption phenomena were explored. For the nonpolar oil, increasing brine salinity or removing Ca2+ ions from the aqueous phase impacted the potentials of oil-brine and brine-mineral interfaces and shifted the wettability of calcite surface toward more water-wet conditions. In the presence of polar oil, the adsorption of the polar components controls the surface wettability. Higher concentrations of Ca2+/SO42- could facilitate/obstruct the polar component adsorption and thus increase/decrease the dynamic oil-water CAs. It is also observed that the brine salinity does not impact the wettability if excess SA is added to the oil phase, that is, if the oil phase is strongly polar. Moreover, the adsorption of SA on the calcite surface under experimental conditions is found to be reversible during the displacement events. The surface energy calculation for the adsorption process indicates that the surface coverage of calcite by SA is more sensitive to the presence of Ca2+ in brine than the concentration of polar components in oil. We also conducted several experiments on calcite substrates aged with SA. The measurements demonstrate that the adsorbed SA molecules are detached when the aged mineral surface is exposed to a lower-salinity brine at high temperatures, and the SA molecules could be adsorbed back on the surface once the displacement is halted.
Collapse
Affiliation(s)
- Yun Xie
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mahdi Khishvand
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mohammad Piri
- Center of Innovation for Flow through Porous Media, Department of Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
36
|
Oriols N, Salvadó N, Pradell T, Butí S. Amorphous calcium carbonate (ACC) in fresco mural paintings. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
38
|
Hong Y, Yufit DS, Letzelter N, Steed JW. Calcium cyclic carboxylates as structural models for calcium carbonate scale inhibitors. CrystEngComm 2020. [DOI: 10.1039/d0ce00243g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium complexes of cyclic oligocarboxylic acids have been studied as models to understand how subtle changes in molecular structure lead to significant variation in inhibition ability for calcium carbonate deposition
Collapse
Affiliation(s)
- Yuexian Hong
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | | | | | |
Collapse
|
39
|
Trautnitz MFK, Haas T, Schubert H, Seitz M. Unexpected discovery of calcium cryptates with exceptional stability. Chem Commun (Camb) 2020; 56:9874-9877. [DOI: 10.1039/d0cc04050a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2,2′-bipyridine-N,N′-dioxide-based cryptand has been found to exhibit exceptional apparent complex stability for Ca2+and unusually shows very high selectivity for Ca2+over trivalent lanthanoid cations.
Collapse
Affiliation(s)
- Markus F. K. Trautnitz
- Institute of Inorganic Chemistry
- University of Tübingen
- Auf der Morgenstelle 18
- 72076 Tübingen
- Germany
| | - Tobias Haas
- Institute of Inorganic Chemistry
- University of Tübingen
- Auf der Morgenstelle 18
- 72076 Tübingen
- Germany
| | - Hartmut Schubert
- Institute of Inorganic Chemistry
- University of Tübingen
- Auf der Morgenstelle 18
- 72076 Tübingen
- Germany
| | - Michael Seitz
- Institute of Inorganic Chemistry
- University of Tübingen
- Auf der Morgenstelle 18
- 72076 Tübingen
- Germany
| |
Collapse
|
40
|
Dong W, Liu R, Zhao H, Han X. Preparation and characterization of anhydrous magnesium carbonate under the present of potassium ions solution. