1
|
Bocková J, Jones NC, Hoffmann SV, Meinert C. The astrochemical evolutionary traits of phospholipid membrane homochirality. Nat Rev Chem 2024; 8:652-664. [PMID: 39025922 DOI: 10.1038/s41570-024-00627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles - likely ancestors of membrane phospholipids - in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology.
Collapse
Affiliation(s)
- Jana Bocková
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Cornelia Meinert
- Institut de Chimie de Nice, CNRS UMR 7272, Université Côte d'Azur, Nice, France.
| |
Collapse
|
2
|
Lee J, Abdiha E, Sartakov BG, Meijer G, Eibenberger-Arias S. Near-complete chiral selection in rotational quantum states. Nat Commun 2024; 15:7441. [PMID: 39198398 PMCID: PMC11358380 DOI: 10.1038/s41467-024-51360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Controlling the internal quantum states of chiral molecules for a selected enantiomer has a wide range of fundamental applications from collision and reaction studies, quantum information to precision spectroscopy. Achieving full enantiomer-specific state transfer is a key requirement for such applications. Using tailored microwave fields, a chosen rotational state can be enriched for a selected enantiomer, even starting from a racemic mixture. This enables rapid switching between samples of different enantiomers in a given state, holding great promise, for instance, for measuring parity violation in chiral molecules. Although perfect state-specific enantiomeric enrichment is theoretically feasible, achieving the required experimental conditions seemed unrealistic. Here, we realize near-ideal conditions, overcoming both the limitations of thermal population and spatial degeneracy in rotational states. We achieve over 92% enantiomer-specific state transfer efficiency using enantiopure samples. This indicates that 96% state-specific enantiomeric purity can be obtained from a racemic mixture, in an approach that is universally applicable to all chiral molecules of C1 symmetry. Our work integrates the control over internal quantum states with molecular chirality, thus expanding the field of state-selective molecular beams studies to include chiral research.
Collapse
Affiliation(s)
- JuHyeon Lee
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | - Elahe Abdiha
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | - Boris G Sartakov
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, 14195, Germany
| | | |
Collapse
|
3
|
Sahoo D, Peterca M, Leowanawat P, Percec V. Cogwheel Mechanism of Helical Self-Organization is Thermodynamically Controlled, Self-Repairing, and Universal. J Am Chem Soc 2024; 146:18910-18915. [PMID: 38973781 DOI: 10.1021/jacs.4c07428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The cogwheel mechanism of helical self-organization, reported by us, generates columns with the alkyl chains of their components parallel to the column axis. This mechanism disregards the enantiomeric purity of constituents and, under suitable design, provides the fastest rate of helical self-organization. Here, we investigate the supramolecular structure of a thermodynamically controlled helical self-organization system. Unexpectedly, we found that this system follows a cogwheel mechanism of helical self-organization that does not contain the two key parameters of the cogwheel mechanism: the length of the alkyl group of the self-assembling dendron identical to the helical half-pitch (hhp) of the column and the presence of chiral branches pointing toward the column center. Unpredictably, we uncovered that the presence of chiral branching points and strict alkyl chain lengths is not a requirement of the cogwheel mechanism. A self-repairing process provides access to a constant hhp via a shorter and longer alkyl chain length than the originally exact demanded value, which together with the lack of branching point(s) demonstrates the universality of the cogwheel mechanism of helical self-organization. Applications derived from this concept are envisioned.
Collapse
Affiliation(s)
- Dipankar Sahoo
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Mihai Peterca
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Pawaret Leowanawat
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
4
|
Matsumoto A, Tateishi D, Nakajima T, Kurosaki S, Ogawa T, Kawasaki T, Soai K. Achiral 2-pyridone and 4-aminopyridine act as chiral inducers of asymmetric autocatalysis with amplification of enantiomeric excess via the formation of chiral crystals. Chirality 2024; 36:e23617. [PMID: 37621025 DOI: 10.1002/chir.23617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Enantiomorphous crystals of achiral 2-pyridone and 4-aminopyridine served as sources of chirality, to induce the asymmetric autocatalysis of 5-pyrimidyl alkanol during the asymmetric addition of diisopropylzinc to the corresponding pyrimidine-5-carbaldehyde, that is, the Soai reaction. Following a significant amplification of enantiomeric excess through asymmetric autocatalysis, highly enantioenriched 5-pyrimidyl alkanol could be synthesized with their corresponding absolute configurations to those of chiral crystals of 2-pyridone and 4-aminopyridine.
Collapse
Affiliation(s)
- Arimasa Matsumoto
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Nara, Japan
| | - Daisuke Tateishi
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Tsuyoshi Nakajima
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Shiori Kurosaki
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Ogawa
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
| | - Kenso Soai
- Department of Applied Chemistry, Tokyo University of Science, Tokyo, Japan
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
5
|
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life (Basel) 2023; 13:2281. [PMID: 38137883 PMCID: PMC10744825 DOI: 10.3390/life13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Would another origin of life resemble Earth's biochemical use of amino acids? Here, we review current knowledge at three levels: (1) Could other classes of chemical structure serve as building blocks for biopolymer structure and catalysis? Amino acids now seem both readily available to, and a plausible chemical attractor for, life as we do not know it. Amino acids thus remain important and tractable targets for astrobiological research. (2) If amino acids are used, would we expect the same L-alpha-structural subclass used by life? Despite numerous ideas, it is not clear why life favors L-enantiomers. It seems clearer, however, why life on Earth uses the shortest possible (alpha-) amino acid backbone, and why each carries only one side chain. However, assertions that other backbones are physicochemically impossible have relaxed into arguments that they are disadvantageous. (3) Would we expect a similar set of side chains to those within the genetic code? Many plausible alternatives exist. Furthermore, evidence exists for both evolutionary advantage and physicochemical constraint as explanatory factors for those encoded by life. Overall, as focus shifts from amino acids as a chemical class to specific side chains used by post-LUCA biology, the probable role of physicochemical constraint diminishes relative to that of biological evolution. Exciting opportunities now present themselves for laboratory work and computing to explore how changing the amino acid alphabet alters the universe of protein folds. Near-term milestones include: (a) expanding evidence about amino acids as attractors within chemical evolution; (b) extending characterization of other backbones relative to biological proteins; and (c) merging computing and laboratory explorations of structures and functions unlocked by xeno peptides.
Collapse
|
6
|
Ozturk SF, Bhowmick DK, Kapon Y, Sang Y, Kumar A, Paltiel Y, Naaman R, Sasselov DD. Chirality-induced avalanche magnetization of magnetite by an RNA precursor. Nat Commun 2023; 14:6351. [PMID: 37816811 PMCID: PMC10564924 DOI: 10.1038/s41467-023-42130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023] Open
Abstract
Homochirality is a hallmark of life on Earth. To achieve and maintain homochirality within a prebiotic network, the presence of an environmental factor acting as a chiral agent and providing a persistent chiral bias to prebiotic chemistry is highly advantageous. Magnetized surfaces are prebiotically plausible chiral agents due to the chiral-induced spin selectivity (CISS) effect, and they were utilized to attain homochiral ribose-aminooxazoline (RAO), an RNA precursor. However, natural magnetic minerals are typically weakly magnetized, necessitating mechanisms to enhance their magnetization for their use as effective chiral agents. Here, we report the magnetization of magnetic surfaces by crystallizing enantiopure RAO, whereby chiral molecules induce a uniform surface magnetization due to the CISS effect, which spreads across the magnetic surface akin to an avalanche. Chirality-induced avalanche magnetization enables a feedback between chiral molecules and magnetic surfaces, which can amplify a weak magnetization and allow for highly efficient spin-selective processes on magnetic minerals.
Collapse
Affiliation(s)
- S Furkan Ozturk
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| | - Deb Kumar Bhowmick
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, 76100, Israel
| | - Yael Kapon
- Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yutao Sang
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, 76100, Israel
| | - Anil Kumar
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, 76100, Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ron Naaman
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, 76100, Israel
| | | |
Collapse
|
7
|
Martín O, Leyva Y, Suárez-Lezcano J, Pérez-Castillo Y, Marrero-Ponce Y. Inducing Homochirality Through Intermediary Catalytic Species: A Stochastic Approach. ASTROBIOLOGY 2023; 23:1083-1089. [PMID: 37651215 DOI: 10.1089/ast.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A new chiral amplification mechanism based on a stochastic approach is proposed. The mechanism includes five different chemical species, an achiral substrate (A), two chiral forms (L, D), and two intermediary species (LA, DA). The process occurs within a small, semipermeable compartment that can be diffusively coupled with the outside environment. The study considers two alternative primary sources for chiral species within the compartment, one chemical and the other diffusive. As a remarkable fact, the chiral amplification process occurs due to stochastic fluctuations of an intermediary catalytic species (LA, DA) produced in situ, given the interaction of the chiral species with the achiral substrate. The net process includes two different steps: the synthesis of the catalyst (LA and DA) and the catalytic production of new chiral species from the substrate. Stochastic simulations show that proper parameterization can induce a robust chiral state within the compartment regardless of whether the system is open or closed. We also show how an increase in the non-catalytic production of chiral species tends to negatively impact the homochirality degree of the system. By its conception, the proposed mechanism suggests a deeper connection with how most biochemical processes occur in living beings, a fact that could open new avenues for studying this fascinating phenomenon.
Collapse
Affiliation(s)
- Osmel Martín
- Laboratorio de Ciencia Planetaria. Universidad Central "Marta Abreu" de las Villas, Santa Clara, Cuba
| | - Yoelsy Leyva
- Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - José Suárez-Lezcano
- Escuela de Enfermería, Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador
| | - Yunierkis Pérez-Castillo
- Bio-Cheminformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, Ecuador
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Ecuador
- Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, México
| |
Collapse
|
8
|
Gao J, Li H, Sun Z, Song J, Liu Y, Jin C, Zhang Z, Ma JA, Jiang W. Selective Chiral Recognition between Amino Acids and Growing Gypsum Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12707-12714. [PMID: 37653708 DOI: 10.1021/acs.langmuir.3c01429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In nature, selective chiral interactions between biomolecules and minerals provide insight into the mysterious origin of homochirality. Here, we show growing gypsum crystals in a nonequilibrium state can recognize chiral enantiomers of amino acids. The chiral selection for amino acids with different functional groups by growing minerals are distinct. For 11 amino acids, the d-isomer slows dynamic gypsum growth more than the l-isomer, whereas for another 7 amino acids, the opposite was observed. These differences in chiral recognition are attributed to the different stereochemical matching between the chiral amino acids and the dynamic steps of growing gypsum. These stereoselective interactions between amino acid enantiomers and dynamic growing crystals can be applied toward the fabrication of gypsum cements to regulate their structure and mechanical properties. These findings provide insight into understanding the mechanism of the origin of homochirality in nature and suggest a pathway for constructing advanced functional materials.
Collapse
Affiliation(s)
- Jing Gao
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Haibin Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Resource Chemistry and Eco-Environmental Protection in Tibetan Plateau of State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, Qinghai 810007, People's Republic of China
| | - Zhiheng Sun
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianwei Song
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yue Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhisen Zhang
- Department of Physics, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenge Jiang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
9
|
Wada K, Yasuzawa K, Fa S, Nagata Y, Kato K, Ohtani S, Ogoshi T. Diastereoselective Rotaxane Synthesis with Pillar[5]arenes via Co-crystallization and Solid-State Mechanochemical Processes. J Am Chem Soc 2023. [PMID: 37411034 DOI: 10.1021/jacs.3c02919] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Chiral rotaxanes have attracted much attention in recent decades for their unique chirality based on their interlocked structures. Thus, selective synthesis methods of chiral rotaxanes have been developed. The introduction of substituents with chiral centers to produce diastereomers is a powerful strategy for the construction of chiral rotaxanes. However, in case of a small energy difference between the diastereomers, diastereoselective synthesis is extremely difficult. Herein, we report a new diastereoselective rotaxane synthesis method using solid-phase diastereoselective [3]pseudorotaxane formation and mechanochemical solid-phase end-capping reactions of the [3]pseudorotaxanes. By co-crystallization of stereodynamic planar chiral pillar[5]arene with stereogenic carbons at both rims and axles with suitable end groups and lengths, the [3]pseudorotaxane with a high diastereomeric excess (ca. 92% de) was generated in the solid state because of higher effective molarity with aid by packing effects and significant energy differences between [3]pseudorotaxane diastereomers. In contrast, the de of the pillar[5]arene was low in solution (ca. 10% de) because of a small energy difference between diastereomers. Subsequent end-capping reactions of the polycrystalline [3]pseudorotaxane with high de in solvent-free conditions successfully yielded rotaxanes while maintaining the high de generated by the co-crystallization.
Collapse
Affiliation(s)
- Keisuke Wada
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kiichi Yasuzawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
10
|
Kelly CT, Jordan R, Felton S, Müller‐Bunz H, Morgan GG. Spontaneous Chiral Resolution of a Mn III Spin-Crossover Complex with High Temperature 80 K Hysteresis. Chemistry 2023; 29:e202300275. [PMID: 37037023 PMCID: PMC10946779 DOI: 10.1002/chem.202300275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Non-centrosymmetric spin-switchable systems are of interest for their prospective applications as magnetically active non-linear optical materials and in multiferroic devices. Chiral resolution of simple spin-crossover chelate complexes into the Δ and Λ forms offers a facile route to homochiral magnetic switches, which could be easily enantiomerically enriched. Here, we report the spontaneous resolution of a new hysteretic spin-crossover complex, [MnIII (sal2 323)]SCN ⋅ EtOH (1), into Δ and Λ forms, without the use of chiral reagents, where sal2 323 is a Schiff base resulting from condensation of 1,2-bis(3-aminopropylamino)ethane with 2-hydroxybenzaldehyde. The enantiopurity of the Δ and Λ isomers was confirmed by single crystal X-ray diffraction and circular dichroism. Quantum chemistry calculations were used to investigate the electronic structure. The opening of a wide 80 K thermal hysteresis window at high temperature highlights the potential for good magneto-optical function at ambient temperature for materials of this type.