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Nam S, Park Y, Hillyer MB, Hron RJ, Ernst N, Chang S, Condon BD, Hinchliffe DJ, Ford E, Gibb BC. Thermal properties and surface chemistry of cotton varieties mineralized with calcium carbonate polymorphs by cyclic dipping. RSC Adv 2020; 10:35214-35225. [PMID: 35515648 PMCID: PMC9056833 DOI: 10.1039/d0ra06265k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, hydroentangled cotton nonwovens were identified as effective hosts for mineralization of calcium carbonate (CaCO3) polymorphs to modify and improve their properties. All cotton varieties studied, including raw white cotton, scoured white cotton, and raw brown cotton, readily crystallized CaCO3via a simple cyclic dipping process. A combination of analyses agreed that the surface chemistry of cotton fibers influenced the formation of different CaCO3 polymorphs. Scoured white cotton that consisted of almost pure cellulose predominantly produced the most stable calcite, whereas raw white and raw brown cottons that contain proteins facilitated the production of partial metastable vaterite. The morphology of calcite was better defined on the scoured cotton. The mineralization altered the hydrophobic surface of raw cottons to be hydrophilic, i.e., two-fold increase in moisture regain and decrease in water contact angle from 130 to 0 degrees. The mineralized cottons also exhibited improved thermal resistance, i.e., slower thermal decomposition with decreased activation energies and reduction in heat release capacity by up to 40%. Hydroentangled nonwovens of raw white cotton fiber, scoured white cotton fiber, and raw brown cotton fiber are effective hosts for mineralization of calcium carbonate polymorphs to modify and improve their thermal and surface properties.![]()
Collapse
|
42
|
Nakao Y, Sugimura K, Nishio Y. CaCO3 mineralization in polymer composites with cellulose nanocrystals providing a chiral nematic mesomorphic structure. Int J Biol Macromol 2019; 141:783-791. [DOI: 10.1016/j.ijbiomac.2019.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
|
43
|
Affiliation(s)
- Huachuan Du
- Soft Materials LaboratoryInstitute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Schweiz
| | - Esther Amstad
- Soft Materials LaboratoryInstitute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Schweiz
| |
Collapse
|
44
|
Du H, Amstad E. Water: How Does It Influence the CaCO 3 Formation? Angew Chem Int Ed Engl 2019; 59:1798-1816. [PMID: 31081984 DOI: 10.1002/anie.201903662] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/11/2022]
Abstract
Nature produces biomineral-based materials with a fascinating set of properties using only a limited number of elements. This set of properties is obtained by closely controlling the structure and local composition of the biominerals. We are far from achieving the same degree of control over the properties of synthetic biomineral-based composites. One reason for this inferior control is our incomplete understanding of the influence of the synthesis conditions and additives on the structure and composition of the forming biominerals. In this Review, we provide an overview of the current understanding of the influence of synthesis conditions and additives during different formation stages of CaCO3 , one of the most abundant biominerals, on the structure, composition, and properties of the resulting CaCO3 crystals. In addition, we summarize currently known means to tune these parameters. Throughout the Review, we put special emphasis on the role of water in mediating the formation of CaCO3 and thereby influencing its structure and properties, an often overlooked aspect that is of high relevance.
Collapse
Affiliation(s)
- Huachuan Du
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
45
|
Correa-Paz C, Navarro Poupard MF, Polo E, Rodríguez-Pérez M, Taboada P, Iglesias-Rey R, Hervella P, Sobrino T, Vivien D, Castillo J, del Pino P, Campos F, Pelaz B. In vivo ultrasound-activated delivery of recombinant tissue plasminogen activator from the cavity of sub-micrometric capsules. J Control Release 2019; 308:162-171. [DOI: 10.1016/j.jconrel.2019.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
|
46
|