Collapse
Affiliation(s)
- Conor T. Kelly
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| | - Ross Jordan
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastBelfastBT7 1NNUK
| | - Solveig Felton
- Centre for Quantum Materials and TechnologiesSchool of Mathematics and PhysicsQueen's University BelfastBelfastBT7 1NNUK
| | - Helge Müller‐Bunz
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| | - Grace G. Morgan
- School of ChemistryUniversity College DublinBelfield, Dublin 4Ireland
| |
Collapse
|
11
|
Ozturk SF, Liu Z, Sutherland JD, Sasselov DD. Origin of biological homochirality by crystallization of an RNA precursor on a magnetic surface. SCIENCE ADVANCES 2023; 9:eadg8274. [PMID: 37285423 PMCID: PMC10246896 DOI: 10.1126/sciadv.adg8274] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023]
Abstract
Homochirality is a signature of life on Earth, yet its origins remain an unsolved puzzle. Achieving homochirality is essential for a high-yielding prebiotic network capable of producing functional polymers like RNA and peptides on a persistent basis. Because of the chiral-induced spin selectivity effect, which established a strong coupling between electron spin and molecular chirality, magnetic surfaces can act as chiral agents and be templates for the enantioselective crystallization of chiral molecules. Here, we studied the spin-selective crystallization of racemic ribo-aminooxazoline (RAO), an RNA precursor, on magnetite (Fe3O4) surfaces, achieving an unprecedented enantiomeric excess (ee) of about 60%. Following the initial enrichment, we then obtained homochiral (100% ee) crystals of RAO after a subsequent crystallization. Our results demonstrate a prebiotically plausible way of achieving system-level homochirality from completely racemic starting materials, in a shallow-lake environment on early Earth where sedimentary magnetite deposits are expected to be common.
Collapse
Affiliation(s)
- S. Furkan Ozturk
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - John D. Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | |
Collapse
|
12
|
Franco A, Neves MO, da Silva JAL. Boron as a Hypothetical Participant in the Prebiological Enantiomeric Enrichment. ASTROBIOLOGY 2023; 23:605-615. [PMID: 36862128 DOI: 10.1089/ast.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Boron, as borate (or boric acid), is known as a mediator of the synthesis of ribose, ribonucleosides, and ribonucleotides (precursors of RNA) under plausible prebiotic conditions. With regard to these phenomena, the potential participation of this chemical element (as a constituent of minerals or hydrogels) for the emergence of prebiological homochirality is considered. This hypothesis is based on characteristics of crystalline surfaces as well as solubility of some minerals of boron in water or specific features of hydrogels with ester bonds from reaction of ribonucleosides and borate.
Collapse
Affiliation(s)
- Ana Franco
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Orquídia Neves
- Department of Civil Engineering, Architecture and Georesources, CERENA (Centro de Recursos Naturais e Ambiente), Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - José A L da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Martín O, Leyva Y, Suárez-Lezcano J, Pérez-Castillo Y, Marrero-Ponce Y. homFrom a coenzyme-like mechanism to homochirality. Biosystems 2023; 227-228:104904. [PMID: 37088349 DOI: 10.1016/j.biosystems.2023.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Inspired in a coenzyme-like behavior, an alternative mechanism to induce homochirality within a small vesicle is proposed. The system includes six different chemical species: an achiral substrate A, the enantiomeric forms L and D, a coenzyme E and two intermediate catalytic forms LE and DE. Whereas the coenzyme and the intermediate catalytic forms are trapped within the vesicle, the substrate and the two enantiomeric forms are able to diffuse selectively across the vesicle boundary. Instead of using autocatalysis, the production of new enantiomers includes two different steps, the production of intermediate catalytic species (LE, DE) and the catalytic production of new enantiomers from the substrate. Using a suitable parameterization, we found that the chiral evolution of the system is highly dependent on the total amount of coenzyme within the vesicle, regardless of whether the surrounding membrane is permeable or not. However, the existence of large flows from the outside can destabilize the homochiral state inside the vesicle. In general, homochiral states tend to arise when the amount of coenzyme is quite low, a value that can vary according to the parametrization. On the other hand, the system tends to decrease the enantiomeric excess when the coenzyme levels are high enough. In general, the appearance of homochirality is conditioned by stochastic fluctuations in coenzyme levels within the vesicle, an effect that is gradually amplified throughout the entire process of enantiomer synthesis.
Collapse
Affiliation(s)
- Osmel Martín
- Laboratorio de Ciencia Planetaria, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba.
| | - Yoelsy Leyva
- Departamento de Física, Facultad de Ciencias, Universidad de Tarapacá, Casilla 7-D, Arica, Chile
| | - José Suárez-Lezcano
- Escuela de Enfermería, Pontificia Universidad Católica Del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador
| | - Yunierkis Pérez-Castillo
- Bio-Cheminformatics Research Group and Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, 170504, Ecuador
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de La Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Av. Interoceánica Km 12 ½, Cumbayá, Quito, 170157, Ecuador
| |
Collapse
|
14
|
van Dongen SW, Baglai I, Leeman M, Kellogg RM, Kaptein B, Noorduin WL. Rapid deracemization through solvent cycling: proof-of-concept using a racemizable conglomerate clopidogrel precursor. Chem Commun (Camb) 2023; 59:3838-3841. [PMID: 36825774 PMCID: PMC10043878 DOI: 10.1039/d3cc00332a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
We demonstrate that a conglomerate-forming clopidogrel precursor undergoing solution phase racemization can be deracemized through cyclic solvent removal and re-addition. We establish that the combination of slow growth and fast dissolution of crystals is ideal for rapid deracemization, which we achieve by repurposing a Soxhlet apparatus to realize the slow removal and fast re-addition of solvent autonomously.
Collapse
Affiliation(s)
| | - Iaroslav Baglai
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands.
| | - Michel Leeman
- Symeres, Kadijk 3, Groningen 9747 AT, The Netherlands
| | | | - Bernard Kaptein
- InnoSyn BV, Urmonderbaan 22, Geleen 6167 RD, The Netherlands
| | - Willem L Noorduin
- AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands. .,Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Wang Y, Liu R, Zhang Z, Wei J, Yang Z. Large Optical Asymmetry in Silver Nanoparticle Assemblies Enabled by CH-π Interaction-Mediated Chirality Transfer. J Am Chem Soc 2023; 145:4035-4044. [PMID: 36757911 DOI: 10.1021/jacs.2c11639] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transfer of asymmetry from the molecular system to the other distinct system requires appropriate chemical interactions. Here, we show how the CH-π interaction, one of the weakest hydrogen bonds, can be applied to transfer the asymmetry from π-conjugated chiral molecules to the assemblies of plasmonic Ag nanoparticles, where the aliphatic chains of chiral molecules and the polystyrene chains grafted on Ag nanoparticles are served as the hydrogen donor and acceptor, respectively. The optical asymmetry g-factor of the chiral assemblies of plasmonic nanoparticles is strongly dependent on the molecular weight of the polystyrene ligand, the core structure of the molecule, and the aliphatic chain length of the chiral molecule. Importantly, we explore a molecular mixing strategy to enhance the asymmetry g-factor of chiral molecular assemblies, which consequently promotes the g-factor of chiral plasmonics efficiently, reaching a high value of ∼0.05 under optimal conditions. Overall, we rationalize the chirality transfer from chiral molecules to inorganic nanoparticles, providing the guidance for structural design of chiral nanocomposites with a high g-factor.
Collapse
Affiliation(s)
- Ye Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Zongze Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
16
|
Zhang D, Xiao Q, Rahimzadeh M, Liu M, Rodriguez-Emmenegger C, Miyazaki Y, Shinoda W, Percec V. Self-Assembly of Glycerol-Amphiphilic Janus Dendrimers Amplifies and Indicates Principles for the Selection of Stereochemistry by Biological Membranes. J Am Chem Soc 2023; 145:4311-4323. [PMID: 36749951 DOI: 10.1021/jacs.3c00389] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The principles for the selection of the stereochemistry of phospholipids of biological membranes remain unclear and continue to be debated. Therefore, any new experiments on this topic may help progress in this field. To address this question, three libraries of constitutional isomeric glycerol-amphiphilic Janus dendrimers (JDs) with nonsymmetric homochiral, racemic, and symmetric achiral branching points were synthesized by an orthogonal-modular-convergent methodology. These JDs amplify self-assembly, and therefore, monodisperse vesicles known as dendrimersomes (DSs) with predictable dimensions programmed by JD concentration were assembled by rapid injection of their ethanol solution into water. DSs of homochiral JD enantiomers, racemic, including mixtures of different enantiomers, and achiral exhibited similar DS size-concentration dependence. However, the number of bilayers of DSs assembled from homochiral, achiral, and racemic JDs determined by cryo-TEM were different. Statistical analysis of the number of bilayers and coarse-grained molecular dynamics simulations demonstrated that homochiral JDs formed predominantly unilamellar DSs. Symmetric achiral JDs assembled only unilamellar DSs while racemic JDs favored multilamellar DSs. Since cell membranes are unilamellar, these results indicate a new rationale for nonsymmetric homochiral vs racemic selection. Simultaneously, these experiments imply that the symmetric achiral lipids forming more stable membrane, probably had been the preferable assemblies of prebiotic cell membranes.
Collapse
Affiliation(s)
- Dapeng Zhang
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Institute of Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mehrnoush Rahimzadeh
- DWI─Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Matthew Liu
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cesar Rodriguez-Emmenegger
- DWI─Leibniz Institute for Interactive Materials, Aachen 52074, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
17
|
Yoshimura Y, Tanaka Y, Kobayashi R, Niikura K, Kawasaki T. Asymmetric Strecker reaction at the solid/solid interface. Org Biomol Chem 2023; 21:520-524. [PMID: 36408703 DOI: 10.1039/d2ob01802k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Related to absolute asymmetric synthesis, a stereospecific reaction at the solid/solid interface arising from crystal chirality of the achiral or racemic substrates has not yet been reported. Here, we demonstrate the asymmetric Strecker-type solid/solid reaction between the chiral crystal of a racemic cyanohydrin (kryptoracemate) and the achiral crystal of an ammonium salt to afford highly enantioenriched α-aminonitrile in combination with amplification of chirality. rac-Cyanohydrin provides its chiral surface as a reactive site and the reaction proceeds with dissociation of cyanohydrin; thus, an asymmetric Strecker-type reaction takes place at the interface of the substrate crystals. Strecker synthesis coupled with cyanohydrin synthesis offers a credible abiotic synthesis mechanism of α-amino acids and α-hydroxy acids. For the first time, stereochemical relationship has been found between the two chiral intermediates, aminonitrile and cyanohydrin, which are in equilibrium in the synthesis mechanism.
Collapse
Affiliation(s)
- Yuki Yoshimura
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yudai Tanaka
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Ryota Kobayashi
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kohei Niikura
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| |
Collapse
|
18
|
Ayuso D, Ordonez AF, Smirnova O. Ultrafast chirality: the road to efficient chiral measurements. Phys Chem Chem Phys 2022; 24:26962-26991. [PMID: 36342056 PMCID: PMC9673685 DOI: 10.1039/d2cp01009g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 08/20/2023]
Abstract
Today we are witnessing the electric-dipole revolution in chiral measurements. Here we reflect on its lessons and outcomes, such as the perspective on chiral measurements using the complementary principles of "chiral reagent" and "chiral observer", the hierarchy of scalar, vectorial and tensorial enantio-sensitive observables, the new properties of the chiro-optical response in the ultrafast and non-linear domains, and the geometrical magnetism associated with the chiral response in photoionization. The electric-dipole revolution is a landmark event. It has opened routes to extremely efficient enantio-discrimination with a family of new methods. These methods are governed by the same principles but work in vastly different regimes - from microwaves to optical light; they address all molecular degrees of freedom - electronic, vibrational and rotational, and use flexible detection schemes, i.e. detecting photons or electrons, making them applicable to different chiral phases, from gases to liquids to amorphous solids. The electric-dipole revolution has also enabled enantio-sensitive manipulation of chiral molecules with light. This manipulation includes exciting and controlling ultrafast helical currents in vibronic states of chiral molecules, enantio-sensitive control of populations in electronic, vibronic and rotational molecular states, and opens the way to efficient enantio-separation and enantio-sensitive trapping of chiral molecules. The word "perspective" has two meanings: an "outlook" and a "point of view". In this perspective article, we have tried to cover both meanings.
Collapse
Affiliation(s)
- David Ayuso
- Max-Born-Institut, 12489 Berlin, Germany
- Imperial College London, SW7 2AZ London, UK.
| | - Andres F Ordonez
- Max-Born-Institut, 12489 Berlin, Germany
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.
| | - Olga Smirnova
- Max-Born-Institut, 12489 Berlin, Germany
- Technische Universität Berlin, 10623 Berlin, Germany.
| |
Collapse
|
19
|
Gao XJ, Wu TT, Ge FY, Lei MY, Zheng HG. Regulation of Chirality in Metal–Organic Frameworks (MOFs) Based on Achiral Precursors through Substituent Modification. Inorg Chem 2022; 61:18335-18339. [DOI: 10.1021/acs.inorgchem.2c02745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiang-Jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
- China Fire and Rescue Institute, Beijing 102201, People’s Republic of China
| | - Ting-Ting Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Fa-Yuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Ming-Yuan Lei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
20
|
Liu J, Chu T, Cheng M, Su Y, Zou G, Hou S. Bovine serum albumin functional graphene oxide membrane for effective chiral separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Walsh MP, Barclay JA, Begg CS, Xuan J, Johnson NT, Cole JC, Kitching MO. Identifying a Hidden Conglomerate Chiral Pool in the CSD. JACS AU 2022; 2:2235-2250. [PMID: 36311827 PMCID: PMC9597607 DOI: 10.1021/jacsau.2c00394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Conglomerate crystallization is the spontaneous generation of individually enantioenriched crystals from a nonenantioenriched material. This behavior is responsible for spontaneous resolution and the discovery of molecular chirality by Pasteur. The phenomenon of conglomerate crystallization of chiral organic molecules has been left largely undocumented, with no actively curated list available in the literature. While other crystallographic behaviors can be interrogated by automated searching, conglomerate crystallizations are not identified within the Cambridge Structural Database (CSD) and are therefore not accessible by conventional automated searching. By conducting a manual search of the CSD and literature, a list of over 1800 chiral species capable of conglomerate crystallization was curated by inspection of the racemic synthetic routes described in each publication. The majority of chiral conglomerate crystals are produced and published by synthetic chemists who seldom note and rarely exploit the implications this phenomenon can have on the enantiopurity of their crystalline materials. With their structures revealed, we propose that this list of compounds represents a new chiral pool which is not tied to biological sources of chirality.