Nada H, Kobayashi M, Kakihana M. Anisotropy in Stable Conformations of Hydroxylate Ions between the {001} and {110} Planes of TiO 2 Rutile Crystals for Glycolate, Lactate, and 2-Hydroxybutyrate Ions Studied by Metadynamics Method. ACS OMEGA 2019; 4:11014-11024. [PMID: 31460199 PMCID: PMC6648721 DOI: 10.1021/acsomega.9b01100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Control over TiO2 rutile crystal growth and morphology using additives is essential for the development of functional materials. Computer simulation studies on the thermodynamically stable conformations of additives at the surfaces of rutile crystals contribute to understanding the mechanisms underlying this control. In this study, a metadynamics method was combined with molecular dynamics simulations to investigate the thermodynamically stable conformations of glycolate, lactate, and 2-hydroxybutyrate ions at the {001} and {110} planes of rutile crystals. Two simple atom-atom distances were selected as collective variables for the metadynamics method. At the {001} plane, a conformation in which the COO- group was oriented toward the surface was found to be the most stable for the lactate and 2-hydroxybutyrate ions, whereas a conformation in which the COO- group was oriented toward water was the most stable for the glycolate ion. At the {110} plane, a conformation in which the COO- group was oriented toward the surface was the most stable for all three hydroxylate ions, and a second most stable conformation was also observed for the lactate ion at positions close to the {110} plane. For all three hydroxylate ions (α-hydroxycarboxylate ions), the stability of the most stable conformation was higher for the {110} plane than for the {001} plane. At both planes, the stability of the most stable conformation was highest for the 2-hydroxybutyrate ion and lowest for the glycolate ion. Supposing that all three hydroxylate ions serve to decrease the surface free energy at the rutile surface and that a more stable conformation at the rutile surface leads to a greater decrease in the surface free energy, the present results partially explain experimentally observed differences in the changes in growth rate and morphology of rutile crystals in the presence of glycolic, lactic, and 2-hydroxybutyric acids.
Collapse
Affiliation(s)
- Hiroki Nada
- National
Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Makoto Kobayashi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Masato Kakihana
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
47
|
Shlaferman J, Paige A, Meserve K, Miech JA, Gerdon AE. Selected DNA Aptamers Influence Kinetics and Morphology in Calcium Phosphate Mineralization. ACS Biomater Sci Eng 2019; 5:3228-3236. [DOI: 10.1021/acsbiomaterials.9b00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacob Shlaferman
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Alexander Paige
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Krista Meserve
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Jason A. Miech
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| | - Aren E. Gerdon
- Department of Chemistry and Physics, Emmanuel College, 400 The Fenway, Boston, Massachusetts 02115, United States
| |
Collapse
|
48
|
Abstract
Calcium carbonate biomimetic crystallization remains a topic of interest with respect to biomineralization areas in recent research. It is not easy to conduct high-throughput experiments with only a few macromolecule reagents using conventional experimental methods. However, the emergence of microdroplet array technology provides the possibility to solve these issues efficiently. In this article, surface-tension-confined droplet arrays were used to fabricate calcium carbonate. It was found that calcium carbonate crystallization can be conducted in surface-tension-confined droplets. Defects were found on the surface of some crystals, which were caused by liquid flow inside the droplet and the rapid drop in droplet height during the evaporation. The diameter and number of crystals were related to the droplet diameter. Polyacrylic acid (PAA), added as a modified organic molecule control, changed the CaCO3 morphology from calcite to vaterite. The material products of the above experiments were compared with bulk-synthesized calcium carbonate by scanning electron microscopy (SEM), Raman spectroscopy and other characterization methods. Our work proves the possibility of performing biomimetic crystallization and biomineralization experiments on surface-tension-confined microdroplet arrays.