Collapse
Affiliation(s)
- Mark P. Walsh
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - James A. Barclay
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Callum S. Begg
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Jinyi Xuan
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| | - Natalie T. Johnson
- Cambridge
Crystallographic Data Centre, 12 Union Road, CambridgeCB2 1EZ, United Kingdom
| | - Jason C. Cole
- Cambridge
Crystallographic Data Centre, 12 Union Road, CambridgeCB2 1EZ, United Kingdom
| | - Matthew O. Kitching
- Department
of Chemistry Durham University, Lower Mount Joy, South Rd, DurhamDH1 3LE, United
Kingdom
| |
Collapse
|
22
|
Soai K. The Soai reaction and its implications with the life's characteristic features of self-replication and homochirality. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Nakaya Y, Furukawa S. Catalysis of Alloys: Classification, Principles, and Design for a Variety of Materials and Reactions. Chem Rev 2022; 123:5859-5947. [PMID: 36170063 DOI: 10.1021/acs.chemrev.2c00356] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alloying has long been used as a promising methodology to improve the catalytic performance of metallic materials. In recent years, the field of alloy catalysis has made remarkable progress with the emergence of a variety of novel alloy materials and their functions. Therefore, a comprehensive disciplinary framework for catalytic chemistry of alloys that provides a cross-sectional understanding of the broad research field is in high demand. In this review, we provide a comprehensive classification of various alloy materials based on metallurgy, thermodynamics, and inorganic chemistry and summarize the roles of alloying in catalysis and its principles with a brief introduction of the historical background of this research field. Furthermore, we explain how each type of alloy can be used as a catalyst material and how to design a functional catalyst for the target reaction by introducing representative case studies. This review includes two approaches, namely, from materials and reactions, to provide a better understanding of the catalytic chemistry of alloys. Our review offers a perspective on this research field and can be used encyclopedically according to the readers' individual interests.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
24
|
Soai K, Kawasaki T, Matsumoto A. Asymmetric Autocatalysis as an Efficient Link Between the Origin of Homochirality and Highly Enantioenriched Compounds. ORIGINS LIFE EVOL B 2022; 52:57-74. [PMID: 35960427 DOI: 10.1007/s11084-022-09626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022]
Abstract
Biological homochirality of essential components such as L-amino acids and D-sugars is prerequisite for the emergence, evolution and the maintenance of life. Implication of biological homochirality is described. Considerable interest has been focused on the origin and the process leading to the homochirality. Asymmetric autocatalysis with amplification of enantiomeric excess (ee), i.e., the Soai reaction, is capable to link the low ee induced by the proposed origins of chirality such as circularly polarized light and high ee of the organic compound. Absolute asymmetric synthesis without the intervention of any chiral factor was achieved in the Soai reaction.
Collapse
Affiliation(s)
- Kenso Soai
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.
- Research Organization for Nano & Life Innovation, Waseda University, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Arimasa Matsumoto
- Department of Chemistry, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
25
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
26
|
Sanada K, Washio A, Ishikawa H, Yoshida Y, Mino T, Sakamoto M. Chiral Symmetry Breaking of Monoacylated Anhydroerythritols and meso-1,2-Diols through Crystallization-Induced Deracemization. Angew Chem Int Ed Engl 2022; 61:e202201268. [PMID: 35229431 DOI: 10.1002/anie.202201268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 01/11/2023]
Abstract
We developed a chiral symmetry breaking method for monoacylated meso diols. The X-ray crystal structure analysis of monoacylated 1,4-anhydroerythritols, meso cyclic diols with a cis configuration, revealed that the O-(p-anisoyl) derivative crystallized as a racemic conglomerate of the P21 21 21 crystal system. It was confirmed that the substrate racemized by intramolecular transfer of the acyl group in the presence of a catalytic amount of base. Evaporating the solvent gradually from the solution or Viedma ripening to promote crystallization-induced deracemization efficiently led to enantiomer crystals. These results provide the first successful example of asymmetric expression and amplification by deracemization of sugar derivatives without an external chemical chiral source. Furthermore, we applied this methodology to acyclic meso-1,2-diols. Three O-monoacylated substrates were successfully deracemized to 99 % ee by Viedma ripening. We also developed asymmetric desymmetrization of meso-1,2-diols by combining acylation and crystallization-induced deracemization.
Collapse
Affiliation(s)
- Kazutaka Sanada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Aoi Washio
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Hiroki Ishikawa
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan.,Molecular Chirality Research Center, Chiba University Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, Japan
| |
Collapse
|
27
|
Piñeros WD, Tlusty T. Spontaneous chiral symmetry breaking in a random driven chemical system. Nat Commun 2022; 13:2244. [PMID: 35474070 PMCID: PMC9042824 DOI: 10.1038/s41467-022-29952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/09/2022] [Indexed: 11/09/2022] Open
Abstract
Living systems have evolved to efficiently consume available energy sources using an elaborate circuitry of chemical reactions which, puzzlingly, bear a strict restriction to asymmetric chiral configurations. While autocatalysis is known to promote such chiral symmetry breaking, whether a similar phenomenon may also be induced in a more general class of configurable chemical systems—via energy exploitation—is a sensible yet underappreciated possibility. This work examines this question within a model of randomly generated complex chemical networks. We show that chiral symmetry breaking may occur spontaneously and generically by harnessing energy sources from external environmental drives. Key to this transition are intrinsic fluctuations of achiral-to-chiral reactions and tight matching of system configurations to the environmental drives, which together amplify and sustain diverged enantiomer distributions. These asymmetric states emerge through steep energetic transitions from the corresponding symmetric states and sharply cluster as highly-dissipating states. The results thus demonstrate a generic mechanism in which energetic drives may give rise to homochirality in an otherwise totally symmetrical environment, and from an early-life perspective, might emerge as a competitive, energy-harvesting advantage. “A hallmark of living systems is their homochirality, the selection of specific mirror symmetry in their molecules. Here, the authors show that chiral symmetry can be spontaneously broken in complex, random chemical systems via exploitation of environmental energy sources – a possible mechanism for the emergence of homochirality in life.”
Collapse
Affiliation(s)
- William D Piñeros
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Korea. .,Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea. .,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea.
| |
Collapse
|
28
|
Sallembien Q, Bouteiller L, Crassous J, Raynal M. Possible chemical and physical scenarios towards biological homochirality. Chem Soc Rev 2022; 51:3436-3476. [PMID: 35377372 DOI: 10.1039/d1cs01179k] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The single chirality of biological molecules in terrestrial biology raises more questions than certitudes about its origin. The emergence of biological homochirality (BH) and its connection with the appearance of life have elicited a large number of theories related to the generation, amplification and preservation of a chiral bias in molecules of life under prebiotically relevant conditions. However, a global scenario is still lacking. Here, the possibility of inducing a significant chiral bias "from scratch", i.e. in the absence of pre-existing enantiomerically-enriched chemical species, will be considered first. It includes phenomena that are inherent to the nature of matter itself, such as the infinitesimal energy difference between enantiomers as a result of violation of parity in certain fundamental interactions, and physicochemical processes related to interactions between chiral organic molecules and physical fields, polarized particles, polarized spins and chiral surfaces. The spontaneous emergence of chirality in the absence of detectable chiral physical and chemical sources has recently undergone significant advances thanks to the deracemization of conglomerates through Viedma ripening and asymmetric auto-catalysis with the Soai reaction. All these phenomena are commonly discussed as plausible sources of asymmetry under prebiotic conditions and are potentially accountable for the primeval chiral bias in molecules of life. Then, several scenarios will be discussed that are aimed to reflect the different debates about the emergence of BH: extra-terrestrial or terrestrial origin (where?), nature of the mechanisms leading to the propagation and enhancement of the primeval chiral bias (how?) and temporal sequence between chemical homochirality, BH and life emergence (when?). Intense and ongoing theories regarding the emergence of optically pure molecules at different moments of the evolution process towards life, i.e. at the levels of building blocks of Life, of the instructed or functional polymers, or even later at the stage of more elaborated chemical systems, will be critically discussed. The underlying principles and the experimental evidence will be commented for each scenario with particular attention on those leading to the induction and enhancement of enantiomeric excesses in proteinogenic amino acids, natural sugars, and their intermediates or derivatives. The aim of this review is to propose an updated and timely synopsis in order to stimulate new efforts in this interdisciplinary field.
Collapse
Affiliation(s)
- Quentin Sallembien
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| | - Jeanne Crassous
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
29
|
Sanada K, Washio A, Ishikawa H, Yoshida Y, Mino T, Sakamoto M. Chiral Symmetry Breaking of Monoacylated Anhydroerythritols and
meso
‐1,2‐Diols through Crystallization‐Induced Deracemization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazutaka Sanada
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Aoi Washio
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Hiroki Ishikawa
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Yasushi Yoshida
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Takashi Mino
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku, Chiba Chiba 263-8522 Japan
| |
Collapse
|
30
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Gogoi M, Goswami R, Borah A, Hazarika S. In situ Assembly of Functionalized Single-Walled Carbon Nanotube with partially reduced Graphene oxide Nanocomposite Membrane for Chiral Separation of β-substituted-α-amino acids. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Kawasaki T, Kubo H, Nishiyama S, Saijo T, Yokoi R, Tokunaga Y. Quantitative Difference in Solubility of Diastereomeric ( 2H/ 1H)-Isotopomers. J Am Chem Soc 2021; 143:19525-19531. [PMID: 34738466 PMCID: PMC8630799 DOI: 10.1021/jacs.1c09253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many achiral organic compounds become chiral by an isotopic substitution of one of the enantiotopic moieties in their structures. Although spectroscopic methods can recognize the molecular chirality due to an isotopic substitution, the effects of isotopically chiral compounds in enantioselective reactions have remained unsolved because the small chirality arises only from the difference between the number of neutrons in the atomic nuclei. The difference between the diastereomeric isotopomers of reactive sources should be the key to these effects. However, the energy difference between them is difficult to calculate, even using present computational methods, and differences in physical properties have not yet been reported. Here, we demonstrate that the small energy difference between the diastereomeric isotopomers at the molecular level can be enhanced to appear as a solubility difference between the diastereomeric (2H/1H) isotopomers of α-aminonitriles, synthesized from an isotopically chiral amine, achiral aldehyde, and HCN. This small, but measurable, difference induces the chiral (d/l) imbalance in the suspended α-aminonitrile; therefore, a second enhancement in the solid-state chirality proceeds to afford a highly stereoimproved aminonitrile (>99% selectivity) whose handedness arises completely from the excess enantiomer of isotopically chiral amine, even in a low enantiomeric excess and low deuterium-labeling ratio. Because α-aminonitriles can be hydrolyzed to chiral α-amino acids with the removal of an isotope-labeling moiety, the current sequence of reactions represents a highly enantioselective Strecker amino acid synthesis induced by the chiral hydrogen (2H/1H) isotopomer. Thus, hydrogen isotopic chirality links directly with the homochirality of α-amino acids via a double enhancement of α-aminonitrile, the chiral intermediate of a proposed prebiotic mechanism.
Collapse
Affiliation(s)
- Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hiroki Kubo
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Satoshi Nishiyama
- Department of Materials Science and Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| | - Taiki Saijo
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Rintaro Yokoi
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuji Tokunaga
- Department of Materials Science and Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
33
|
Matsumoto A, Tanaka A, Kaimori Y, Hara N, Mikata Y, Soai K. Circular dichroism spectroscopy of catalyst preequilibrium in asymmetric autocatalysis of pyrimidyl alkanol. Chem Commun (Camb) 2021; 57:11209-11212. [PMID: 34622895 DOI: 10.1039/d1cc04206h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mechanistic understanding of the asymmetric autocatalysis of pyrimidyl alkanol is a highly attractive and challenging topic due to its unique feature of amplification of enantiomeric excess. Circular dichroism spectroscopic analysis of this reaction allows monitoring of the structual changes of possible catalyst precursors in the solution state and shows characteristic temperature and solvent dependence. TD-DFT calculations suggest that these spectral changes are induced by a dimer-tetramer equilibrium of zinc alkoxides.
Collapse
Affiliation(s)
- Arimasa Matsumoto
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan.
| | - Ayame Tanaka
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan.
| | - Yoshiyasu Kaimori
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Natsuki Hara
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuji Mikata
- Department of Chemistry, Biology, and Environmental Science, Nara Women's University, Kita-Uoya Nishi-machi, Nara, 630-8506, Japan.