Collapse
|
49
|
Saveleva MS, Eftekhari K, Abalymov A, Douglas TEL, Volodkin D, Parakhonskiy BV, Skirtach AG. Hierarchy of Hybrid Materials-The Place of Inorganics- in-Organics in it, Their Composition and Applications. Front Chem 2019; 7:179. [PMID: 31019908 PMCID: PMC6459030 DOI: 10.3389/fchem.2019.00179] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid materials, or hybrids incorporating both organic and inorganic constituents, are emerging as a very potent and promising class of materials due to the diverse, but complementary nature of the properties inherent of these different classes of materials. The complementarity leads to a perfect synergy of properties of desired material and eventually an end-product. The diversity of resultant properties and materials used in the construction of hybrids, leads to a very broad range of application areas generated by engaging very different research communities. We provide here a general classification of hybrid materials, wherein organics-in-inorganics (inorganic materials modified by organic moieties) are distinguished from inorganics-in-organics (organic materials or matrices modified by inorganic constituents). In the former area, the surface functionalization of colloids is distinguished as a stand-alone sub-area. The latter area-functionalization of organic materials by inorganic additives-is the focus of the current review. Inorganic constituents, often in the form of small particles or structures, are made of minerals, clays, semiconductors, metals, carbons, and ceramics. They are shown to be incorporated into organic matrices, which can be distinguished as two classes: chemical and biological. Chemical organic matrices include coatings, vehicles and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes, block co-polymers and other assemblies. Biological organic matrices encompass bio-molecules (lipids, polysaccharides, proteins and enzymes, and nucleic acids) as well as higher level organisms: cells, bacteria, and microorganisms. In addition to providing details of the above classification and analysis of the composition of hybrids, we also highlight some antagonistic yin-&-yang properties of organic and inorganic materials, review applications and provide an outlook to emerging trends.
Collapse
Affiliation(s)
- Mariia S. Saveleva
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Karaneh Eftekhari
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anatolii Abalymov
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Timothy E. L. Douglas
- Engineering Department and Materials Science Institute (MSI), Lancaster University, Lancaster, United Kingdom
| | - Dmitry Volodkin
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
50
|
Wang B, Mao LB, Li M, Chen Y, Liu MF, Xiao C, Jiang Y, Wang S, Yu SH, Liu XY, Cölfen H. Synergistic Effect of Granular Seed Substrates and Soluble Additives in Structural Control of Prismatic CaCO 3 Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11126-11138. [PMID: 30138560 DOI: 10.1021/acs.langmuir.8b02072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In biomineralization and bioinspired mineralization, substrates and additives function synergistically in providing structural control of the mineralized layers including their orientation, polymorph, morphology, hierarchical architecture, etc. Herein, a novel type of granular aragonitic CaCO3-poly(acrylic acid) substrate guides the mineralization of prismatic CaCO3 thin films of distinct morphology and polymorph in the presence of different additives including organic compounds and polymers. For instance, weakly charged amino acids lead to columnar aragonite overlayers, while their charged counterparts and organic acids/bases inhibit the overgrowth. Employment of several specific soluble polymer additives in overgrowth instead results in calcitic overlayers with distinct hierarchical architecture, good hardness/Young's modulus, and under-water superoleophobicity. Interestingly, self-organized patterns in the CaCO3-poly(l-glutamic acid) overlayer are obtained under proper mineralization conditions. We demonstrate that the granular seed comprised of mineralized and polymeric constituents is a versatile platform for obtaining prismatic CaCO3 thin films, where structural control can be realized by the employment of different types of additives in overgrowth. We expect the methodology to be applied to a broad spectrum of bioinspired, prismatic-type crystalline products, aiming for the development of high-performance hybrids.
Collapse
Affiliation(s)
- Bingjun Wang
- College of Materials, Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research , Xiamen University , Xiamen 361005 , China
| | - Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Ming Li
- College of Materials, Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research , Xiamen University , Xiamen 361005 , China
| | - Yupeng Chen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ming-Feng Liu
- College of Materials, Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research , Xiamen University , Xiamen 361005 , China
| | - Chuanlian Xiao
- College of Materials, Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research , Xiamen University , Xiamen 361005 , China
| | - Yuan Jiang
- College of Materials, Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research , Xiamen University , Xiamen 361005 , China
| | - Shutao Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Xiang Yang Liu
- College of Materials, Research Institute for Soft Matter and Biomimetics, Fujian Provincial Key Laboratory for Soft Functional Materials Research , Xiamen University , Xiamen 361005 , China
- Department of Physics, Faculty of Science , National University of Singapore , Singapore 117542 , Singapore
| | - Helmut Cölfen
- Physical Chemistry , University of Konstanz , Konstanz 78457 , Germany
| |
Collapse
|