| | - Kenso Soai
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
34
|
Chen M, Chen Z, Chen H, Xu L, Kong X, Long L, Zheng L. Spontaneous resolution and absolute chiral induction of 3d–4f heterometal-organic frameworks from achiral precursors. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1065-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Percec V, Xiao Q. Helical Chirality of Supramolecular Columns and Spheres Self‐Organizes Complex Liquid Crystals, Crystals, and Quasicrystals. Isr J Chem 2021. [DOI: 10.1002/ijch.202100057] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Virgil Percec
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories Department of Chemistry University of Pennsylvania Philadelphia Pennsylvania 19104-6323 United States
| |
Collapse
|
36
|
Rotunno G, Kaur G, Lazzarini A, Buono C, Amedjkouh M. Symmetry Breaking and Autocatalytic Amplification in Soai Reaction Confined within UiO-MOFs under Heterogenous Conditions. Chem Asian J 2021; 16:2361-2369. [PMID: 34250741 PMCID: PMC8456963 DOI: 10.1002/asia.202100419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Indexed: 12/24/2022]
Abstract
Symmetry breaking is observed in the Soai reaction in a confinement environment provided by zirconium‐based UiO‐MOFs used as crystalline sponges. Subsequent reaction of encapsulated Soai aldehyde with Zn(i‐Pr)2 vapour promoted absolute asymmetric synthesis of the corresponding alkanol. ATR‐IR and NMR confirm integration of aldehyde into the porous material, and a similar localization of newly formed chiral alkanol after reaction. Despite the confinement, the Soai reaction exhibits significant activity and autocatalytic amplification. Comparative catalytic studies with various UiO‐MOFs indicate different outcomes in terms of enantiomeric excess, handedness distribution of the product and reaction rate, when compared to pristine solid Soai aldehyde, while the crystalline MOF remains highly stable to action of Zn(iPr)2 vapour. This is an unprecedented example of absolute asymmetric synthesis using MOFs.
Collapse
Affiliation(s)
- Giuseppe Rotunno
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Oslo, Norway.,Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318, Oslo, Norway
| | - Gurpreet Kaur
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Oslo, Norway.,Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318, Oslo, Norway
| | - Andrea Lazzarini
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Oslo, Norway.,Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318, Oslo, Norway
| | - Carlo Buono
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Oslo, Norway.,Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318, Oslo, Norway
| | - Mohamed Amedjkouh
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Oslo, Norway.,Center for Materials Science and Nanotechnology (SMN), Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box 1126, Blindern, 0318, Oslo, Norway
| |
Collapse
|
37
|
Soai K, Matsumoto A, Kawasaki T. Asymmetric Autocatalysis as a Link Between Crystal Chirality and Highly Enantioenriched Organic Compounds. Isr J Chem 2021. [DOI: 10.1002/ijch.202100047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kenso Soai
- Department of Applied Chemistry Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
- Research Organization for Nano & Life Innovation Waseda University Wasedatsurumaki-cho, Shinjuku-ku Tokyo, 162 0041 Japan
| | - Arimasa Matsumoto
- Department of Chemistry Biology and Environmental Science Nara Women's University Kita-Uoya Nishi-machi Nara 630-8506 Japan
| | - Tsuneomi Kawasaki
- Department of Applied Chemistry Tokyo University of Science Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
38
|
Gus'kov VY, Shayakhmetova RK, Allayarova DA, Sharafutdinova YF, Gilfanova EL, Pavlova IN, Garipova GZ. Mechanism of chiral recognition by enantiomorphous cytosine crystals during enantiomer adsorption. Phys Chem Chem Phys 2021; 23:11968-11979. [PMID: 34002188 DOI: 10.1039/d1cp01265g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The quest to understand why life exhibits chirality has been far from successful. In the terrestrial theory of chirality emergence in living matter, one of the main possible mechanisms is the chiral recognition of organic molecules by enantiomorphic crystals. In this work, we studied the ability of enantiomorphic cytosine crystals, obtained by Viedma ripening, for chiral recognition by enantiomers adsorption. For this, we used MD calculations, inverse gas chromatography, and adsorption from solutions. The difference between the isotherms of enantiomers was determined using a t-test. We found that cytosine crystals were capable of chiral recognition only when the adsorbate concentration on the surface was sufficient for lateral interactions leading to layer formation. In order to approximate adsorption isotherms, Langmuir, Freundlich, BET, and Fowler-Guggenheim equations were used. The difference in lateral interactions between menthol enantiomers during their adsorption from a solution in n-heptane was established. A mechanism of chiral recognition of the adsorbed substance by cytosine crystals was proposed. The conditions under which chiral recognition could proceed were determined. We observed that, upon adsorption from a solution, chiral recognition manifested itself at higher coverages than in MD simulations. This was caused by the competitive adsorption of the solvent. The results obtained show that adsorption on enantiomorphic crystals could be the source of the first minute enantiomeric excess, providing an opportunity to understand the origin of chiral imbalance.
Collapse
Affiliation(s)
| | | | | | | | | | - Irina N Pavlova
- Institute of Petrochemistry and Catalysis RAS, 141 Oktyabrya av., Ufa, Russia
| | | |
Collapse
|
39
|
Penha F, Gopalan A, Meijlink JC, Ibis F, Eral HB. Selective Crystallization of d-Mannitol Polymorphs Using Surfactant Self-Assembly. CRYSTAL GROWTH & DESIGN 2021; 21:3928-3935. [PMID: 34276257 PMCID: PMC8276574 DOI: 10.1021/acs.cgd.1c00243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Indexed: 05/18/2023]
Abstract
Selective crystallization of polymorphs is highly sought after in industrial practice. Yet, state-of-the-art techniques either use laboriously engineered solid surfaces or strenuously prepared heteronucleants. We propose an approach where surfactants in solution self-assemble effortlessly into mesoscopic structures dictating the polymorphic outcome of the target solute. Sodium dodecyl sulfate (SDS) surfactant is used as a tailored additive to crystallize different polymorphic forms of a model active pharmaceutical ingredient, d-mannitol. Different mesoscopic phases of SDS template particular polymorphs: packed monolayers, micelles, and crystals favored the β, α, and δ forms of d-mannitol, respectively. A synergistic effect of topological templating and molecular interactions is proposed as the rationale behind the observed selective crystallization of polymorphs. This crystal engineering technique suggests that surfactant self-assemblies can be used as tailored templates for polymorphic control.
Collapse
Affiliation(s)
- Frederico
Marques Penha
- Department
of Chemical Engineering, KTH Royal Institute
of Technology, Teknikringen
42, SE100-44 Stockholm, Sweden
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat
39, 2628 CB Delft, The Netherlands
| | - Ashwin Gopalan
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat
39, 2628 CB Delft, The Netherlands
| | - Jochem Christoffel Meijlink
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat
39, 2628 CB Delft, The Netherlands
| | - Fatma Ibis
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat
39, 2628 CB Delft, The Netherlands
| | - Huseyin Burak Eral
- Process
& Energy Department, Delft University
of Technology, Leeghwaterstraat
39, 2628 CB Delft, The Netherlands
| |
Collapse
|
40
|
Kawasaki T, Kaimori Y, Shimada S, Hara N, Sato S, Suzuki K, Asahi T, Matsumoto A, Soai K. Asymmetric autocatalysis triggered by triglycine sulfate with switchable chirality by altering the direction of the applied electric field. Chem Commun (Camb) 2021; 57:5999-6002. [PMID: 34023863 DOI: 10.1039/d1cc02162a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triglycine sulfate (TGS) acts as a chiral trigger for asymmetric autocatalysis with amplification of enantiomeric excess, i.e., the Soai reaction. Therefore, molecular chirality of highly enantioenriched organic compounds is controlled by a ferroelectric crystal TGS, whose polarization is altered by an electric field.
Collapse
Affiliation(s)
- Tsuneomi Kawasaki
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Yoshiyasu Kaimori
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Seiya Shimada
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Natsuki Hara
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Susumu Sato
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kenta Suzuki
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Toru Asahi
- Department of Life Science and Medical Bioscience, Waseda University (TWIns), Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Arimasa Matsumoto
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Kenso Soai
- Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Research Organization for Nano & Life Innovation, Waseda University, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| |
Collapse
|
41
|
Li X, Tong X, Chen Q, Liu H. Size effect of graphene oxide sheets on enantioseparation performances in membrane separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Dašková V, Buter J, Schoonen AK, Lutz M, de Vries F, Feringa BL. Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angew Chem Int Ed Engl 2021; 60:11120-11126. [PMID: 33605523 PMCID: PMC8252365 DOI: 10.1002/anie.202014955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/04/2021] [Indexed: 01/22/2023]
Abstract
The origin of biomolecular homochirality continues to be one of the most fascinating aspects of prebiotic chemistry. Various amplification strategies for chiral compounds to enhance a small chiral preference have been reported, but none of these involves phosphorylation, one of nature's essential chemical reactions. Here we present a simple and robust concept of phosphorylation-based chiral amplification of amines and amino acids in water. By exploiting the difference in solubility of a racemic phosphoramidate and its enantiopure form, we achieved enantioenrichment in solution. Starting with near racemic, phenylethylamine-based phosphoramidates, ee's of up to 95 % are reached in a single amplification step. Particularly noteworthy is the enantioenrichment of phosphorylated amino acids and their derivatives, which might point to a potential role of phosphorus en-route to prebiotic homochirality.
Collapse
Affiliation(s)
- Vanda Dašková
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Jeffrey Buter
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Anne K. Schoonen
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Martin Lutz
- Crystal and Structural ChemistryBijvoet Centre for Biomolecular ResearchUtrecht UniversityPadualaan 83584CHUtrechtThe Netherlands
| | - Folkert de Vries
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
43
|
Yang B, Zou G, Zhang S, Ni H, Wang H, Xu W, Yang C, Zhang H, Yu W, Luo K. Biased Symmetry Breaking and Chiral Control by Self-Replicating in Achiral Tetradentate Platinum (II) Complexes. Angew Chem Int Ed Engl 2021; 60:10531-10536. [PMID: 33682280 DOI: 10.1002/anie.202101709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Indexed: 01/03/2023]
Abstract
Obtaining homochirality from biased symmetry-breaking of self-assembly in achiral molecules remains a great challenge due to the lack of ingenious strategies and controlling their handedness. Here, we report the first case of biased symmetry breaking from achiral platinum (II) liquid crystals which self-organize into an enantiomerically enriched single domain without selection of handedness in twist grain boundary TGB [ *] phase. Most importantly, the chiral control of self-organization can be achieved by using above the homochiral liquid crystal films with determined handedness (P or M) as a template. Moreover, benefiting from self-assembled superhelix, these complexes exhibit prominent circularly polarized luminescence with high |glum | up to 3.4×10-3 in the TGB [ *] mesophase. This work paves a neoteric avenue for the development of chiral self-assemblies from achiral molecules.
Collapse
Affiliation(s)
- Bo Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Guo Zou
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Shilin Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Hailiang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Haifeng Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Wei Xu
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Cheng Yang
- College of Chemistry and State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610000, P. R. China
| | - Hui Zhang
- Department of Chemistry, Xiamen University, Xiamen, 361000, P. R. China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610000, P. R. China
| |
Collapse
|
44
|
Dašková V, Buter J, Schoonen AK, Lutz M, Vries F, Feringa BL. Chiral Amplification of Phosphoramidates of Amines and Amino Acids in Water. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vanda Dašková
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Jeffrey Buter
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anne K. Schoonen
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry Bijvoet Centre for Biomolecular Research Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Folkert Vries
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
45
|
Yang B, Zou G, Zhang S, Ni H, Wang H, Xu W, Yang C, Zhang H, Yu W, Luo K. Biased Symmetry Breaking and Chiral Control by Self‐Replicating in Achiral Tetradentate Platinum (II) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101709] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bo Yang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Guo Zou
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Shilin Zhang
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Hailiang Ni
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Haifeng Wang
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Wei Xu
- College of Chemistry and State Key Laboratory of Biotherapy Healthy Food Evaluation Research Center Sichuan University Chengdu 610000 P. R. China
| | - Cheng Yang
- College of Chemistry and State Key Laboratory of Biotherapy Healthy Food Evaluation Research Center Sichuan University Chengdu 610000 P. R. China
| | - Hui Zhang
- Department of Chemistry Xiamen University Xiamen 361000 P. R. China
| | - Wenhao Yu
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| | - Kaijun Luo
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610000 P. R. China
| |
Collapse
|
46
|
Buhse T, Cruz JM, Noble-Terán ME, Hochberg D, Ribó JM, Crusats J, Micheau JC. Spontaneous Deracemizations. Chem Rev 2021; 121:2147-2229. [DOI: 10.1021/acs.chemrev.0c00819] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Buhse
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - María E. Noble-Terán
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid Spain
| | - Josep M. Ribó
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Joaquim Crusats
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier, F-31062 Toulouse Cedex, France
| |
Collapse
|
47
|
Abstract
Rosy prospects of chiral membranes are proposed with novel and robust materials.
Collapse
Affiliation(s)
- Hongda Han
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Wei Liu
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yin Xiao
- School of Chemical Engineering and Technology
- Tianjin Engineering Research Center of Functional Fine Chemicals
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Xiaofei Ma
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| | - Yong Wang
- School of Science
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Tianjin University
| |
Collapse
|
48
|
Wu D, Zhou K, Tian J, Liu C, Tian J, Jiang F, Yuan D, Zhang J, Chen Q, Hong M. Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angew Chem Int Ed Engl 2020; 60:3087-3094. [DOI: 10.1002/anie.202013885] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Dong Wu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Kang Zhou
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jian Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
49
|
Wu D, Zhou K, Tian J, Liu C, Tian J, Jiang F, Yuan D, Zhang J, Chen Q, Hong M. Induction of Chirality in a Metal–Organic Framework Built from Achiral Precursors. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013885] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Dong Wu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Kang Zhou
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Caiping Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jiayue Tian
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Henan Provincial Key Laboratory of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450001 China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Jian Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| |
Collapse
|
50
|
Abstract
Chemistry as a natural science occupies the length and temporal scales ranging between the formation of atoms and molecules as quasi-classical objects, and the formation of proto-life systems showing catalytic synthesis, replication, and the capacity for Darwinian evolution. The role of chiral dissymmetry in the chemical evolution toward life is manifested in how the increase of chemical complexity, from atoms and molecules to complex open systems, accompanies the emergence of biological homochirality toward life. Chemistry should express chirality not only as molecular structural dissymmetry that at the present is described in chemical curricula by quite effective pedagogical arguments, but also as a cosmological phenomenon. This relates to a necessarily better understanding of the boundaries of chemistry with physics and biology.
Collapse
|